
Formal Specification Techniques

CAS 707

McMaster University, Winter 2016

Wolfram Kahl

kahl@cas.mcmaster.ca

6 January 2016

Goals

Understanding of the motivation of mathematical approaches to
software specification

Knowledge of typical approaches to formal software specification
and verification

Ability to produce and evaluate formal software specifications

Experience with a selection of current software verification tools

Knowlege of different logical formalisms, of the principles of
related tool support, and associated selection criteria

Learning Objectives

Precondition: What you are expected to have learnt before taking
this course

Postcondition: What you will be expected to have learnt at the
end of this course

Learning Objectives — Postcondition (1)

Students should know and understand

1 Big-step operational semantics of a simple imperative
programming language

2 Hoare logic proof rules for a simple imperative programming
language

3 Verification condition generation for a simple imperative
programming language

4 Scope and limitations of automated verification, proof, and
program analysis tools.

Learning Objectives — Postcondition (2)

Students should know and understand

1 Theory and applications of algebraic specification

2 The spectrum of temporal logics

3 Patterns of temporal-logics specifications, especially safety and
lifeness conditions

4 The principles behind model checking of temporal-logics
specifications.

Learning Objectives — Postcondition (3)

Students should be able to

1 Translate English specifications of program fragments into formal
pre- and post-condition specifications.

2 Produce counterxample traces using operational semantics.

3 Annotate their programs with appropriate specifications and
assertions for mechanised analysis with at least one verification
tool.

4 Use Hoare logic to prove partial and total correctness of simple
imperative programs.

5 Use VCGen algorithms to extract verification conditions from
programs in a simple imperative programming language.



Learning Objectives — Postcondition (4)

Students should be able to

1 Understand structured algebraic specifications

2 Produce algebraic specifications with appropriate structure

3 Produce state-based models e.g. in Z or B, and perform model
refinements.

4 Produce state transition models and temporal-logic specifications
for (components of) concurrent systems, and verify them using
model checking software

Rough Outline

Specifying and verifying C Programs — Frama-C

(RSD chapter 9, and parts of RSD chapters 5-8)

Review of Predicate Logic (parts of RSD chapter 4)

Hoare logic and VCGen in depth — Frama-C, AltErgo, . . .

(RSD chapters 5–8, 10)

Algebraic Specification — Maude, CASL

Specification and verification of dynamic systems: Rewriting
logic, temporal logic, model-checking — Maude, Spin, nusmv, . . .

Separation logic, fully certified verification — VST, CompCert,

Coq

Selection of other topics, e.g.: State-based modelling (Z, B),
Specification via types, JML

Partial Textbook

“RSD”: Rigorous Software Development — An Introduction to

Program Verification, by José Bacelar Almeida, Maria João Frade,
Jorge Sousa Pinto, and Simão Melo de Sousa. Springer, London, 2011.

(available electronically via the McMaster library).

More Literature

“Using Z”: Using Z: Specification, Refinement, and Proof,
Jim Woodcock and Jim Davies, Prentice Hall, 1996
(out of print; available on-line)

“Huth-Ryan”: Logic in Computer Science, Modelling and

Reasoning about Systems,
Michael R. A. Huth and Mark D. Ryan,
Cambridge University Press, 2nd edition 2004.

“Alagar-Periyasami”: Specification of Software Systems,
V. S. Alagar and K. Periyasamy, Springer 2011
(available electronically via the McMaster library).

Covers all topics of this course to some degree;
lots of explanations, but frequently lacks precision.

. . . To be announced . . .

Grading

Assignments — together: 25%

(graded only summarily)

1 Project: Handout, Presentation, Source files 15%

1 Oral Midterm (5–10 min.) 15%

1 Attendance and participation 5%

Oral Final Exam (≈20 min) 40%

= 100%

Validation versus Verification

Validation asks:

Are we building the right product?

Verification asks:

Are we building the product right?



Necessary Ingredients of a Formal Method

Formal syntax for the specification language

(Tools can check syntactic correctness)

Formal semantics for the specification language

(No disagreement about the meaning of specifications possible)

Formal reasoning about the specification language

(Correctness can be mechanically verified)

(Finding proofs may still require human assistance, but proofs can
be checked mechanically.)

Proof systems

Formal System = Deductive System

Antagonism:

logical expressivity

versus
automation of the deduction

That is:

“If you want automatic proofs,
don’t hope to be able to specify all interesting properties”

“If you want to be able to specify all interesting properties,
don’t hope for automatic proofs”

Conclusion

A formal development example done in B

First real success was Meteor line 14 driverless metro in Paris:
Over 110 000 lines of B models were written, generating 86 000
lines of Ada. No bugs were detected after the proofs, neither at
the functional validation, at the integration validation, at on-site
test, nor since the metro lines operate (October 1998). The
safety-critical software is still in version 1.0 in year 2007, without
any bug detected so far.

In Formal Methods in Safety-Critical Railway Systems, Thierry Lecomte,
Thierry Servat, Guilhem Pouzancre.

S. Melo de Sousa (LIACC/DIUBI) Rigorous Software Development 2011 51 / 57

Conclusion

ASTRÉE Success story (excerpt from its web-site)

The development of ASTRÉE started from scratch in Nov. 2001. Two years later, the main
applications have been the static analysis of synchronous, time-triggered, real-time, safety
critical, embedded software written or automatically generated in the C programming language.
ASTRÉE has achieved the following unprecedented results:

In Nov. 2003, ASTRÉE was able to prove completely automatically the absence of any
RTE in the primary flight control software of the Airbus A340 fly-by-wire system, a
program of 132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 Mb of
memory (and 50mn on a 64-bit AMD Athlon 64 using 580 Mb of memory).

From Jan. 2004 on, ASTRÉE was extended to analyze the electric flight control codes
then in development and test for the A380 series. The operational application by Airbus
France at the end of 2004 was just in time before the A380 maiden flight on Wednesday,
27 April, 2005.

In April 2008, ASTRÉE was able to prove completely automatically the absence of any
RTE in a C version of the automatic docking software of the Jules Vernes Automated
Transfer Vehicle (ATV) enabling ESA to transport payloads to the International Space
Station.

S. Melo de Sousa (LIACC/DIUBI) Rigorous Software Development 2011 52 / 57

Learning Objectives — Precondition (1)

Syntax of propositional logic

What are the pieces called you use to write down a
propositional-logic formula?

Learning Objectives — Precondition (2)

Syntax of predicate logic, including variable binding issues

How are predicate-logic formulae different from
propositional-logic formulae?

Show how naı̈ve substitution can lead to problems, and how
these are avoided.



Learning Objectives — Precondition (3)

Semantics of propositional logic

What is a tautology? — contradiction? — contingency?

How do you find out whether a propositional logic formula is a
tautology?

Other methods?

Learning Objectives — Precondition (4)

Semantics of predicate logic

What is a structure?

What is validity? — satisfiability?

Learning Objectives — Precondition (5)

At least one proof system for predicate logic

Learning Objectives — Precondition (6)

Basics of the metatheory of predicate logic

What is soundness?

What is completeness?

(Can you state the compactness theorem?)

Learning Objectives — Precondition (7)

Principles of typed expressions, and the types of the operators

they are using

Formalise: x or y is greater than 5.

Discuss.

Learning Objectives — Precondition (8)

Principles of calculational proofs

Why/when/for what is something in the shape of the following a
proof?

E1

= 〈Q1 = Q2〉

E2

< 〈R1 < R2〉

E3

How about:

E1

⇔ 〈Q1 = Q2〉

E2

⇒ 〈R1 ⇒ R2〉

E3



Learning Objectives — Precondition (9)

Basic concepts and theorems about sets, functions and

(especially binary) relations

Define:

symmetric

equivalence

order

injective

transitive closure

Learning Objectives — Precondition (10)

Standard kinds of algebras

What is a monoid? group? ring? field? vector space?

What is a monoid homomorphism?

What is a graph? lattice?

What is a graph homomorphism? lattice homomorphism?

Learning Objectives — Precondition (11)

Imperative programming

Write an iterative program fragment that stores the factorial of n

in r.

Explain linear/cascading/nested/tail recursion.

Write an iterative program fragment that stores the n-th Fibonacci
number in r.

Learning Objectives — Precondition (12)

Basic datastructures and algorithms

When do you use doubly-linked lists?

Write a datatype declaration and an insert function for ordered
binary trees.

Write a datatype declaration and a delete function for some kind
of balanced ordered binary trees.

Learning Objectives — Precondition (13)

Basics of functional programming

Declare and define map and foldRight over lists.

State and prove (by structural induction) some simple properties
of map and foldRight

What exactly is a higher-order function?

Learning Objectives — Precondition (14)

Basic concepts of decidability, computability, and complexity

If we say “P is decidable”, what kind of entity is P?

If we say “P is decidable”, what does this mean?

Give an example for a function that is not computable!



Learning Objectives — Precondition (15)

Common software development process models

Name and describe “the archetypal software development
process model”

Name and describe a different software development process
model

Specify Finding the Maximal Element of an Array

int n;

int a[n];

{ ? } findMax(n, a) { ? }

Write pre- and post-conditions as predicate logic formulae!

General Background Preparation

If you don’t have it yet: Install and learn LATEX— tug.org/texlive

Read RSD chapters 1–4

Review quantification, sets relations, functions, . . .
(RSD 4; LADM 8,9,11,14; Using Z 3–8)

Have a look at the C99 standard

(If you don’t have a UNIX-like system yet: Install Linux or *BSD)

Install Frama-C

(If you don’t know functional programming yet:

Learn Haskell — haskell.org
or OCaml — ocaml.org

and look in particular at simple tree datatypes)


