
The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

The OCaml Module System

Dipl.-Inf. Quang M. Tran
tranqm@mcmaster.ca

McMaster University
Department of Computing and Software

Hamilton, ON, Canada

October 26, 2010

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Outline

1 The Notion of Module

2 OCaml’s Supporting Mechanism of the Module Concept

3 Two Perspectives on Signature and Structure

4 Parameterized Modules/Functors

5 Applicative vs. Generative Functors

6 Conclusion

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Module is an Abstract Concept

Module is an abstract concept of modular programming.
Modular programming: decomposition of a program into
separate and replaceable modules [1].
Each module represents a separation of concern, i.e.
features or behaviors of a software.

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Abstract View of Modules

Module interface or specification: declarations of visible
elements and promises of dynamic behaviors.
Module implementation: a concrete implementation for
realizing the module interface.
Interface is publicly visible. Implementation is hidden and
thus can evolve. (cf. Information hiding).

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Various Implementations of the Concept Module

Different paradigms and languages have different
approaches to implementing the concept module.

Example
OO languages such as Java and C#: separation of
concerns into packages, objects etc.
Model-View-Controller (MVC) design pattern: separation of
content from presentation into layers.
Service-oriented design: separation of concerns into
services.
ML-family languages such as Haskell and OCaml:
separation of concerns into modules.

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

OCaml’s Module

OCaml support the module concept with the construct
module: sig ∼= interface, struct ∼= implementation.
A module groups types, functions and exceptions etc.

Syntax for Signature and Structure
module type NAME =
sig
interface declarations: types,functions etc.
end
module Name =
struct
implementation definitions:types, functions etc.
end

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Example: Stack Signature [3]

Example
module type STACK =
sig
type ’a t
exception Empty
val create : unit -> ’a t
val push : ’a -> ’a t -> unit
val pop : ’a t -> ’a

end

The data structure for storing elements of the stack is not
specified (type abstraction).

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Example: A Stack Structure/Module [3]

Example
module StandardStack =
struct
type ’a t={mutable sp:int; mutable c:’a array}
exception Empty
let create() = sp = 0; c = [||]
let push x s =
if s.sp >= Array.length s.c then increase s 0;
s.c.(s.sp) <- x;
s.sp <- succ s.sp

let increase s x = ...
let pop s = ...
end

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Perspective 1: A Signature is a Type Specification

A sig is a type specification.
A realizing struct is an element of that type.

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Perspective 2: A Signature is a View on a Structure

Example
module type PUSHONLYSTACK =
sig
type ’a t
exception Empty
val create : unit -> ’a t
val push : ’a -> ’a t -> unit
(* NO pop *)

end

PUSHONLYSTACK is a partial view on StandardStack.
module PushOnlyStack = (StandardStack :
PUSHONLYSTACK) exposes push but hides pop.

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Type Sharing Between Modules [3]

Abstracted types in different modules are distinct.
StandardStack.t and PushOnlyStack.t are incompatible.
Use type equality constraints to force type equality.

Example
module PushOnlyStack =
(StandardStack : PUSH_ONLY_STACK
with type ’a t = ’a StandardStack.t)

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Parameterized Modules

A parameterized module or functor builds a new module
from input modules.
Parameterized modules allow generic programming [2].

Syntax for Parameterized Module

module Name = functor (M1:sig1) ->...->
functor (Mn:sign) ->

struct
end
(* Or syntactic sugar: *)
module Name (M1:sig1)...(Mn:sign) =
struct
end

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Example: Find Least Element Functor

Input: any module implementing a totally ordered data type
(“Tell me how to compare two elements”).
Output: module implementing a function that finds the least
element in a list of elements of that type.

Example
module type ORDERED_TYPE =
sig
type t
val compare : t -> t -> int

end

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Example: Find Least Element Functor

Example
module FindLeastElem (Ord : ORDERED_TYPE) =
struct
type elt = Ord.t
let rec leastElemRec l le =
match l with
| (x :: xs) -> if Ord.compare x le = -1

then leastElemRec xs x
else leastElemRec xs le

| [] -> le
...

end

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

OCaml Module Language is Simply Typed λ-calculus

Signatures are types.
Non-functor structures are constants.
Functors are function abstractions with bound variables the
parameterized arguments.
Module instantiations are function applications with
substitution as their semantics.

Syntax for Simply Typed λ-calculus
(* Types *)
τ ::= T | τ → τ
(* Lambda terms *)
t ::= c | x | λ x : τ. t | t1t2

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

OCaml Functors Are Applicative

In SML: functors are generative, i.e each functor
application generates distinct abstract types for the same
input [5].
In OCaml: functors are applicative, i.e functor application
generates compatible abstract types for the same input.

Example
module M1 = FindLeastElem(OrderedPairInt)
module M2 = FindLeastElem(OrderedPairInt)

In OCaml: M1.elt and M2.elt are the same type
(applicative).
In SML: M1.elt and M2.elt are distinct types (generative).

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Conclusion

Module is an abstract concept from modular programming.
OCaml supports the module concept with the module
construct.
sig is module interface, struct is module implementation.
Parameterized modules or functors create modules from
other modules and thus allow generic programming.
Type equality constraints allows type sharing between
modules.
OCaml functors are applicative, i.e. producing the same
abstract types for the same input.
Dr. Kahl, are OCaml modules first-class?. My tentative
answer: No.

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

Acknowledgement

My grateful thanks go to Gordon, Eden and Pouya (ITB
206) for their invaluable feedback.
Gordon occationally helped me with clarifying some
details.
Eden and Pouya patiently listened to my dry-run and gave
suggestions for improvement.

Quang M. Tran The OCaml Module System

The Notion of Module
OCaml’s Supporting Mechanism of the Module Concept

Two Perspectives on Signature and Structure
Parameterized Modules/Functors

Applicative vs. Generative Functors
Conclusion

References

[1] Wikipedia entry on modular programming.

[2] Wikipedia entry on generic programming.

[3] E. Chailloux, P. Manoury, N. Pagano
Developing Apps with OCaml.
O’Reilly, 2000.

[4] OCaml Authors
Official OCaml documentation and user’s manual.

[5] X. Leroy
Applicative functors and fully transparent higher-order modules.

Quang M. Tran The OCaml Module System

	The Notion of Module
	OCaml's Supporting Mechanism of the Module Concept
	Two Perspectives on Signature and Structure
	Parameterized Modules/Functors
	Applicative vs. Generative Functors
	Conclusion

