Double-Pushout Graph Rewriting
Summary

- Applications of Graphs
- Graph rewriting
- Definition of a pushout
- Double-Pushout and rules
- Example
- Tools
Applications of graphs

- **Visual Modeling and Specification**
 - Representation of System States
 - Class/Object diagrams
 - Entity-relationship diagrams
 - Petri nets

- **Model Transformation**
 - Shift toward model driven code generation, analysis, computation and documentation

- **Concurrency and Distribution**
 - System behaviour represented by state changes is modeled by rule-based graph manipulations
• Software Development
 – Architectural structures and technical structures
 – Changes during software development process
 – Describe structural evolution in a rule-based way
What is a graph transformation?

The main idea of graph transformation is the rule based modification of graphs. The core of a rule (or production), \(p = (L, R) \) is a pair of graphs \((L, R)\) known as the left-hand side \(L\) and the right-hand side \(R\). Applying the rule \(p = (L, R) \) means

- to find a match \(L\) in the source graph and
- replacing \(L\) by \(R\), thus leading to the target graph
Definition of a pushout

There are many approaches to graph transformations but here we discuss the algebraic approach which is based on pushout constructions. There are two variants of pushout:

- double-pushout
- single-pushout

Definition: Given morphisms $f : A \to B$ and $g : A \to C$ in a category \mathbf{C}, a pushout (D, f', g') over f and g is defined by

- a pushout object D and
- morphisms $f' : C \to D$ and $g' : B \to D$ with $f' \circ g = g' \circ f$

such that for all objects X and morphisms $h : B \to X$ and $k : C \to X$ with $k \circ g = h \circ f$ there is a unique morphism $x : D \to X$ such that $x \circ g' = h$ and $x \circ f' = k$
Definition of a pushout (continued)

Visually:

We write $D = B +_A C$ for the pushout object D, where D is the gluing of B and C via (A, f, g).
Double-pushout approach

Two gluing constructions are used to model a graph transformation. In this approach a production is defined as \(p = (L, K, R) \), where:

- \(L \) describes the preconditions of the rule
- \(R \) describes the postconditions of the rule
- \(K \) describes a graph part which has to exist to apply the rule
- \(L \setminus K \) describes the part to be deleted
- \(R \setminus K \) describes the part to be created
Double-pushout step by step process

Let m be the match of the left-hand side L in G such that m is structure preserving and let p be a production then:

- first create the context graph as $D := (G \setminus m(L)) \cup m(K)$ then

- then check for gluing condition

 - gluing condition - points in L which are source or target in $G \setminus L$ (S_B) known as the boundary point and points given by K known as the gluing points (S_K) must satisfy $S_B \subseteq S_K$

- add R through K to D, to get H as $H = R +_K D$

Since K is in L, R, D we express that there are morphisms $K \to L$, $K \to R$, $K \to D$ and pushout constructions $G = L +_K D$, $H = R +_K D$
Double-pushout step by step process (continued)

(1) construct D such that the gluing of L and D via K is equal to G

(2) construct the gluing of R and D via K leading to the graph H
Simple Example
Tools

• AGG (http://tfs.cs.tu-berlin.de/agg/down.html)

• Progres (PRogrammed Graph REwriting Systems)

• Grace

• Fujaba
References:

- Hartmut Ehrig, Manfred Nagl, Grzegorz Rozenberg, Azriel Rosenfeld. Graph-Grammars and Their Application to Computer Science, 3rd International Workshop.

- Wolfram Kahl, Frank Derichsweiler. Declarative Term Graph Attribution for Program Generation.