
Linked Lists

Use the following datatype for implemeting singly-linked lists in C:

typedef int value type;

typedef struct cons { value type head;
struct cons ∗ tail ;
} nonEmptyList;

typedef nonEmptyList ∗ list; // NULL used as Nil

#define Nil NULL

/∗@
logic list Nil = \null;

inductive hasSuffix{L} (list xs, list ys) {
case hasSuffix refl {L}:
∀ list xs; hasSuffix(xs,xs);

case hasSuffix next{L}:
∀ list xs, ys;
\valid(xs) ⇒ hasSuffix(xs→ tail , ys) ⇒ hasSuffix(xs,ys);

}

predicate finite{L}(list xs) = hasSuffix(xs,Nil);
∗/

nonEmptyList ∗ cons(value type x, list xs) { // NULL used as error
nonEmptyList ∗ result = malloc(sizeof(struct cons));
if (result)
{ result→head = x;

result→tail = xs;
}

return result;
}

Note:

• cons is a struct name.

This name starts with un underscore to document that it should not be used by users of this declaration.

• struct cons is a type, the same type as:

• struct { value type head; struct cons ∗ tail; }.
• The typedef ... nonEmptyList makes “nonEmptyList” another name for that type.

• list is the type of (possibly empty!) lists!

The code listings above have been produced by including, before \begin{document}, the following:

\usepackage{listings}
\usepackage{listingsACSL}
\lstset{%
language=[ACSL]C,
frame=single,
identifierstyle=\slshape,
columns=flexible}

I am using no other packages that might be interfering — if you run into trouble, perhaps comment out some
\usepackage{...} lines you don’t need?

