2DM3 2018 — Midterm 2 Theorem List — (filled, not provided in Midterm 2)

Equivalence, Negation and Inequivalence

“Definition of =": (p =q)=(p=0q)

(3.2) “Symmetry of :p=q=q=p

(3.3) “Identity of =": true = q =q

(3.5) “Reflexivity of =": p = p

(3.9) “Commutativity of — with =" “Distributivity of - over =": - (p=q) = (- p =q)
(3.11) “= connection”: - p=q=p=-q

(314): (p£q) = (~p=q)

(3.15): — p = (p = false)

Disjunction and Conjunction

(332):pvag=(pv-q=p)

(3.35) “Golden rule”: pAq=p=q=pvVvq

(348): pAg=(pA-q=-p)

(3.49) “Semi-distributivity of A over=": pA(q=r)=(pAq=(pAr=p))
(3.50) “Strong Modus Ponens”: p A (q=p)=p Aq

(3.51) “Replacement”: (p=q)A(r=p)=(p=q) A(r=q)

(3.52) “Alternative definition of =": p=(q=(pAq) vV (-p A -q))
(3.53) “Exclusive or” “Alternative definition of #”: (p£#q)=(-pAq) Vv (pAr-q)

Implication

(3.57) “Definition of =": p=q=(pv q=q)

(3.58) “Definition of <" “Consequence”: p < q=q = p
(3.59) “Definition of =": p=>q=-pvq
(3.60) “Definition of =": p = q = (p A q = p)
(3.61) “Contrapositive”: p=>q=-q= -p
(3.62): p:(qzr)z(p/\qu/\r)

(3.63) “Distributivity of = over =": p = (q =)
(3.64) “Self-distributivity of =": p = (q =)=
(3.65) “Shunting”: pAg=r=p=(q=1r)
(3.66): pA(p:q)—pAq

(3.67): pA(q=p) =

(3.68): pv(p=q) = true

(3.69): pv(a=p)=q=p

(3.70): pvg=pnrq=(p=q)

(3.71) “Reflexivity of =": p = p

(3.72) “Right-zero of =": p = true

(3.73) “Left-identity of =": true = p =p
“Definition of =" (3.74): p = false = - p
(3.75) “ex falso quodlibet”: false = p

(3.76a) “Weakening”: p = p v q

(3.76a) “Weakening”: p = p v q

(3.76b) “Weakening”: p A q = p

(3.76¢) “Weakening”: pAq=p Vv q

(3.76d) “"Weakening”: pv (QAT)=p Vg
(3.76€) “Weakening”: pAgq=p A (qVr)
“Reflexivity of =": (p=q) = (p = q)

(3.77) “Modus ponens”: p A (p = q) = q

E(p:>q‘p:'r)
p=q =((p=r

(3.78) “Case analysis”: (p=>r)A(@q=r=pvqg=r
(3.79) “Case analysis”: (p=r)A(-p=r1)=r

(3.80) “Mutual implication”: (p = q) A (q = p) = (p = q)
(3.81) “Antisymmetry of =": (p = q) A (q = p) = (p = q)
(3.82a) “Transitivity of =": (p=q)A(g=r1)=(p=7r)
(3.82b) “Transitivity of =": (p=q)A(q=1)=(p=1)
(3.82¢) “Transitivity of =": (p=q)A(qg=r) = (p=1)
“Implication strengthening”: p =>q=p=pAq

Leibniz as Axiom and Substitution/Replacement Laws

(3.83) “Leibniz": e = f = E[z := e] = E[z := ]

(3.84a) “Replacement”: e = f A E[z := e]=e = A E[z := f]

(3.84b) “Replacement”: e = f = E[z := e]= e = f = E[z := f]

(3.84c) “Replacement”: qane=f=E[z:=e]=qre=1f= E[z :=f]
“Transitivity of =": e =fAf=g=e =g

(3.85a) “Replace by ‘true™: p = E[z := p] = p = E[z := true]

(3.85b) “Replace by ‘true”: g A p = E[z := ] =qAp = E[z := true]
(3.85¢) “Replace by ‘false”: = p = E[z := p] = - p = E[z := false]
(3.85e) “Replace by ‘true™: p = E[z := p] = E[z := true]

(3.86a) “Replace by ‘false”: E[z := p] = p = E[z := false] = p
(3.86b) “Replace by ‘false”: E[z := p|=p v q=E[z := false] = p v q
(3.87) “Replace by ‘true”: p A E[z := p] = p A Elz = true]

(3.88) “Replace by ‘false”: p v E[z := p] = p v E[z := false]

Monotonicity with Respect to Implication

(4.2) “Left-monotonicity of v” “Monoetonicity of vV": (p = q) = (pvr=qVvr)
“Monotonicity of V': (p = q) = (r=s)= (pVvr=qVs)

(4.3) “Left-monotonicity of A” “Monotonicity of A": (p = q) = (pAr=qAr)
“Monotonicity of A": (p = p)=((q=4q)=(pArq=p A]q))

“Antitonicity of =": (p = q) = (- q = - p)

“Monotonicity of =" “Right-monotonicity of =": (p = q) = ((r = p) = (r = q))
“Antitonicity of =" “Left-antitonicity of =": (p = q) = (q=71)= (p = 1))

Sum Quantification: General Quantifier Material Instantiated for Sum

“Leibniz for } range”: (Y x ¢ Ri =Ry )= (X x|Ri e E)= (X x|R2 e E)
“Leibniz for }> body”: (Vv xe R=E; =E2 )= (. x|ReE;1 )= (X x|ReE2)
(8.13) “Empty range for }": (X x|false e E) =0
(8.14) “One-point rule for ¥": (X x| x =D e E) = E[x := D] — provided: -occurs('x’, ‘D’)
(8.15) “Distributivity of 3 over +": (X x|ReE1 + E2 )= (X x|ReE1 )+ (X x|ReEz)
(8.17) “Range split”: (X x| QVReE )+ (X x|]QAReE)=(Xx|QeE)+ (X x|ReE)
(8.16) “Disjoint range split for ¥": (Vxe Q AR=false) = (X x| QvReE)=(Xx|QeE
)+ (X xIReE)
(8.20) “Nesting for ¥": (X x|Qe (X y|ReE))=(XxylQAReE)
— provided: -occurs('y’, ‘Q’)

“Replacement in 3": (X x|]Rae=feE[y:=¢])=(Xx|Rre=1feE[y:=1])
“Dummy list permutation for >X": (X x, y|ReE )= (X y, x|ReE)
(8.19) “Interchange of dummies”: (X x| Qe (X y|ReP))=(Zy|Re (X x|QeP) )

— provided: -occurs('x’, ‘R’), =occurs('y’,
(8.21) “Dummy renaming for }.” “a-conversion”: (X x|]Re E) = (X y| R[x = y] e E[x :=
— provided: -occurs('y’, ‘E,

I

‘Q)
yl)
R)



Specific Material for Sum Quantification

“Distributivity of - over >": a- (X x|Re E) = (X x]|Rea-E)— provided: —occurs('x’, ‘a’)
“Zero Y body”: (X x| Re0)=0

Manipulating Ranges over N

“Definition of < interms of <": a<b=za<bva=b
“Definition of < in terms of ‘S*and <": a<b=a<Shb
“Split range at top”: m<n=(M<i<Sn=m<i<nvi=n)
“Split off term” “Split off term at top”: (X i: N|i<SneE)=(Xi:N]Ji<neE)+E[i
= nJ — provided: —occurs('i, 'n’)
“Split off term” “Split off term at top”: m<n= (Y i|m<i<SneE)=(Yilm<i<neE
) + E[i := n] — provided: —occurs(‘i’, ‘m, n‘)
“Split off term at top using <": (X i][i<SneE)= (X i]i<neE)+ E[i :=Sn]

— provided: -occurs('t, 'n’)

Universal Quantification

“Leibniz for V body”: (V x| ReP1 =P2 )= ((Vx|ReP1)=(Yx|RePsy))
(8.18) “Range split for V”: (V x| RvSeP)=(Vx|ReP)A(Vx|SeP)
(9.5) “Distributivity of v over V": P v (V x| Re Q)= (VY x|ReP Vv Q)
— provided: —occurs('x’, ‘P’)
(96): Pv(Vxe-R)=(Vx|ReP) — provided: -occurs('x’, ‘P’)
“Distributivity of = over V": P = (V x|Re Q) = (V x| R e P = Q ) — provided: —occurs('x’,
P
(9.7) “Distributivity of A over V": - (Vxe - R)= (PA(Vx|ReQ)=(Vx|ReP AQ))
— provided: —occurs('x’, ‘P’)
(9.8) “True V body”: (V x| R e true)
“Introducing fresh V": P = (V x| Re P) — provided: -occurs('x’, ‘P’)
(9.9) “Sub-distributivity of V over =”: (V x| ReP=Q )= (Vx|ReP)=(Vx|ReQ))
(9.10) “Range weakening for V": (V x| Q VR eP )= (Vx|QeP)
(9.11) “Body weakening for V": (V x| Re P A Q)= (Vx|ReP)
(9.12) “Body monotonicity of V": (Y x| Re Q =P )= (Vx|Re Q)= (Vx|ReP))
(9.12a) “Range antitonicity of V": (Y x e Q = R )= (Vx|ReP )= (Vx|QeP))
(9.12a) “Range antitonicity of V": (V x| -PeQ =R)= (Vx|ReP )= (Vx|QeP))
(9.13) “Instantiation”: (V x ¢ P ) = P[x := E]

“Fresh V": P = (V x e P) — provided: —occurs('x, ‘P’)

Existential Quantification

(9.21) “Distributivity of A over 3": P A (3 x|ReQ)=(Ix|ReP A Q)

— provided: —occurs('x’, ‘P’)
(9.22): PA(IxeR)=(Ix|ReP) — provided: —occurs('x’, ‘P’
“Distributivity of A over V": (3x e R )= (PA(Vx|ReQ)=(Vx|ReP AQ))

— provided: —occurs('x’, ‘P’)
(9.23) “Distributivity of v over 3": (3xeR)=(PVv (Ix|ReQ)=(Ix|ReP v Q))

— provided: —occurs('x’, ‘P’)
(9.24) “False 3 body”: (3 x| R e false ) = false
(9.25) “Range weakening for 3”: (3 x|]ReP )= (Ix|QVv ReP)
“Range weakening for 3": (3x|Q AR eP )= (Ix|ReP)
(9.26) “Body weakening for 3": (3x|]ReP )= (Ix|ReP Vv Q)
(9.26a) “Body weakening for 3”: (3Ix|ReP AQ )= (Ix|ReP)

(9.27) “Body monotonicity of 3": (V x| Re Q =P )= ((Ix|]ReQ )= (Ix|ReP))
“Range monotonicity of 3": (VY xe Q = R) = ((Ix|QeP )= (Ix|ReP))
“Range monotonicity of 3”: (V x| Pe Q=R )= ((Ix|QeP)=(Ix|ReP))

Introduction and Interchange for 3

(9.28) “3I-Introduction”: P[x := E] = (I x e P)

(9.29a) “Interchange of quantifications”: (Ixe (VY yeP)) = (Vye(IxeP))
(9.30a) “Witness”: (Ix|ReP)=Q=(VxeRAP=0Q) — provided: —occurs('x’, ‘Q’)
(9.30b) “Witness”: (3xeP)=0Q=(VxeP =0Q) — provided: —occurs('x’, ‘Q’)

Set Membership Properties

(11.3) “Set membership”: F ¢ { x| ReE } = (3x|ReF =E) — provided: —occurs('x, ‘F’)
(11.7s) “Simple Membership”: e € { x| P } = P[x := ¢]
(11.7x) “Simple Membership”: x ¢ { x|]P } =P

(11.7V) “Simple Membership”: (V x e x e { x| P } = P)
“Membership in two-element set enumeration”: x € {x, y}
“Membership in set enumeration”: x e { uJu=xv R }

]

— provided: —occurs(‘u’, ‘x’)
Set Extensionality and Set Inclusion

(11.4) “Set extensionality” “Set equality” “Extensionality”: S=T=(VeeeecS=zecT)
— provided: —occurs(‘e’, 'S, T')
(11.9) “Simple set comprehension equality”: {x]|Q }={x|R}=(VvxeQ=R)
(11.13) “Subset” “Definition of c” “Set inclusion”: Sc T=(VeleecSeecT)
— provided: —occurs(‘e’, 'S, T')
“Subset” “Definition of c” “Set inclusion”: ScT=(VeeeecS=ecT)
— provided: —occurs('e’, ‘S, T')
“Subset membership” “Casting”: XY = (x e X = x¢€Y)
(11.58) “Reflexivity of c”: X ¢ X
“Reflexivity of €": S=T=ScT
(11.59) “Transitivity of ": XY = (Yc Z = X c Z)
“Flipped transitivity of ¢": Y Z = (XY = X c Z)
(11.57) “Antisymmetry of ”: XY = (Yc X = X =)
“Empty set”: {} = { x| false }
“Empty set”: x € {} = false
“Empty set is least” “Bottom set”: {} ¢ X
“Universal set”: U = { x| true }
“Universal set”: x e U
“Universal set is greatest” “Top set”: X c U
(11.56) “Simple set comprehension inclusion”: { x|P } c {x|Q }=(VxeP =0Q)

Singleton Sets, Set Complement, Set Union and Intersection

“Singleton set membership”: x € {y} =x =y
“Singleton set inclusion”: {x} cS=x¢S
“Complement”: e ~S=-(e€9)

(11.19) “Self-inverse of complement”: ~ (~ S) =S
“Lower ~ connection for ¢”: ~ XcY=~YcX
“Upper ~ connection for c”: X< ~Y=Yc ~ X
“Union": eeSuT=zeeSveeT

“Intersection”: ece SNT=zeeSAnecT

“Golden rule fornand U": SNT=S=T=SuT



“Set inclusionvian”: ScT=SnT=S
“Set inclusionvia u": ScT=SuT=T

Proper Subset

(11.14) “Proper subset” “Definition of c": ScT=ScTAS=T
(11.61): ScT=ScTA-(TcCYS)

(1161): ScT=ScTA-(TcY)

(11.63) “Inclusion interms of c": ScT=ScTvS=T
(11.70) “Transitivity of c with c”: XcY = (YcZ = X c 2)
(11.70) “Transitivity of c with c”: XcY = (YcZ = X c 2Z)

Set Difference and Relative Pseudo-complement

(11.22) “Set difference”: ve S-T=veS A - (veT)

(1152): Sn (T-S) = {}

(1154): S-(TuU)=(S-T)n(S-U)
“Characterisation of =”": SCA > B=SnAcB
“Membership in o”": x€ A > B=xcA=x¢eB
“Definition of ”": A > B=~AUB
“Pseudocomplement of union”: (AuB) o C=(A o C)n (B o C)
“Monotonicity of ": BcC=A o BcA = C

Relations via Set Theory

“Definition of &": A - B =P (A x B)

“Infix relationship” “Definition of _(_)_“: a(R)b=(a b)eR
“Relation extensionality”: R=S=(Vxe (Vyex(R)y=x(S)y))

— provided: -occurs('x, y', ‘R, S)

“Relation inclusion”: Rc S=(Vxe (Y yex(R)y=x(S)y))

— provided: —occurs('x, y', ‘R, S')

| xCR)yex(S)y))

“Relation inclusion”: Rc S = (Vxe (Vy

— provided: —occurs('x, Y’ ‘R, S')
“Relation inclusion”: Rc S = (V x, y|x(R)Yyex(S)y)— provided: —occurs('x, y, 'R, S’)

Set Operations used as Relation Operations

“Relation union”: a(RuS)b=a(R)bva(S)b

“Relation intersection”: a(RnS)b=a(R)bara(S)b
“Relation difference”: a(R-S)b=za(R)bAa-(@a(S)hb)
“Relation pseudocomplement”: a(R = S)b=a(R)b=a(S)b
“Relation complement”: a( ~ R)b=-(a(R)b)

“Empty relation”: a ( {} ) b = false

“Universal relation”: (¥ A : Type o (V B: Typeea (A x BJb))
“Singleton relation”: a; ( {(az, b2)} Jb1 = a1 =az A b1 =by
“Singleton relation inclusion”: {{a,b)} cR = a(R )b

Relation-specific Operations

“Relation converse” “Relationship via ™”: y( R~ ) x = x (
“Relation composition”: a(R3S)c=(3bea(R)bAb
“Identity relation” “Relationship via ‘Id”: x(ld Jy=x =y

Ry
(S)e)

‘o ‘

CaLcCHeck Structured Proofs

Simple Induction

By induction on “var
Base case:
?
Induction step:
?

?

Ty

. Induction hypothesis ...

Making base case, induction step, and induction hypothe-

sis explicit:

Base case “7?:
?

?

?

By induction on “var :

Induction step "7 :

. Induction hypothesis " 7?°

Ty :

(Remember that in nested inductions, induction hypothe-
ses always need to be made explicit!)

These can also be used for proving theorems of shape

YV var :

by induction on precisely that universally-quantified vari-

able, that is, “on “var : Ty
The induction hypothesis is t
Example for sequences:

Ty o P Assuming “p° and using with
?

aE ... Assumption "p°

hen P. ?

Theorem: V xs
Proof:
By induction on “xs
Base case "P[xs = ¢]°
?

For any “x':
?

: Seq A - P

: Seq A':

Induction step "V x :

: Case Analysis

A ¢ P[xs = x « xs]:

Assuming the Antecedent

NN

Assuming "p’, 'q
?

Assumption “p°
?

By cases: ‘p', ‘q°, 'r
Completeness:
?
Case 'p°
?
Assumption “p°
?
Subproofs




)

=( Subproof for
{ proof indented as far as needed
to avoid parse error! )

)

?

Nested subproofs currently may need to be indented
even further than first-level subproofs!

Proving Universal Quantifications

For any ‘var : Ty :
?

For any ‘var : Ty satisfying "p':
?

. Assumption “p°
?

Theorems Used as Proof Methods (Examples)

Using “Mutual implication”:
Subproof for “... = T
?

Subpr"oof for *... =
?

Using “Extensionality”:
Subproof for "V x
For any “x':
?

Side Proofs

Side proof for "P:

?
Continuing with goal "?°
?
local property "P°
?

Disabling Hints Producing Time-outs

Add “?, " at the beginning of the hint:

=( ?, “Golden rule” )

Selected CaLcCreckywep Key Bindings

(See Getting Started with CALcCHECKwe, for the com-
plete listing.)

The following key bindings work the same in both edit
and command modes

Ctrl-Enter performs a syntax check on the contents of
all code cells before and up to the current cell.

Ctrl-Alt-Enter performs proof checks (if enabled) on
the contents of all code cells before and up to the
current cell.

Shift-Alt-RightArrow enlarges the width of the cur-
rent code cell entry area by a small amount
Ctrl-Shift-Alt-RightArrow enlarges the width of the
current code cell entry area by a large amount
Shift-Alt-LeftArrow reduces the width of the current

code cell entry area by a small amount
Ctrl-Shift-Alt-LeftArrow reduces the width of the

current code cell entry area by a large amount
Ctrl-Shift-v (for visible spaces) toggles display of ini-

tial spaces on each line as “," characters.

ONLY if you are logged in via Avenue:

Ctrl-s saves the notebook on the server.
(Links for reloading the last three saved versions
are displayed when you the notebook again later.)

In edit mode, you have the following key bindings:

Esc enters command mode

A1t-SPACE or Alt-i inserts one space in the current
line and in all non-empty lines below it, until a line
is encountered that is not indented more than to
the cursor position.

A1t-BACKSPACE deletes only a space character to the
left of the current cursor position, and also from
lines below it, until a line is encountered that is
not indented at least to the cursor position.

A1t-DELETE deletes only a space character to the right
of the current cursor position, and also from lines
below it, until a line is encountered that is not
indented more than to the cursor position.

The last three bindings also work with the Shift key

pressed.

Some im

portant symbols:

Symbol

Key sequence(s)

=

\implies, \=>
\follows
\nequiv
\neq
\forall
\exists
\sum
\product
\with
\spot
\min

\max

\BB, \bool
\NN, \nat
\ZZ, \int

Ng D C Fn|NZBE-—>«— o — MW <<+ Mt

\in

\PP, \powerset
\union
\intersection
\pseudocompl
\subseteq
\subset

\universe

(@ovz—\ime

\times

\rel
\1rel, \(( \([
\rrel, \)),\D)

\converse, \u{}
\lres

\rres

v A~/ N

)

\eps, \emptyseq
\cons
\snoc

\catenate

\rcomp, \fcomp, \;;



http://calccheck.mcmaster.ca/CalcCheckDoc/GettingStartedWithCalcCheckWeb.html
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