
Prolog
Mohammed Alabbad

1082679
alabbama@mcmaster.ca

McMaster University
Department of Computing and Software

Content
  Introduction

  Prolog basics by example.

  Syntax.

  Data Structures.

  Backtracking and “cut”.

  Grammar Rules.

  References

Introduction
  Prolog is a general purpose logic programming

language.

  It is a descriptive programming language (not
conventional).

  Created by Alain Comerauer and Philippe Roussel
in 1972.

  Originally aimed for natural languages processing.

  Now it is used in Artificial intelligence, expert
systems, theorem proving.

Declarative Programming
•  Declarative programming is a programming paradigm

that expresses the logic of a computation without
describing its control flow.

•  Describing what the program should accomplish, rather
than describing how to go about accomplishing it.

•  Include languages of logic programming, functional
programming, specific domain languages, and others.

Prolog as a logic programming language

•  Logic programming: The use of mathematical logic for
computer programming.

•  The task is divided into two parts:
•  Program which contains objects and their relationships.

•  Queries which run against the program.

Prolog Example
  Declaring some facts (database) about objects and

their relationships.

parent(john,mary).
female(mary).

?- parent(john,mary).
true.

?- parent(mary,john).
false.

  Asking questions about the facts.

  Variables can be instantiated or not instantiated.

?- parent(john,X).
X = mary.

?- parent(X,mary).
X = john;
X = karen.

parent(john,mary).
parent(karen,mary).
female(mary).

  Conjunctions are used for more complicated
relationships.

parent(john,mary).
parent(karen,mary).
female(mary).

?- parent(john,mary),parent(karen,mary).
true.

?- parent(john,mary),parent(mary,john).
false.

  Declaring some rules about objects and their
relationships.

?- daughter(X,Y).
X = mary,
Y = john;
X = mary,
Y = karen.

parent(john,mary). /*comment*/
parent(karen,mary).
female(mary).
daughter(X,Y):-female(X),parent(Y,X).

  Backtracking.

?- daughter(X,Y).
X = mary,
Y = john;
X = mary,
Y = karen.

parent(john,mary).
parent(karen,mary).
female(karen).
female(mary).
daughter(X,Y):-female(X),parent(Y,X).

Basics
  Declaring facts.

  Declaring rules.

  Ask questions.

  Using conjunctions.

  An introduction to backtracking.

Syntax
  Data type:

  Prolog has a single data type “term” which is either a
constant, variable, or a structure.

1.  Constants:
  Constants name specific objects or specific

relationships. there are two types: atoms and
numbers.

  Atoms
  a general-purpose name with no meaning.

parent john klm123 std_no ‘Gorge’ ‘1234’
:- -?

  Numbers:
 Integers or float.

0 20 1000 16.383

2.  Variables
  indicated by a string consisting of letters and digits

starting by Capital letter or underscore “_”.

X Input Annual_Income _3789

parent(_,mary).

3.  Structure “compound term”.
  A structure is written by specifying its functor and

components.

owns(john,book).

owns(john,book(prolog,gorge)).

owns(john,book(prolog,author(gorge,black))).

?- owns(john,book(X,author(_,_))).
X = prolog.

  Characters

A B C … Z
a b c … z
0 1 2 … 9
! “ # $ % & ‘ () = - ~ ^ | \ { } [] _ ` @
+ ; * : < > , . ? /

  Operators
  Operators can be written as functors.

X+Y +(X,Y)

 Operators don’t cause any arithmetic carried out.

3+4 /*is not 7*/

plus(X,Y,X+Y).

?- plus(3,4,7).
false.

  Equality and Matching.

X=Y. /*equal*/ X/=Y./*not equal*/

  Arithmetic.

  Arithmetic operations are used to compare
numbers and calculate results.

=,== \=,=\= < > =< >=
+ - * / mod
is

  “is” infix operator to match the left-hand side with
the right-hand side.

plus(X,Y,Z):- Z is X+Y.

?- plus(3,4,7).
true.

Data Structures
  Lists.

  The list is a sequence of elements that can have any
length. The elements of a list maybe any terms –
constants, variables, structures-.

  A list is either empty [] or has two elements: the head
and the tail.

p([1,2,3]).

?- p([H|T]).
H = 1,
T = [2,3].

  Recursive Search.

member(X,[X|_]). /*boundary condition*/
member(X,[_|Y]):-member(X,Y).

?- member(a,[c,d,b,a]).
true.

?- member(a,[c,d,b,e]).
false.

•  careful with recursive-looping.
parent(X,Y):-child(Y,X).
child(Y,X):-parent(X,Y).

•  and left recursion.
person(X):-person(Y),mother(Y,X).
perosn(mary).
mother(mary,john).

?- person(X).
ERORR:Out of local stack.

  Joining Structures:

append([],L,L).
append([X|L1],L2,[X|L3]):-append(L1,L2,L3).

?- append(X,[e,f,g],[a,b,c,e,f,g]).
X = [a,b,c].

?- append([a,b,c],[e,f,g],X).
X = [a,b,c,e,f,g].

backtracking
  An attempt to satisfy the goal, from top to down.

  A match found. Prolog marks it and instantiates any
uninstantiated variables. If it is a rule Prolog tries to
satisfy the subgoals.

  No match found. Prolog fails and attempts to re-
satisfy the left goal, unistanstating the variables
instantiated by the goal.

  Generating multiple solutions.

parent(john,mary).
parent(karen,mary).
parent(john,mike).
parent(karen,mike).

parent(X,_).
X = john;
X = karen;
X = john;
X = karen.

Cut
  cut “!” tells Prolog which previous choices need not

to be considered when it backtracks. It is said it is
important for two reasons: faster and less memory
space used.

foo:-a,b,c,!,d,e,f.
foo:-g,h.

Common uses of Cut
  Confirm the choice of rules.

sum_to(1,1):-!.
sum_to(N,Res):-N1 is N - 1,
 sum_to(N1,Res1),
 Res is Res1 + N.

sum_to(5,X).
X = 15.

sum_to(1,1).
sum_to(N,Res):-not(N =< 1),
 N1 is N – 1,sum_to(N1,Res1),
 Res is Res1 + N.

  “cut-fail” combination.

foo(f):-!,fail.
foo(X):-a,b,c.

Problems with Cut
  The way Prolog searches the database should be

taking into account, because “cut” could have
strange behaviour if used in another way.

append([],X,X):-!.
append([A|B],C,[A|D]:-append(B,C,D).

?- append(X,Y,[a,b,c]).
X = [],
Y = [a, b, c].

number_of_parents(adam,0):-!.
number_of_parents(eve,0) :-!.
number_of_parents(X,2).

?- number_of_parents(eve,X).
X = 0.
?- number_of_parents(john,X).
X = 2.
?- number_of_parents(eve,2).
true.

“cut” should be avoided
  knowing how backtracking satisfies all possibilities.

  So, if you introduce “cut” there is no guarantee
that anything sensible will happen if another goals
start appearing.

  “cut” should be avoided because how rules will be
used is not clear.

Grammar Rules
<sentence> ::= <noune_phrase> <verb_phrase>
<noune_phrase> ::= <determiner> <noun>
<verb_phrase> ::= <verb> <noune_phrase>
<verb_phrase> ::= <verb>
<determinar> ::= [the]
<noun> ::= [apple]
<noun> ::= [man]
<verb> ::= [eats]
<verb> ::= [sings]

sentence --> sentence(X).
sentence(X) --> noun_phrase(X),verb_phrase(X).

noun_phase(X)--> determinar(X), noun(X).

verb_phrase(X) --> verb(X).
verb_phrase(X) --> verb(X), noun_phras(Y).

noun(singular) --> [boy].
noun(plural) --> [boys].
determiner(_) --> [the].
verb(singular) --> [eat].
verb(plural) --> [eats].

References
  Clocksin, W. F., and C. S. Mellish. Programming in Prolog.

Berlin: Springer-Verlag, 1994.

  "Prolog." Wikipedia, the Free Encyclopedia. Web. 23 Oct.
2010. <http://en.wikipedia.org/wiki/Prolog>.

  "Logic Programming." Wikipedia, the Free Encyclopedia.
Web. 23 Oct. 2010. <
http://en.wikipedia.org/wiki/Logic_programming>.

  "Declarative Programming." Wikipedia, the Free
Encyclopedia. Web. 23 Oct. 2010. <
http://en.wikipedia.org/wiki/
Declarative_programming>.

Thank you!

