
McMaster University

Department of Computing and Software

Dr. W. Kahl

CAS 706

Fall 2010

Exercise Sheet 4

CAS 706 — Programming Languages

2 December 2010

1. Operational Semantics

(a) Produce the Natural semantics rules for the textbook programming language While.

(b) Textbook Exercise 3.2

Extend While with the statement

assert b before S

The idea is that if b evaluates to true, then we execute S, and otherwise the execution of the complete program

aborts. Extend the structural operational semantics of Table 2.2 to express this (without assuming that While

contains the abort-statement). Show that assert true before S is semantically equivalent to S but that

assert false before S is equivalent to neither while true do skip nor skip.

(c) Textbook Exercise 3.4

We shall now extend While with the statement random(x) and the idea is that its execution will change the value

of x to be any positive natural number. Extend the natural semantics as well as the structural operational semantics

to express this. Discuss whether random(x) is a superfluous construct in the case where While is also extended

with the or construct.

(d) Textbook Exercise 3.6

The textbook defines evaluation of arithmetic expressions of While as follows:

CAS 706: Programming Languages 2010 — Sheet 4 Page 2 of 6

Specify a structural operational semantics for arithmetic expressions where the individual parts of an expression

may be computed in parallel. Try to prove that you still obtain the result that was specified by the original

semantics function.

(e) information hiding — how can the principle of information hiding be implemented in Java programs.

(f) encapsulation — what mechanism(s) is(are) used in Java to facilitate encapsulation.

2. Syntax and Semantics of Imperative Programs

We consider a simple imperative programming language with exceptions.

The abstract syntax of this programming language is the following:

Stmt ::= skip

 | Id := Expr

 | Stmt ; Stmt

 | if Expr then Stmt else Stmt

 | while Expr do Stmt

 | throw Expr

 | try Stmt catch(Id) Stmt

Expr ::= Id

 | Num

 | Bool

 | Expr Op Expr

Op ::= + | − | ∗ | / | ≤ | ≥ | < | >

(a) Draw abstract syntax trees for the following statements:

• (if a < b then b := a else throw 7) ; while a > 0 do a := a − b

• try (if a < b then b := a else throw 7) ;

 while a > 0 do a := a − b

catch(e) throw (1000 + e)

We choose the following basic semantic domains:

Val = Bool + Num values

Store = Id |→ Val (simple) stores

(A |→ B is the set of partial functions from the set A to the set B.)

We denote the elements of Val by True, False, 0, 1, 2, …

From an operational point of view, assuming that the expression e evaluates to the number k, the statement “throw e”

raises exception k.

We allow only numbers as exceptions.

CAS 706 — Programming Languages Fall 2010 — Sheet 4 Page 3 of 6

If a statement raising an exception is not enclosed by any “try _ catch” construct, then this exception immediately

leads to program termination with an uncaught exception.

If there is an enclosing “try _ catch” construct, then this is of the shape “try _ catch(i) s
2
” for some identifier i and

a statement s
2
. In that case, execution proceeds immediately to s

2
in an environment where the identifier i is bound to

the numerical value of the caught exception.

(b) Write down the Store that the statement s
2

executes from when control arrives at s
2

in the following program:

k := 100 ; try q := 42 ; throw 14 ; s := q + 1 ; catch(n) s
2

The statement semantics needs to accommodate the possibility of locally uncaught exceptions. Therefore, it produces

a state transition function that returns either just a Store or a Store together with an exception number, i.e., statement

semantics [[_]]
S

has the following type (the state transition function may be partial to accommodate non-termination):

[[_]]
S

: Stmt → (Store |→ (Store + (Store × Num)))

(c) Define [[try s
1

catch(i) s
2]]

S
for arbitrary statements s

1
, s

2
: Expr and an arbitrary identifier i : Id.

Since we already have exceptions in our language, we want primitive operations to raise exceptions if they cannot

execute properly, and never produce ⊥ .

In our concrete language, we want division by zero to raise exception 24, and all other operator applications have to

terminate successfully.

(d) Propose and explain a type for expression semantics [[_]]
E
.

(e) Define [[throw e]]
S

for an arbitrary expression e : Expr.

(f) Define [[v := e]]
S

for an arbitrary identifier v : Id and an arbitrary expression e : Expr.

(g) Define [[if b then s
1

else s
2]]

S
for an arbitrary expression b : Expr and arbitrary statements s

1
, s

2
: Stmt.

3. Decision Trees

Let the following definitions be given, defining a data type for decision trees parameterized by a question type q and

an answer type a, and three example decision trees. (DT stands for DecisionTree; R stands for Result and Br for

Branch.)

data DT q a = R a | Br q (DT q a) (DT q a)

dt1 = Br "tired?" (Br "evening?" (R 1) (R 2))

 (Br "working?" (R 7) (R 5))

dt2 = Br (> 0) (R 1) (Br (< 0) (R (-1)) (R 0))

dt3 = Br 5 (Br 3 (R ’a’) (R ’d’))

 (Br 12 (Br 6 (R ’e’) (Br 9 (R ’g’) (R ’j’))) (R ’p’))

(a) A bank might be using the following decision tree to arrive at a rate for a certain kind of currency transaction at a

certain point in time:

1.51
"good customer"

1.55

"< 10000"

1.49
"< 100000"

1.47

Write an expression denoting this decision tree, either as an Haskell expression of type DT String Double.

(b) Draw the trees defined as dt1, dt2 and dt3.

CAS 706: Programming Languages 2010 — Sheet 4 Page 4 of 6

(c) What are the types of the trees defined as dt1, dt2 and dt3?

Let the following additional definitions be given:

decide (R a) ds = a

decide (Br q left right) (d:ds) = if q d then decide left ds

 else decide right ds

repeat x = x : repeat x

(d) Simulate lazy evaluation to normal form for the following expression — write down the sequence of all

intermediate expressions: decide dt2 (repeat 0)

(e) Derive the type of decide, and explain your method of derivation.

(f) Mark for each of the following statements whether it is true or false. All these statements are to be understood in

the context of all the material in this question up to here.

Justify your answers.

1. True: False: The datatype “DT” has exactly three constructors.

2. True: False: “Br” is a constructor with three arguments.

(g) Would evaluating the expression “decide dt2 (repeat 0)” from (d) using the default evaluation method of

ML produce the same sequence of intermediate expressions as the above lazy evaluation sequence? Would it arrive

at the same result? Explain!

(h) Define a function

select :: DT q a -> [Bool] -> DT q a

such that select dt bs selects the subtree of dt addressed by the list bs, where True selects the left branch

and False the right branch, and the first element of bs corresponds to the outermost branch in dt. For example,

the following hold:

select dt1 [True] = Br "evening?" (R 1) (R 2)

select dt1 [False, True] = R 7

The topic of the next few items are implementations of decision in C and Java.

(i) Provide C type definitions for a type DTree implementing decision trees of type DT String Int. Document

your design choices (keywords).

(j) Produce a drawing representing storage allocation for the DTree value corresponding to the example tree dt1

using the data structures you defined:

(k) Explain how a tree datatype allowing trees such as dt2 would be implemented most naturally in C. Discuss the

differences with respect to the type system.

(l) Define a C function query() that accepts a DTree as argument and then prompts the user on stdout with the

questions in the decision tree and retrieves the user’s answers (True or False) via stdin, following the path

through the decision tree defined by those answers, until it encounters a result node, the contents of which serves

as the function’s return value. Document your code, and if you use library functions (existing or assumed) for

input, describe their functionality.

(m) In Java, provide the following:

– object-oriented type definitions for a type DTree implementing decision trees of type DT String Int

CAS 706 — Programming Languages Fall 2010 — Sheet 4 Page 5 of 6

– appropriate constructors

– an appropriate implementation of the function query().

Document (keywords) your design choices (and library functions for input).

(n) Explain how a tree datatype allowing trees such asdt2 would be implemented most naturally in Java. Discuss the

differences with respect to the type system.

(o) Explain how a tree datatype allowing all possible decision trees that can be constructed using DT would be

implemented most naturally in Java. Discuss the differences with respect to the type system!

4. map and filter

(a) Write the higer order functions map and filter in a functional language.

(b) Can you express map and filter in C or Pascal? If so, demonstrate how! If not, justify your answer!

(c) Can you express map and filter in Java or some other object-oriented language? If so, demonstrate how! If

not, justify your answer!

(d) Discuss differences with respect to typing between the map and filter in functional programming languages on

the one hand, and any solutions you may have proposed in imperative or object-oriented programming languages

on the other hand.

5. Parameter Passing

For each of the following, give a pre-post-condition specification of a program and write the program in a While-like

syntax with at least one procedure call that

(a) works properly with respect to the specification when parameters to procedures are passed by value, but does not

work properly when parameters to procedures are passed by reference;

(b) works properly iwth respect to the specification when parameters to procedures are passed by reference, by does

not work properly when parameters to procedures are passed by name;

6. Garbage Collection

Garbage collection of operating systems data structures usually is implemented by reference counting — why?

Garbage collection in Java implementations is not implemented by reference counting — why?

7. Modularization in Java

Discuss the following concepts in the context of Java programming:

(a) modularization — what kind of modules Java programs have, and what mechanism(s) may be used for

modularization in Java programs.

(b) information hiding — how can the principle of information hiding be implemented in Java programs.

(c) encapsulation — what mechanism(s) is(are) used in Java to facilitate encapsulation.

CAS 706: Programming Languages 2010 — Sheet 4 Page 6 of 6

8. Programming Language Features of Eiffel

For anwering this question, no previous knowledge of Eiffel is assumed, and no additional information about Eiffel

is required.

Throughout this question, the pure object-oriented programming language Eiffel is described using Java terminology.

(a) In Eiffel, class interfaces do not distinguish between fields in the one hand, and methods with no arguments on the

other hand.

What are the advantages and disadvantages of this scheme from a programmer’s point of view?

What are the advantages and disadvantages of this scheme from a compiler writer’s point of view?

In Eiffel, classes can be equipped with invariants, and methods with preconditions and postconditions. All these are

called assertions. All assertions are expressions of Boolean type with no side-effects and may involve field references;

preconditions and postconditions also may contain references to method arguments, and postconditions in addition may

contain references to field values of the “old” state of the object, i.e., its state before the method call. Apart from that,

assertions involve the usual relational operators <, <=, =, … and the usual propositional logic junctors and, or, not, …

If an assertion is violated during program execution, an exception is raised.

(b) Mark for each of the following statements whether it is true or false.

For each question, provide a one-paragraph justification. (Answers without justification do not count.)

1. True: False: Assertions can be used to incorporate the full specification of every method into the

Eiffel code.

2. True: False: Tested assertions are correctness proofs.

3. True: False: The runtime cost of checking assertions is likely negligible.

Eiffel supports multiple inheritance. It has been said, that

“there are two things that [Eiffel] got right that nobody else got right anywhere else: support for design by

contract, and multiple inheritance.”

Inheritance in Eiffel includes the following features:

• No class can have two members with the same name, no matter whether inherited or introduced in that class.
• Subclasses can rename selected superclass members.

• Subclasses can make private superclass members public.

• Subclasses can make public superclass members private or even exclude them altogether.

• Subclasses can override implementations of superclass methods.

• If a superclass method m accepted an argument of class C, subclasses can change m to accept arguments only of

some subclass D of C. This is called the covariance rule.
• If v is a variable of class type C and D is a subclass of C, then objects of D can be assigned to v.

• A subclass inherits the invariants of all its superclasses.

(c) List at least three questions that you need to ask about apparent conflicts between the above-mentioned

features of inheritance and member redefinition, and that are not answered above. Explain and discuss each

question shortly.

The End

