2DM3 2018 — Final Theorem List — (filled, not provided in Final Exam)

Equivalence, Negation and Inequivalence

"Reflexivity of \Rightarrow ": $(p \equiv q) \Rightarrow (p \Rightarrow q)$ (3.77) "Modus ponens": $p \land (p \Rightarrow q) \Rightarrow q$

```
"Definition of \equiv": (p \equiv q) = (p = q)
(3.2) "Symmetry of \equiv": p \equiv q \equiv q \equiv p
(3.3) "Identity of \equiv": true \equiv q \equiv q
(3.5) "Reflexivity of \equiv": p \equiv p
(3.9) "Commutativity of \neg with \equiv" "Distributivity of \neg over \equiv": \neg (p \equiv q) \equiv (\neg p \equiv q)
(3.11) "\neg connection": \neg p \equiv q \equiv p \equiv \neg q
(3.14): (p \neq q) \equiv (\neg p \equiv q)
(3.15): \neg p \equiv (p \equiv false)
Disjunction and Conjunction
(3.32): p \lor q \equiv (p \lor \neg q \equiv p)
(3.35) "Golden rule": p \land q \equiv p \equiv q \equiv p \lor q
(3.48): p \wedge q \equiv (p \wedge \neg q \equiv \neg p)
(3.49) "Semi-distributivity of \land over \equiv": p \land (q \equiv r) \equiv (p \land q \equiv (p \land r \equiv p))
(3.50) "Strong Modus Ponens": p \land (q \equiv p) \equiv p \land q
(3.51) "Replacement": (p \equiv q) \land (r \equiv p) \equiv (p \equiv q) \land (r \equiv q)
(3.52) "Alternative definition of \equiv": p \equiv (q \equiv (p \land q) \lor (\neg p \land \neg q))
(3.53) "Exclusive or" "Alternative definition of \sharp": (p \not\equiv q) \equiv (\neg p \land q) \lor (p \land \neg q)
Implication
(3.57) "Definition of \Rightarrow": p \Rightarrow q \equiv (p \lor q \equiv q)
(3.58) "Definition of \Leftarrow" "Consequence": p \Leftarrow q \equiv q \Rightarrow p
(3.59) "Definition of \Rightarrow": p \Rightarrow q \equiv \neg p \lor q
(3.60) "Definition of \Rightarrow": p \Rightarrow q \equiv (p \land q \equiv p)
(3.61) "Contrapositive": p \Rightarrow q \equiv \neg q \Rightarrow \neg p
(3.62): p \Rightarrow (q \equiv r) \equiv (p \land q \equiv p \land r)
(3.63) "Distributivity of \Rightarrow over \equiv": p \Rightarrow (q \equiv r) \equiv (p \Rightarrow q \equiv p \Rightarrow r)
(3.64) "Self-distributivity of \Rightarrow": p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)
(3.65) "Shunting": p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)
(3.66): p \land (p \Rightarrow q) \equiv p \land q
(3.67): p \land (q \Rightarrow p) \equiv p
(3.68): p \lor (p \Rightarrow q) \equiv true
(3.69): p \lor (q \Rightarrow p) \equiv q \Rightarrow p
(3.70): p \vee q \Rightarrow p \wedge q \equiv (p \equiv q)
(3.71) "Reflexivity of \Rightarrow": p \Rightarrow p
(3.72) "Right-zero of \Rightarrow": p \Rightarrow true
(3.73) "Left-identity of \Rightarrow": true \Rightarrow p \equiv p
"Definition of \neg" (3.74): p \Rightarrow false \equiv \neg p
(3.75) "ex falso quodlibet": false \Rightarrow p
(3.76a) "Weakening": p \Rightarrow p \vee q
(3.76a) "Weakening": p \Rightarrow p \lor q
(3.76b) "Weakening": p \land q \Rightarrow p
(3.76c) "Weakening": p \land q \Rightarrow p \lor q
(3.76d) "Weakening": p \lor (q \land r) \Rightarrow p \lor q
(3.76e) "Weakening": p \land q \Rightarrow p \land (q \lor r)
```

```
(3.78) "Case analysis": (p \Rightarrow r) \land (q \Rightarrow r) \equiv p \lor q \Rightarrow r
(3.79) "Case analysis": (p \Rightarrow r) \land (\neg p \Rightarrow r) \equiv r
(3.80) "Mutual implication": (p \Rightarrow q) \land (q \Rightarrow p) \equiv (p \equiv q)
(3.81) "Antisymmetry of \Rightarrow": (p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow (p \equiv q)
(3.82a) "Transitivity of \Rightarrow": (p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)
(3.82b) "Transitivity of \Rightarrow": (p \equiv q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)
(3.82c) "Transitivity of \Rightarrow": (p \Rightarrow q) \land (q \equiv r) \Rightarrow (p \Rightarrow r)
 "Implication strengthening": p \Rightarrow q \equiv p \Rightarrow p \land q
Leibniz as Axiom and Substitution/Replacement Laws
 (3.83) "Leibniz": e = f \Rightarrow E[z := e] = E[z := f]
(3.84a) "Replacement": e = f \land E[z := e] \equiv e = f \land E[z := f]
(3.84b) "Replacement": e = f \Rightarrow E[z := e] \equiv e = f \Rightarrow E[z := f]
(3.84c) "Replacement": q \land e = f \Rightarrow E[z := e] \equiv q \land e = f \Rightarrow E[z := f]
 "Transitivity of =": e = f \land f = q \Rightarrow e = q
(3.85a) "Replace by 'true'": p \Rightarrow E[z := p] \equiv p \Rightarrow E[z := true]
(3.85b) "Replace by 'true'": q \land p \Rightarrow E[z := p] \equiv q \land p \Rightarrow E[z := true]
(3.85c) "Replace by 'false": \neg p \Rightarrow E[z := p] \equiv \neg p \Rightarrow E[z := false]
(3.85e) "Replace by 'true'": p \Rightarrow E[z := p] = E[z := true]
(3.86a) "Replace by 'false'": E[z := p] \Rightarrow p = E[z := false] \Rightarrow p
(3.86b) "Replace by 'false": E[z := p] \Rightarrow p \lor q \equiv E[z := false] \Rightarrow p \lor q
(3.87) "Replace by 'true": p \land E[z := p] \equiv p \land E[z := true]
(3.88) "Replace by 'false'": p \vee E[z := p] \equiv p \vee E[z := false]
Monotonicity with Respect to Implication
(4.2) "Left-monotonicity of \vee" "Monotonicity of \vee": (p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)
 "Monotonicity of \vee": (p \Rightarrow q) \Rightarrow ((r \Rightarrow s) \Rightarrow (p \lor r \Rightarrow q \lor s))
(4.3) "Left-monotonicity of \wedge" "Monotonicity of \wedge": (p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)
 "Monotonicity of \wedge": (p \Rightarrow p') \Rightarrow ((q \Rightarrow q') \Rightarrow (p \land q \Rightarrow p' \land q'))
 "Antitonicity of \neg": (p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p)
 "Monotonicity of \Rightarrow" "Right-monotonicity of \Rightarrow": (p \Rightarrow q) \Rightarrow ((r \Rightarrow p) \Rightarrow (r \Rightarrow q))
 "Antitonicity of \Rightarrow" "Left-antitonicity of \Rightarrow": (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))
Sum Quantification: General Quantifier Material Instantiated for Sum
 "Leibniz for \Sigma range": (\forall x \bullet R_1 \equiv R_2) \Rightarrow (\sum x \mid R_1 \bullet E) = (\sum x \mid R_2 \bullet E)
 "Leibniz for \Sigma body": (\forall x \bullet R \Rightarrow E_1 = E_2) \Rightarrow (\sum x \mid R \bullet E_1) = (\sum x \mid R \bullet E_2)
(8.13) "Empty range for \Sigma": (\Sigma \times I false \bullet \to I) = 0
(8.14) "One-point rule for \Sigma": (\Sigma \times I \times D \bullet E) = E[x := D] — provided: \neg occurs('x', 'D')
(8.15) "Distributivity of \Sigma over +": (\Sigma \times | R \bullet E_1 + E_2) = (\Sigma \times | R \bullet E_1) + (\Sigma \times | R \bullet E_2)
(8.17) "Range split": (\sum x \mid Q \lor R \bullet E) + (\sum x \mid Q \land R \bullet E) = (\sum x \mid Q \bullet E) + (\sum x \mid R \bullet E)
(8.16) "Disjoint range split for \Sigma": (\forall x \bullet Q \land R \equiv false) \Rightarrow (\sum x \mid Q \lor R \bullet E) = (\sum x \mid Q \bullet R)
E + (\sum x \mid R \bullet E)
(8.20) "Nesting for \Sigma": (\Sigma \times Q \bullet (\Sigma \cup R \bullet E)) = (\Sigma \times \cup Q \land R \bullet E)
                                                                                                  — provided: ¬occurs('u', 'O')
 "Replacement in \Sigma": (\sum x \mid R \land e = f \bullet E[y := e]) = (\sum x \mid R \land e = f \bullet E[y := f])
"Dummy list permutation for \Sigma": (\Sigma x, y \mid R \bullet E) = (\Sigma y, x \mid R \bullet E)
(8.19) "Interchange of dummies": (\sum x | Q \bullet (\sum y | R \bullet P)) = (\sum y | R \bullet (\sum x | Q \bullet P))
                                                                         — provided: ¬occurs('x', 'R'), ¬occurs('y', 'Q')
(8.21) "Dummy renaming for \Sigma" "\alpha-conversion": (\Sigma \times | R \bullet E) = (\Sigma \times | R[x := y] \bullet E[x := y])
                                                                                              — provided: ¬occurs('y', 'E, R')
```

```
Specific Material for Sum Quantification
```

```
"Distributivity of · over \Sigma": a · (\Sigma \times | R \cdot E) = (\Sigma \times | R \cdot a \cdot E) — provided: \neg occurs('x', 'a')
"Zero \sum body": (\sum x \mid R \bullet 0) = 0
"Definition of \leq in terms of \leq": a \leq b \equiv a < b \lor a = b
"Definition of \leq in terms of 'S' and <": a \leq b \equiv a < S b
"Split range at top": m \le n \Rightarrow (m \le i < S \ n \equiv m \le i < n \lor i = n)
"Split off term at top": (\sum i : \mathbb{N} \mid i < S \cap \bullet E) = (\sum i : \mathbb{N} \mid i < n \bullet E) + E[i := n]
                                                                                         — provided: ¬occurs('i', 'n')
"Split off term at top": m \le n \Rightarrow (\sum i \mid m \le i < S \cap E) = (\sum i \mid m \le i < n \bullet E) + E[i := n]
                                                                                     — provided: ¬occurs('i', 'm, n')
"Split off term at top using \leq": (\sum i \mid i \leq S \cap \bullet E) = (\sum i \mid i \leq n \bullet E) + E[i := S \cap I]
                                                                                         — provided: ¬occurs('i', 'n')
```

"Leibniz for \forall body": $(\forall x \mid R \bullet P_1 \equiv P_2) \Rightarrow ((\forall x \mid R \bullet P_1) \equiv (\forall x \mid R \bullet P_2))$

Universal Quantification

```
(8.18) "Range split for \forall": (\forall x \mid R \lor S \bullet P) \equiv (\forall x \mid R \bullet P) \land (\forall x \mid S \bullet P)
(9.5) "Distributivity of \vee over \forall": P \vee (\forall x \mid R \bullet Q) \equiv (\forall x \mid R \bullet P \vee Q)
                                                                                                           — provided: ¬occurs('x', 'P')
                                                                                                           — provided: ¬occurs('x', 'P')
(9.6): P \lor (\forall x \bullet \neg R) \equiv (\forall x \mid R \bullet P)
"Distributivity of \Rightarrow over \forall": P \Rightarrow (\forall x \mid R \bullet Q) \equiv (\forall x \mid R \bullet P \Rightarrow Q) — prov. \neg occurs('x', 'P')
(9.7) "Distributivity of \land over \forall": \neg (\forall x \bullet \neg R ) \Rightarrow (P \land (\forall x | R \bullet Q ) \equiv (\forall x | R \bullet P \land Q ))
                                                                                                          — provided: ¬occurs('x', 'P')
(9.8) "True ∀ bodu": (∀ x | R • true )
"Introducing fresh \forall": P \Rightarrow (\forall x \mid R \bullet P)
                                                                                                           — provided: ¬occurs('x', 'P')
(9.9) "Sub-distributivity of \forall over \equiv": (\forall x \mid R \bullet P \equiv Q) \Rightarrow ((\forall x \mid R \bullet P) \equiv (\forall x \mid R \bullet Q))
(9.10) "Range weakening for \forall": (\forall x \mid Q \lor R \bullet P) \Rightarrow (\forall x \mid Q \bullet P)
(9.11) "Body weakening for \forall": (\forall x \mid R \bullet P \land Q) \Rightarrow (\forall x \mid R \bullet P)
(9.12) "Body monotonicity of \forall": (\forall x \mid R \bullet Q \Rightarrow P) \Rightarrow ((\forall x \mid R \bullet Q) \Rightarrow (\forall x \mid R \bullet P))
(9.12a) "Range antitonicity of \forall": (\forall x \bullet Q \Rightarrow R) \Rightarrow ((\forall x \mid R \bullet P) \Rightarrow (\forall x \mid Q \bullet P))
(9.12a) "Range antitonicity of \forall": (\forall x \mid \neg P \bullet Q \Rightarrow R) \Rightarrow ((\forall x \mid R \bullet P) \Rightarrow (\forall x \mid Q \bullet P))
(9.13) "Instantiation": (\forall x \bullet P) \Rightarrow P[x := E]
"Fresh \forall": P \equiv (\forall x \bullet P)
                                                                                                            — provided: ¬occurs('x', 'P')
```

```
Existential Quantification
(9.21) "Distributivity of \land over \exists": P \land (\exists x \mid R \bullet Q) \equiv (\exists x \mid R \bullet P \land Q)
                                                                                                            — provided: ¬occurs('x', 'P')
(9.22): P \wedge (\exists x \bullet R) \equiv (\exists x | R \bullet P)
                                                                                                             — provided: ¬occurs('x', 'P')
"Distributivity of \land over \forall": (\exists x \bullet R) \Rightarrow (P \land (\forall x \mid R \bullet Q)) \equiv (\forall x \mid R \bullet P \land Q))
                                                                                                            — provided: ¬occurs('x', 'P')
(9.23) "Distributivity of \vee over \exists": (\exists x \bullet R) \Rightarrow (P \lor (\exists x \mid R \bullet Q)) \equiv (\exists x \mid R \bullet P \lor Q))
                                                                                                            — provided: ¬occurs('x', 'P')
(9.24) "False \exists body": (\exists x | R • false) \equiv false
(9.25) "Range weakening for \exists": (\exists x \mid R \bullet P) \Rightarrow (\exists x \mid Q \lor R \bullet P)
"Range weakening for \exists": (\exists x \mid Q \land R \bullet P) \Rightarrow (\exists x \mid R \bullet P)
(9.26) "Body weakening for \exists": (\exists x \mid R \bullet P) \Rightarrow (\exists x \mid R \bullet P \lor Q)
(9.26a) "Body weakening for \exists": (\exists x \mid R \bullet P \land Q) \Rightarrow (\exists x \mid R \bullet P)
(9.27) "Body monotonicity of \exists": (\forall x \mid R \bullet Q \Rightarrow P) \Rightarrow ((\exists x \mid R \bullet Q) \Rightarrow (\exists x \mid R \bullet P))
"Range monotonicity of \exists": (\forall x \bullet Q \Rightarrow R) \Rightarrow ((\exists x \mid Q \bullet P) \Rightarrow (\exists x \mid R \bullet P))
"Range monotonicity of \exists": (\forall x \mid P \bullet Q \Rightarrow R) \Rightarrow ((\exists x \mid Q \bullet P) \Rightarrow (\exists x \mid R \bullet P))
```

```
Introduction and Interchange for \exists
```

```
(9.28) "\exists-Introduction": P[x := E] \Rightarrow (\exists x \bullet P)
(9.29a) "Interchange of quantifications": (\exists x \bullet (\forall y \bullet P)) \Rightarrow (\forall y \bullet (\exists x \bullet P))
(9.30a) "Witness": (\exists x \mid R \bullet P) \Rightarrow Q \equiv (\forall x \bullet R \land P \Rightarrow Q) — provided: \neg occurs('x', 'Q')
 (9.30b) "Witness": (\exists x \bullet P) \Rightarrow Q \equiv (\forall x \bullet P \Rightarrow Q)
                                                                                         — provided: ¬occurs('x', 'Q')
```

Set Theory

```
(11.3) "Set membership": F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet F = E) — provided: \neg occurs(x', F')
(11.7s) "Simple Membership": e \in \{x \mid P\} \equiv P[x := e]
 (11.7x) "Simple Membership": x \in \{x \mid P\} \equiv P
(11.7\forall) "Simple Membership": (\forall x \bullet x \in \{x \mid P\} \equiv P)
 "Membership in two-element set enumeration": x \in \{x, y\}
 "Membership in set enumeration": x \in \{ u \mid u = x \lor R \}
                                                                                        — provided: ¬occurs('u', 'x')
 Set Extensionality and Set Inclusion
 (11.4) "Set extensionality" "Set equality" "Extensionality": S = T \equiv (\forall e \bullet e \in S \equiv e \in T)
                                                                                    — provided: ¬occurs('e', 'S, T')
(11.9) "Simple set comprehension equality": \{x \mid Q\} = \{x \mid R\} \equiv (\forall x \bullet Q \equiv R)
(11.13) "Subset" "Definition of \subseteq" "Set inclusion": S \subseteq T \equiv (\forall e \mid e \in S \bullet e \in T)
                                                                                   — provided: ¬occurs('e', 'S, T')
"Subset" "Definition of \subseteq" "Set inclusion": S \subseteq T \equiv (\forall e \bullet e \in S \Rightarrow e \in T)
                                                                                    — provided: ¬occurs('e', 'S, T')
 "Subset membership" "Casting": X \subseteq Y \Rightarrow (x \in X \Rightarrow x \in Y)
(11.58) "Reflexivity of \subseteq": X \subseteq X
 "Reflexivity of \subseteq": S = T \Rightarrow S \subseteq T
 (11.59) "Transitivity of \subseteq": X \subseteq Y \Rightarrow (Y \subseteq Z \Rightarrow X \subseteq Z)
 "Flipped transitivity of \subseteq": Y \subseteq Z \Rightarrow (X \subseteq Y \Rightarrow X \subseteq Z)
 (11.57) "Antisymmetry of \subseteq": X \subseteq Y \Rightarrow (Y \subseteq X \Rightarrow X = Y)
 "Empty set": \{\} = \{x \mid \text{false }\}
 "Empty set": x \in \{\} = false
"Empty set is least" "Bottom set": \{\} \subseteq X
 "Universal set": U = \{ x \mid true \}
 "Universal set": x \in U
 "Universal set is greatest" "Top set": X \subseteq U
(11.56) "Simple set comprehension inclusion": \{x \mid P\} \subseteq \{x \mid Q\} \equiv (\forall x \bullet P \Rightarrow Q)
 Singleton Sets, Set Complement, Set Union and Intersection
 "Singleton set membership": x \in \{y\} \equiv x = y
```

```
"Singleton set inclusion": \{x\} \subseteq S \equiv x \in S
"Complement": e \in \ \ S \equiv \ \ \neg \ (e \in S)
(11.19) "Self-inverse of complement": \sim (\sim S) = S
"Lower ~ connection for \subseteq": ~ X \subseteq Y \equiv ~ Y \subseteq X
"Upper ~ connection for \subseteq": X \subseteq ~ Y \equiv Y \subseteq ~ X
"Union": e \in S \cup T \equiv e \in S \lor e \in T
"Intersection": e \in S \cap T \equiv e \in S \wedge e \in T
"Golden rule for \cap and \cup": S \cap T = S \equiv T = S \cup T
"Set inclusion via \cap": S \subseteq T \equiv S \cap T = S
"Set inclusion via \cup": S \subseteq T \equiv S \cup T = T
```

```
Proper Subset
                                                                                                                                       "Relation converse" "Relationship via "":
                                                                                                                                                                                                                                       y(R)x \equiv x(R)y
                                                                                                                                                                                                         a(R_S)c \equiv (\exists b \cdot a(R)b \wedge b(S)c)
                                                                                                                                      "Relation composition":
 (11.14) "Proper subset" "Definition of \subset": S \subset T \equiv S \subseteq T \land S \neq T
                                                                                                                                      "Identity relation" "Relationship via 'Id'":
                                                                                                                                                                                                                                             x (Id) y \equiv x = y
(11.61): S \subset T \equiv S \subseteq T \land \neg (T \subseteq S)
(11.61): S \subset T \equiv S \subseteq T \land \neg (T \subseteq S)
(11.63) "Inclusion in terms of \subset": S \subseteq T \equiv S \subset T \lor S = T
                                                                                                                                      Sequences
(11.70) "Transitivity of \subseteq with \subset": X \subseteq Y \Rightarrow (Y \subset Z \Rightarrow X \subset Z)
(11.70) "Transitivity of \subseteq with \subseteq": X \subseteq Y \Rightarrow (Y \subseteq Z \Rightarrow X \subseteq Z)
                                                                                                                                      (13.3) "Cons is not empty":
                                                                                                                                                                                                                                                         x \triangleleft xs \neq \epsilon
Set Difference and Relative Pseudo-complement
                                                                                                                                      "Cons is not emptu":
                                                                                                                                                                                                                                           x \triangleleft xs = \epsilon \equiv false
 (11.22) "Set difference": v \in S - T \equiv v \in S \land \neg (v \in T)
                                                                                                                                      (13.4) "Cancellation of <1":
                                                                                                                                                                                                                    x \triangleleft xs = y \triangleleft ys \equiv x = y \land xs = ys
(11.52): S \cap (T - S) = \{\}
                                                                                                                                      (13.6) "Cons decomposition":
                                                                                                                                                                                                                   xs = \epsilon \lor (\exists y \bullet (\exists ys \bullet xs = y \triangleleft ys))
                                                                                                                                      (13.7) "Tail is different":
(11.54): S - (T \cup U) = (S - T) \cap (S - U)
                                                                                                                                                                                                                                                        x \triangleleft xs \neq xs
"Characterisation of \Rightarrow": S \subseteq A \Rightarrow B \equiv S \cap A \subseteq B
                                                                                                                                      Sequence Membership \in, Snoc \triangleright
"Membership in \Rightarrow": x \in A \Rightarrow B \equiv x \in A \Rightarrow x \in B
"Definition of \Rightarrow": A \Rightarrow B = A \cup B
                                                                                                                                      "Membership in \epsilon":
                                                                                                                                                                                                                                                    x \in \epsilon \equiv false
"Pseudocomplement of union": (A \cup B) \Rightarrow C = (A \Rightarrow C) \cap (B \Rightarrow C)
                                                                                                                                      "Membership in <1":
                                                                                                                                                                                                                               x \in y \triangleleft ys \equiv x = y \lor x \in ys
"Monotonicity of \Rightarrow": B \subseteq C \Rightarrow A \Rightarrow B \subseteq A \Rightarrow C
                                                                                                                                      (13.12) "Definition of \triangleright" "Definition of \triangleright for \epsilon":
                                                                                                                                                                                                                                                  \epsilon > a = a \triangleleft \epsilon
                                                                                                                                      (13.13) "Definition of \triangleright" "Definition of \triangleright for \triangleleft":
                                                                                                                                                                                                                                  (a \triangleleft s) \triangleright b = a \triangleleft (s \triangleright b)
Cartesian Products of Sets; Relationship
                                                                                                                                      (13.14) "Snoc is not empty":
                                                                                                                                                                                                                                                         xs \triangleright x \neq \epsilon
                                                                                                                                      "Snoc is not empty":
                                                                                                                                                                                                                                           xs \triangleright x = \epsilon \equiv false
                                                                                                                                      (13.15) "Cancellation of ▷":
                                                                                                                                                                                                                    xs \triangleright x = ys \triangleright y \equiv xs = ys \land x = y
 (14.2) "Pair equality": \langle b, c \rangle = \langle b', c' \rangle \equiv b = b' \wedge c = c'
                                                                                                                                      (13.16) "Membership in ▷":
                                                                                                                                                                                                                                x \in ys \triangleright z \equiv x \in ys \lor x = z
"Definition of 'fst'": fst \langle x, y \rangle = x
"Definition of 'snd": snd \langle x, y \rangle = y
                                                                                                                                      Concatenation
"Membership in \times": p \in S \times T \equiv fst \ p \in S \wedge snd \ p \in T
(14.4) "Membership in x": \langle x, y \rangle \in S \times T \equiv x \in S \wedge y \in T
                                                                                                                                      (13.17) "Left-identity of \sim" "Definition of \sim for \epsilon":
                                                                                                                                                                                                                                                       \epsilon \sim ys = ys
(14.5) "Membership in swapped x": \langle x, y \rangle \in S \times T \equiv \langle y, x \rangle \in T \times S
                                                                                                                                      (13.18) "Mutual associativity of \triangleleft with \smallfrown" "Definition of \smallfrown for \triangleleft":
(14.6) "Empty factor in \times": S = \{\} \Rightarrow S \times T = \{\}
                                                                                                                                                                                                                                (x \triangleleft xs) \land ys = x \triangleleft (xs \land ys)
                                                                                                                                      (13.19) "Right-identity of \( \sigma'' \):
                                                                                                                                                                                                                                                       xs \land \epsilon = xs
 "Definition of \leftrightarrow": A \leftrightarrow B = \mathbb{P} (A \times B)
                                                                                                                                      (13.20) "Associativity of ~":
                                                                                                                                                                                                                               (xs \land ys) \land zs = xs \land (ys \land zs)
"Infix relationship" "Definition of '_(_)_":
                                                                                                  a(R)b \equiv \langle a, b \rangle \in R
                                                                                                                                      (13.21) "Membership in ~":
                                                                                                                                                                                                                               x \in ys \land zs \equiv x \in ys \lor x \in zs
"Relation extensionality":
                                                             R = S \equiv (\forall x \bullet (\forall y \bullet x (R) y \equiv x (S) y))
                                                                                                                                      (13.22) "Mutual associativity of \sim with \triangleright":
                                                                                                                                                                                                                               (xs \land ys) \triangleright z = xs \land (ys \triangleright z)
                                                                                    — provided: ¬occurs('x, y', 'R, S')
                                                                                                                                      (13.23) "Empty concatenation":
                                                                                                                                                                                                                          xs \land ys = \epsilon \equiv xs = \epsilon \land ys = \epsilon
                                                               R \subseteq S \equiv (\forall x \bullet (\forall y \bullet x (R) y \Rightarrow x (S) y))
"Relation inclusion":
                                                                                    — provided: ¬occurs('x, y', 'R, S')
                                                                                                                                      Subsequences, Prefix, Segments
"Relation inclusion":
                                                              R \subseteq S \equiv (\forall x \bullet (\forall y \mid x (R) y \bullet x (S) y))
                                                                                    — provided: \neg occurs('x, y', 'R, S')
                                                                                                                                     (13.25) "Empty subsequence":
                                                                                                                                                                                                                                                               € ⊆ ys
"Relation inclusion": R \subseteq S \equiv (\forall x, y \mid x \in R) y \bullet x \in S y) - \text{provided}: \neg occurs('x, y', 'R, S')
                                                                                                                                     (13.26) "Subsequence" "Cons is not a subsequence of \epsilon":
                                                                                                                                                                                                                                                    \neg (x \triangleleft xs \subseteq \epsilon)
                                                                                                                                      (13.27) "Subsequence anchored at head":
                                                                                                                                                                                                                                 x \triangleleft ys \subseteq x \triangleleft zs \equiv ys \subseteq zs
Set Operations used as Relation Operations
                                                                                                                                      (13.28) "Subsequence without head":
                                                                                                                                                                                                            x \neq y \Rightarrow (x \triangleleft xs \subseteq y \triangleleft ys \equiv x \triangleleft xs \subseteq ys)
                                                                                                                                     (13.29) "Proper subsequence" "Definition of ⊂":
                                                                                                                                                                                                                                xs \subset ys \equiv xs \subseteq ys \land xs \neq ys
"Relation union":
                                                                            a(R \cup S)b \equiv a(R)b \vee a(S)b
                                                                                                                                     (13.30) "Reflexivity of ⊆":
                                                                            a(R \cap S)b \equiv a(R)b \wedge a(S)b
                                                                                                                                                                                                                                                               xs \subseteq xs
"Relation intersection":
                                                                                                                                     (13.31) "Cons ⊆-expands":
                                                                        a(R-S)b \equiv a(R)b \wedge \neg (a(S)b)
"Relation difference":
                                                                                                                                                                                                                                                       ys \subseteq x \triangleleft ys
                                                                         a(R \Rightarrow S)b \equiv a(R)b \Rightarrow a(S)b
                                                                                                                                     (13.33) "Subsequence of \epsilon":
                                                                                                                                                                                                                                               xs \subseteq \epsilon \equiv xs = \epsilon
"Relation pseudocomplement":
                                                                                                                                     (13.34) "Membership of subsequence":
                                                                                          a (\sim R) b \equiv \neg (a (R) b)
                                                                                                                                                                                                                                    ys \subseteq zs \Rightarrow x \in ys \Rightarrow x \in zs
"Relation complement":
                                                                                                        a (\{\}) b \equiv false
"Emptu relation":
                                                                                                                                      (13.36) "Empty prefix":
                                                                                                                                                                                                                                                       isprefix \epsilon xs
"Universal relation":
                                                                    (\forall A : Type \bullet (\forall B : Type \bullet a (A \times B)b))
                                                                                                                                      (13.37) "Not Prefix" "Cons is not prefix of \epsilon":
                                                                                                                                                                                                                                  isprefix (x \triangleleft xs) \in f alse
"Singleton relation":
                                                                     a_1 \{ \{(a_2, b_2)\} \} b_1 \equiv a_1 = a_2 \land b_1 = b_2
                                                                                                                                                                                                 isprefix (x \triangleleft xs) (y \triangleleft ys) \equiv x = y \wedge isprefix xs ys
                                                                                                                                      (13.38) "Prefix" "Cons prefix":
"Singleton relation inclusion":
                                                                                             \{\langle a, b \rangle\} \subseteq R \equiv a (R) b
                                                                                                                                      (13.39) "Segment" "Segment of \epsilon":
                                                                                                                                                                                                                                          isseq xs \epsilon \equiv xs = \epsilon
```

(13.40) "Segment" "Segment of \triangleleft ": isseq xs (y \triangleleft ys) \equiv isprefix xs (y \triangleleft ys) \vee isseq xs ys

Relation-specific Operations

Abstract Relation Algebra

```
"Reflexivity of \subseteq": R \subseteq R "Transitivity of \subseteq": Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S "Antisymmetry of \subseteq": Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S "Transitivity of \subseteq": Q \subseteq R \Rightarrow R \subseteq S \Rightarrow Q \subseteq S "Flipped Transitivity of \subseteq": R \subseteq S \Rightarrow Q \subseteq R \Rightarrow Q \subseteq S "Reflexivity of \subseteq": R = S \Rightarrow R \subseteq S "Mutual inclusion": R = S \Rightarrow R \subseteq S "Mutual inclusion": R = S \Rightarrow R \subseteq S \land S \subseteq R "Opposite inclusion": R \supseteq S \Rightarrow S \subseteq R "Indirect Relation Equality from above": Q = R \Rightarrow (\forall S \bullet Q \subseteq S \Rightarrow R \subseteq S) "Indirect Relation Equality from below": Q = R \Rightarrow (\forall S \bullet S \subseteq Q \Rightarrow S \subseteq R) "Indirect Relation Inclusion from above": Q \subseteq R \Rightarrow (\forall S \bullet R \subseteq S \Rightarrow Q \subseteq S) "Indirect Relation Inclusion from below": Q \subseteq R \Rightarrow (\forall S \bullet R \subseteq S \Rightarrow Q \subseteq S) "Indirect Relation Inclusion from below": Q \subseteq R \Rightarrow (\forall S \bullet R \subseteq S \Rightarrow Q \subseteq S)
```

Composition

```
"Associativity of \S": (Q \ \S \ R) \ \S \ S = Q \ \S \ (R \ \S \ S)
"Monotonicity of \S": P \subseteq Q \Rightarrow R \subseteq S \Rightarrow P \ \S \ R \subseteq Q \ \S \ S
"Monotonicity of \S": Q \subseteq R \Rightarrow Q \ \S \ S \subseteq R \ \S \ S
"Monotonicity of \S": R \subseteq S \Rightarrow Q \ \S \ R \subseteq Q \ \S \ S
"Identity of \S": R \subseteq S \Rightarrow Q \ \S \ R \subseteq Q \ \S \ S
"Identity of \S": R \subseteq S \Rightarrow Q \ \S \ R \subseteq Q \ \S \ S
```

Converse

```
"Self-inverse of \tilde{}": (R\tilde{}) = R
"Cancellation of \tilde{}": R\tilde{} = S\tilde{} \equiv R = S
"Monotonicity of \tilde{}": R \subseteq S \Rightarrow R\tilde{} \subseteq S\tilde{}
"Isotonicity of \tilde{}": R \subseteq S \equiv R\tilde{} \subseteq S\tilde{}
"Converse of 'Id'": Id\tilde{} = Id
"Converse of \tilde{}": (R\tilde{},S) = S\tilde{},R\tilde{}
```

Homogeneous Relation Properties

```
"Definition of reflexivity": is-reflexive R \equiv Id \subseteq R
"Definition of symmetry": is-symmetric R \equiv R \subseteq R
"Definition of transitivity": is-transitive R \equiv R \ni R \subseteq R
"Definition of idempotency": is-idempotent R \equiv R \ni R \subseteq R
"Definition of equivalence":

is-equivalence R \equiv \text{is-reflexive } R \land \text{is-symmetric } R \land \text{is-transitive } R
"Definition of preorder": is-preorder R \equiv \text{is-reflexive } R \land \text{is-transitive } R
```

Heterogeneous Relation Properties

"Definition of symmetry": is-symmetric $R \equiv R = R$

Relation Algebra: Continuing with Intersection

Relation Algebra: Continuing with Union

Least Elements in the Inclusion Order

Greatest Elements in the Inclusion Order

```
"Greatest relation": R \subseteq T
"Inclusion of T": T \subseteq R \equiv R = T
"Identity of \cap": T \cap R = R
"Zero of \cup": T \cup R = T
"Converse of T": T \subseteq T
```

Relation Algebra: Complement

```
"Characterisation of ~": S \cap R = \bot \land S \cup R = \top \equiv S = {}^{\sim}R "Characterisation of ~": {}^{\sim}R \cap R = \bot \land {}^{\sim}R \cup R = \top "Self-inverse of ~": {}^{\sim}R \cap R = \bot \land {}^{\sim}R \cup R = \top "Antitonicity of ~": {}^{\sim}Q \subseteq R \Rightarrow {}^{\sim}R \subseteq {}^{\sim}Q "Anti-isotonicity of ~": {}^{\sim}Q \subseteq R \equiv {}^{\sim}R \subseteq {}^{\sim}Q "~ connection": {}^{\sim}Q \subseteq R \equiv {}^{\sim}R \subseteq Q "~ connection": {}^{\sim}Q \subseteq R \equiv R \subseteq {}^{\sim}Q "Cancellation of ~": {}^{\sim}Q = {}^{\sim}R \equiv Q = R "Equality with ~": {}^{\sim}Q = {}^{\sim}R \equiv R = {}^{\sim}Q
```

```
"Complement of \top": \sim \top = \bot
"Converse of complement inclusion": (\sim R) \ \subseteq \sim R \ 
"Converse of \sim" "Complement of converse" "Complement of \subset": (\sim R) \ \subseteq \sim R \ 
"De Morgan for \cap": \sim (Q \cap R) = \sim Q \cup \sim R \ 
"De Morgan for \cup": \sim (Q \cup R) = \sim Q \cap \sim R \ 
"Inclusion via intersection with complement" "Inclusion via \cap \sim": R \subseteq S \subseteq R \cap \sim S \subseteq \bot 
"Inclusion via intersection with complement" "Inclusion via \cap \sim": R \subseteq S \subseteq R \cap \sim S \subseteq \bot 
"Contrapositive of \subseteq with \cap": Q \cap R \subseteq S \subseteq Q \cap \sim S \subseteq \sim R \ 
"Schröder": Q \circ R \subseteq S \subseteq Q \circ \circ \sim S \subseteq \sim R \ 
"Schröder": Q \circ R \subseteq S \subseteq \sim S \circ \sim S \circ \sim R \
```

CALCCHECK Structured Proofs

Simple Induction

```
By induction on `var : Ty`:
Base case:
?
Induction step:
?
... Induction hypothesis ...
?
```

Making base case, induction step, and induction hypothesis explicit:

```
By induction on `var : Ty`:
   Base case `?`:
    ?
   Induction step `?`:
    ?
   ... Induction hypothesis `?` ...
   ?
```

(Remember that in nested inductions, induction hypotheses always need to be made explicit!)

These can also be used for proving theorems of shape $\forall \text{ var} : \text{Ty } \bullet P$

 \forall var : Ty \bullet P by induction on precisely that universally-quantified variable, that is, "on `var : Ty`:".

The induction hypothesis is then P.

Example for sequences:

```
Theorem: ∀ xs : Seq A • P
Proof:
By induction on `xs : Seq A`:
Base case `P[xs = ϵ]`:
?
Induction step `∀ x : A • P[xs = x ⊲ xs]`:
For any `x`:
?
```

Facts that can be shown by "Evaluation"

Only where Evaluation is enabled:

Fact $`6 \cdot 7 = 42`$

Assuming the Antecedent

```
Assuming `p`, `q`:
?
... Assumption `p` ...
?
```

```
Assuming `p` and using with ...:
?
... Assumption `p` ...
?
```

Case Analysis

```
By cases: `p`, `q`, `r`
Completeness:
?
Case `p`:
?
... Assumption `p` ...
?
```

Subproofs

Nested subproofs currently may need to be indented even further than first-level subproofs!

Proving Universal Quantifications

```
For any `var : Ty`:

| For any `var : Ty` satisfying `p`:
```

Theorems Used as Proof Methods (Examples)

```
Using "Mutual implication":
Subproof for `... ⇒ ...`:
?
Subproof for `... ⇒ ...`:
?
```

```
Using "Extensionality":

Subproof for `∀ x • ...`:

For any `x`:

?
```

Side Proofs

```
Side proof for `P`:
?
Continuing with goal `?`:
?
... local property `P` ...
?
```

Disabling Hints Producing Time-outs

Add "?, " at the beginning of the hint:

```
≡( ?, "Golden rule" )
```

Selected CalcCheckWeb Key Bindings

(See $\underline{\text{Getting Started with CALCCHECK}}_{\text{Web}}$ for the complete listing.)

The following key bindings work the same in **both edit** and command modes:

- Ctrl-Enter performs a syntax check on the contents of all code cells before and up to the current cell.
- Ctrl-Alt-Enter performs proof checks (if enabled) on the contents of all code cells before and up to the current cell.
- Shift-Alt-RightArrow enlarges the width of the current code cell entry area by a small amount
- Ctrl-Shift-Alt-RightArrow enlarges the width of the current code cell entry area by a large amount
- Shift-Alt-LeftArrow reduces the width of the current code cell entry area by a small amount
- Ctrl-Shift-Alt-LeftArrow reduces the width of the current code cell entry area by a large amount
- Ctrl-Shift-v (for visible spaces) toggles display of initial spaces on each line as " $_{\sqcup}$ " characters.

ONLY if you are logged in via Avenue:

Ctrl-s saves the notebook on the server.

To be safest, use in command mode, e.g. after clicking on the area of a code box where the line number would be displayed.

Check the pop-up whether it is the CalcCheck-Web pop-up saying "... Notebook saved to ...". (Links for reloading the last three saved versions are displayed when you view the notebook again.)

In edit mode, you have the following key bindings:

Esc enters command mode

- Alt-i or Alt-SPACE inserts one space in the current line and in all non-empty lines below it, until a line is encountered that is not indented more than to the cursor position.
- Alt-BACKSPACE deletes **only a space character** to the left of the current cursor position, and also from lines below it, until a line is encountered that is not indented at least to the cursor position.
- Alt-DELETE deletes **only** a **space character** to the right of the current cursor position, and also from lines below it, until a line is encountered that is not indented more than to the cursor position.

The last three bindings also work with Shift.

Some important symbols:

Joine tiliportant symbots.		
Symbol	Key sequence(s)	
≡	\equiv, \==	
≢	\nequiv	
_	\lnot	
^	\land	
\ \	\lor	
\Rightarrow	\implies, \=>	
←	\follows	
#	\neq	
A	\forall	
3	\exists	
Σ	\sum	
П	\product	
l	\with	
•	\spot	
↓	\min	
↑	\max	
\mathbb{B}	\BB, \bool	
N	\NN, \nat	
\mathbb{Z}	\ZZ, \int	
€	\in	
\mathbb{P}	\PP, \powerset	
U	\union	
Π	\intersection	
U	\bigunion	
\cap	\bigintersection	
Τ	\bot	
Т	\top	
⇒	\pseudocompl	
⊆	\subseteq, \(=	
⊇	\supseteq, \)=	
C	\subset	
Э	\supset	
U	\universe	

Symbol	Key sequence(s)
×	\times
\leftrightarrow	\rel
(\lrel, \((, \([
)	\rrel, \)), \])
9	\rcomp, \fcomp, \;;
S	\converse,
+	\^+
*	*
/	\lres
\	\rres
ϵ	\eps, \emptyseq
⊲	\cons
\triangleright	\snoc
^	\catenate

Contents

Universal Quantification	2
Set Theory	2
Cartesian Products of Sets; Relationship	3
Sequences	3
Abstract Relation Algebra	4
CALCCHECK Structured Proofs	5
Selected CalcCheck $_{\mathrm{Web}}$ Key Bindings	6