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Module is an Abstract Concept

Module is an abstract concept of modular programming.
Modular programming: decomposition of a program into
separate and replaceable modules [1].
Each module represents a separation of concern, i.e.
features or behaviors of a software.
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Abstract View of Modules

Module interface or specification: declarations of visible
elements and promises of dynamic behaviors.
Module implementation: a concrete implementation for
realizing the module interface.
Interface is publicly visible. Implementation is hidden and
thus can evolve. (cf. Information hiding).
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Various Implementations of the Concept Module

Different paradigms and languages have different
approaches to implementing the concept module.

Example
OO languages such as Java and C#: separation of
concerns into packages, objects etc.
Model-View-Controller (MVC) design pattern: separation of
content from presentation into layers.
Service-oriented design: separation of concerns into
services.
ML-family languages such as Haskell and OCaml:
separation of concerns into modules.
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OCaml’s Module

OCaml support the module concept with the construct
module: sig ∼= interface, struct ∼= implementation.
A module groups types, functions and exceptions etc.

Syntax for Signature and Structure
module type NAME =
sig
interface declarations: types,functions etc.
end
module Name =
struct
implementation definitions:types, functions etc.
end
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Example: Stack Signature [3]

Example
module type STACK =
sig
type ’a t
exception Empty
val create : unit -> ’a t
val push : ’a -> ’a t -> unit
val pop : ’a t -> ’a

end

The data structure for storing elements of the stack is not
specified (type abstraction).
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Example: A Stack Structure/Module [3]

Example
module StandardStack =
struct
type ’a t={mutable sp:int; mutable c:’a array}
exception Empty
let create() = sp = 0; c = [||]
let push x s =
if s.sp >= Array.length s.c then increase s 0;
s.c.(s.sp) <- x;
s.sp <- succ s.sp

let increase s x = ...
let pop s = ...
end
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Perspective 1: A Signature is a Type Specification

A sig is a type specification.
A realizing struct is an element of that type.
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Perspective 2: A Signature is a View on a Structure

Example
module type PUSHONLYSTACK =
sig
type ’a t
exception Empty
val create : unit -> ’a t
val push : ’a -> ’a t -> unit
(* NO pop *)

end

PUSHONLYSTACK is a partial view on StandardStack.
module PushOnlyStack = (StandardStack :
PUSHONLYSTACK) exposes push but hides pop.
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Type Sharing Between Modules [3]

Abstracted types in different modules are distinct.
StandardStack.t and PushOnlyStack.t are incompatible.
Use type equality constraints to force type equality.

Example
module PushOnlyStack =
(StandardStack : PUSH_ONLY_STACK
with type ’a t = ’a StandardStack.t )
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Parameterized Modules

A parameterized module or functor builds a new module
from input modules.
Parameterized modules allow generic programming [2].

Syntax for Parameterized Module

module Name = functor (M1:sig1) ->...->
functor (Mn:sign) ->

struct
end
(* Or syntactic sugar: *)
module Name (M1:sig1)...(Mn:sign) =
struct
end
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Example: Find Least Element Functor

Input: any module implementing a totally ordered data type
(“Tell me how to compare two elements” ).
Output: module implementing a function that finds the least
element in a list of elements of that type.

Example
module type ORDERED_TYPE =
sig
type t
val compare : t -> t -> int

end
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Example: Find Least Element Functor

Example
module FindLeastElem (Ord : ORDERED_TYPE) =
struct
type elt = Ord.t
let rec leastElemRec l le =
match l with
| (x :: xs) -> if Ord.compare x le = -1

then leastElemRec xs x
else leastElemRec xs le

| [] -> le
...

end
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OCaml Module Language is Simply Typed λ-calculus

Signatures are types.
Non-functor structures are constants.
Functors are function abstractions with bound variables the
parameterized arguments.
Module instantiations are function applications with
substitution as their semantics.

Syntax for Simply Typed λ-calculus
(* Types *)
τ ::= T | τ → τ
(* Lambda terms *)
t ::= c | x | λ x : τ. t | t1t2
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OCaml Functors Are Applicative

In SML: functors are generative, i.e each functor
application generates distinct abstract types for the same
input [5].
In OCaml: functors are applicative, i.e functor application
generates compatible abstract types for the same input.

Example
module M1 = FindLeastElem(OrderedPairInt)
module M2 = FindLeastElem(OrderedPairInt)

In OCaml: M1.elt and M2.elt are the same type
(applicative).
In SML: M1.elt and M2.elt are distinct types (generative).
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Conclusion

Module is an abstract concept from modular programming.
OCaml supports the module concept with the module
construct.
sig is module interface, struct is module implementation.
Parameterized modules or functors create modules from
other modules and thus allow generic programming.
Type equality constraints allows type sharing between
modules.
OCaml functors are applicative, i.e. producing the same
abstract types for the same input.
Dr. Kahl, are OCaml modules first-class?. My tentative
answer: No.
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