
Simply typed lambda calculus ( λ )
by hadeel AL-Daoud



The main thing that typed lambda calculus adds to 
the un-typed lambda calculus is a concept called 
base types.
For example:

type “N“: the set of natural numbers
type “B" which corresponds to Boolean true/false 

values; and a type “S" which corresponds to strings. 



 Once we have basic types, then we can 
talk about the type of a function. A 
function maps from a value of one type 
(the type of parameter) to a value of a 
second type (the type of the return value). 
For example, for a function that takes a 
parameter of type “S", and returns a value 
of type "δ", we write its type as “S → δ". 
"→" is called the function type 
constructor.

continue



 To apply types to the lambda calculus, we do a couple of 
things. First, we need a syntax update so that we can include 
type information in lambda terms. And second, we need to add 
a set of rules to show what it means for a typed program to be 
valid. 

 TYPED LANGUAGE CONCRETE SYNTAX:
T: Type (λ )
T := C | T1 -> T2 | (T)

TLCE:= expressions of  simply typed lambda calculus
TLCE ::= c | x | λ( x : T) .  M | M N | (M)



Example
 λ ( x : N) . x + 3. This asserts that the parameter, x, 

has type "N", which is the natural numbers. There is no 
assertion of the type of the result of the function; but 
since we know that "+" is a function with type "N -> N", 
which can infer that the result type of this function will be 
"N".



 Definition: Set of type judgments E:

E= {x: T1,x: T2,……..,x: Tn}

If a type context includes the judgment that "x : 
T ", We write that as “E I- x : T ".

E is called static type environment.

To talk about whether a program is valid with 
respect to types , we need to introduce a set of 
rules for type inference. When the type of an 
expression is inferred using one of these rules, 
we call that a type judgment.



Rule1: identifier:

E U {x: T} |- x: T
The simplest rule: if E indicates that identifier x has 
type T, Then x has that type.

Rule2: Constant:
E I- c: C
This rule states that a constant has whatever types 
associated with it in E.



Rule 3:  Function 
Given: E U {x : T1} |- M: T2

Infer: E |- (λ x : T1 . M) : T1 -> T2
This statement allows us to infer function types: if we 
know the type of the parameter to a function is “T1"; and 
we know that the type of the value returned by the 
function is “T2", then we know that the type of the 
function is “T1 -> T2“ . And finally,

Rule 4: Application
Given: E |- M : T1-> T2, E |- N : T1
Infer: E |- M N : T2
If we know that a function has type “T1 -> T2", and we 
apply it to a value of type “T1", the result is an 
expression of type “T2".



Type checking rules example

E I- λ (x: integer) . (plus x ) x : ??
°



B. substitution
1. Occurrences

Definition x occurs in: 
(i) x, 
(ii) (M N)  if x occurs in M or N, 
(iii) (λ y: T. M) if x occurs in M. 
2. Free variables, Fv

Fv ( x) = {x} 
Fv(λ x: T. M) = Fv (M) - {x} 
Fv (M N) = Fv ( M) union Fv ( N) 



Syntactic substitution:
[N/x] M is the result of replacing all free 
occurrences of identifier x by N in expression 
M.

 [N/ x] x = N
 [N/ x] y = y if not ( y = x) 
 [N/ x] ( L M) = ([N/ x] L) ([N/ x] M) 
 [N/ x] ( λ y: T. M) = λ (y: T) . ([N/ x] M) where 

not (y = x), not( y in Fv ( N)) 



Reduction rules:

 (β)(λ (x: T). M)N->> [N/ x] M

 (η) λ (x: T). (M x)->> M
η

β



EXAMPLE

(Λ(x: integer).( Plus x) x )17  ,reduces to:

(Plus 17) 17   : Using β- reduction , reduces to:

34 : using δ- rule



 So, now we have a simply typed lambda 
calculus. The reason that it's simply typed 
is because the type treatment here is 
minimal: the only way of building new 
types is through the unavoidable "->" 
constructor. 



THANKS FOR YOUR ATTENTION


