
McMaster University
Department of Computing and Software

Dr. W. Kahl

CAS 707
Sheet 6

CAS 707 — Formal Specification Techniques
7 March 2018

Individual solutions to the assignment question here are due electronically via subversion before 11:00
a.m. on Monday, March 5, respectively (for AQ 6.2) on paper to the instructor in class.

Assignment Question 6.1 — Linked Lists

For this question, you may build on your solution to Assignment Question 5.1; minor adaptations to the question
to your setting can be appropriate.

For the definitions of Assignment Question 5.1, some of you are apparently seeing different preprocessor be-
haviour than I am seeing (applying #define inside comments. . .) — a solution that hopefully works in both
settings should be to replace the two separate definitions for Nil with a single constant definition:

const list Nil = NULL;

As ACSL pendant of Reynolds’ list predicate you may use the following:

/∗@ inductive isList{L} (list xs, \ list <value type> ys) {
case isList Nil {L}:

isList (Nil , \Nil);
case isList cons{L}:
∀ list xs, \ list <value type> ys;
\valid(xs) ⇒ isList (xs→ tail , ys) ⇒ isList (xs, \Cons(xs→head, ys));

}
∗/

(a) Consider the following specification for the (unchanged) cons function (Don’t expect WP to like it! Allo-
cation is unimplemented in WP.):

/∗@ allocates \result;
assigns ∗\result;
ensures \result ≡ NULL ∨

(\valid(\result) ∧
∀ \ list <value type> ys;

isList (xs, ys) ⇒ isList (\result, \Cons(x, ys)));
∗/
nonEmptyList ∗ cons(value type x, list xs) { // NULL used as error
nonEmptyList ∗ result = malloc(sizeof(struct cons));
if (result)
{ result→head = x;

result→tail = xs;
}

return result;
}

Discuss what difference it would make to add the following precondition:

requires ∃ \ list <value type> ys; isList(xs, ys);

(b) Discuss how isList relates with material included in your Assignment 5 submission (if it does relate to
anything).

(c) Specify and implement an append function

void append(list ∗ p, list ys)

that appends the second argument list destructively to the end of the first argument list, by only modifying
the final NULL pointer of the first argument list.

(d) Specify and implement an concat function

list concat(list xs, list ys)

that returns the concatenation of xs and ys without changing those.

Try different implementations (iterative and recursive) and different refinements of the specification (I left
part of the behaviour unspecified. . .); feel free to use (appropriately specified, annotated, and documented)
auxiliary functions.

(e) Strive to complete specification and implementation of testAndInsert as far as you haven’t already done
it:

Specify, implement, and annotate the following C function for insertion into ordered lists:

bool testAndInsert(list∗ p, value type n)

Assuming that p contains a reference to a list with head fields in ascending order, the function call
“testAndInsert(p, n)” returns a bool result indicating whether the list referenced by p contained n as an
element, and if it did not, it modifies that list by inserting a new list container with n as element, such
that the resulting list is again in ascending order.

Assignment Question 6.2 — Reynolds: Chapter 2: Assertions

(a) Read chapters 1 and 2 of the lecture notes of CS818A3-2011 by John Reynolds.

(b) Solve Exercise 1 of Chapter 2.

(c) Solve at least half of the cases of Exercise 2 of Chapter 2.

(d) Prove soundness for at least half of the rules of each item in Exercise 3 of Chapter 2.

(e) Start reading also chapter 3; in particular strive to get a first understanding of annotated specification
(Section 3.3).

This may be handed in hand-written and on paper!

The code listings above have been produced by including, before \begin{document}, the following:

\usepackage{listings}
\usepackage{listingsACSL}
\lstset{%
language=[ACSL]C,
frame=single,
identifierstyle=\slshape,
columns=flexible}

Spencer pointed out that columns=flexible appears to be key to making listingsACSL.sty work without
\ensuremath problems.

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/www15818As2011/cs818A3-11.html

