
Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-07

What is This Course About? What Not?
Calendar description:

Introduction to logic and proof techniques for practical reasoning:
propositional logic, predicate logic, structural induction; rigorous
proofs in discrete mathematics and programming.

Calculus is the mathematics of continuous phenomena: physical sciences, traditional
engineering — used for specifying bridges; used for justifying bridge designs.

Discrete Mathematics is
the math of data— whether complex or big
the math of reasoning— logic
the math of AI— machine reasoning
used for specifying software

Logical Reasoning is
used for justifying software designs
used for proving software implementations correct

Advanced topic combining both: Cyber-physical systems (CPS)

Goals and Rough Outline
Understand the mechanics of mathematical expressions and proof
— starting in a familiar area: Reasoning about integers
Develop skill in propositional calculus

“propositional”: statements that can be true or false, not numbers
“calculus”: formalised reasoning, calculation — B, ¬, ∧, ∨,⇒, . . .

Develop skill in predicate calculus
“predicate”: statement about some subjects. — ∀, ∃

Develop skill in using basic theories of “data mathematics”
Sets, Functions, Relations
Sequences, Trees, Graphs

. . . skill development takes time and effort . . .
Introduction to reasoning about (imperative) programs
Encounter mechanised discrete mathematics
Introduction to mechanised software correctness tools
— Formal Methods: increasingly important in industry

Textbook: “LADM”

“This is a rather extraordinary book, and deserves to
be read by everyone involved in computer science
and — perhaps more importantly — software engi-
neering. I recommend it highly [. . .]. If the book is
taken seriously, the rigor that it unfolds and the clarity
of its concepts could have a significant impact on the
way in which software is conceived and developed.”

— Peter G. Neumann
(Founder of ACM SIGSOFT)

First Tool: CALCCHECK

CALCCHECK: A proof checker for the textbook logic

CALCCHECK analyses textbook-style presentations of proofs

CALCCHECKWeb: A notebook-style web-app interface to CALCCHECK

You can check your proofs before handing them in!

Will be used in exams!

— with proof checking turned off. . .
. . . but syntax checking left on

Will be used in exams
— as far as possible. . .
You need to be able to do both:

Write formalisations and proofs using CALCCHECK

Write formalisations and proofs by hand on paper

(Firefox and Chrome can be expected to work with CALCCHECKWeb.
Safari, Edge, IE not necessarily.)

From the LADM Instructor’s Manual
Emphasis on skill acquisition:

“a course taught from this text will give students a solid understanding of what
constitutes a proof and a skill in developing, presenting, and reading proof.”
“We believe that teaching a skill in formal manipulation makes learning the other
material easier.”
“Logic as a tool is so important to later work in computer science and mathematics
that students must understand the use of logic and be sure in that understanding.”
“One benefit of our new approach to teaching logic, we believe is that students
become more effective in communicating and thinking in other scientific and
engineering disciplines.”
“Frequent but shorter homeworks ensure that students get practice”

Consciously departing from existing mechanised logics:
“Our equational logic is a “People Logic”, instead of a

“Machine Logic”.” CALCCHECK mechanises this “People Logic”

CALCCHECK: A Recognisable Version of the Textbook Proof Language
(11.5) S = {x x ∈ S ∶ x} .
According to axiom Extensionality (11.4), it suffices to prove that v ∈ S ≡ v ∈ {x x ∈ S ∶ x},
for arbitrary v. We have,

v ∈ {x x ∈ S ∶ x}
= ⟨ Definition of membership (11.3) ⟩(∃x x ∈ S ∶ v = x)
= ⟨ Trading (9.19), twice ⟩(∃x x = v ∶ x ∈ S)
= ⟨ One-point rule (8.14) ⟩

v ∈ S

7KHRUHP����������6� �^�[�:�[�$�6�-�[�`�
3URRI��
��8VLQJ�'6HW�H[WHQVLRQDOLW\(���������
����)RU�DQ\�CYC��
��������Y�$�^�[�:�[�$�6�-�[�`�
������ ������'6HW�PHPEHUVKLS(����������
�����������[�:�[�$�6�-�Y� �[��
������ ������'7UDGLQJ�IRU��(����������
�����������[�:�[� �Y�-�[�$�6��
������ ������'2QH�SRLQW�UXOH�IRU��(���������VXEVWLWXWLRQ���
��������Y�$�6

Note:
1. The calculation part is transliterated into Unicode plain text

(only minimal notation changes).
2. The prose top-level of the proof is formalised

into Using and For any structures in the spirit of LADM

From the LADM Instructor’s Manual: “Some Hints on Mechanics”
“We have been successful (in a class of 70 students) with occasionally writing a few
problems on the board and walking around the class as the students work on them.”

COMPSCI&SFWRENG 2DM3: ≈240 students in 2016, 360 in 2020

COMPSCI 2LC3: Over 180 students in 2021

Tutorials have 20–40 students and use this approach, with students
working on their computers
— this still works with online course delivery

“Frequent short homework assignments are much more effective than longer but
less frequent ones. Handing out a short problem set that is due
the next lecture forces the students to practice the material
immediately, instead of waiting a week or two.”

Since 2018, giving homework up to twice per week

Only feasible due to online submission and autograding

Clear improvement in course results

From the LADM Instructor’s Manual: “Some Hints on Mechanics” (ctd.)

“There is no substitute for practice accompanied by ample and timely feedback”

Most “timely feedback” is provided by interaction with CALCCHECKWeb

Autograding for homework and assignments produces some additional feedback

CALCCHECK is intentionally a proof checker, not a proof assistant

Providing ample TA office hours (and now a “Course Help” channel) helps
students overcome roadblocks.

“We tell the students that they are all capable of mastering the material (for they are).”

. . . and CALCCHECK homework makes more of them
actually master the material.

Organisation
Schedule

Grading

Exams

Avenue

Course Page: http://www.cas.mcmaster.ca/˜kahl/CS2LC3/2021/

— check in case of Avenue and MSTeams outage!

— See the Outline (on course page and on Avenue)

— Read the Outline!

Rough Timeline

● Introduction to Calculational Reasoning Parts of Chapters 1, 15

Boolean Expressions and Propositional Logic Chapters 1–5

Quantification, Predicate Logic, Sets Chapters 8–9, 11
≈ 4 weeks

● Induction, Sequences, Trees Chapters 12–13 ≈ 2 weeks

● Relations and Functions, Graphs Chapters 14, 19 ≈ 3 weeks

● Correctness of Imperative Programs Chapter 10, other ≈ 3 weeks

Schedule
Mon Tue Wed Thu Fri

9:30– T4
–11:20 T4

12:30–13:20 Lecture Lecture T2, T3, “T5”
13:30–14:20 Lecture T2, T3, “T5”
14:30– T1

–16:30 T1

Lectures: On MSTeams, recorded at source (not in MSTeams) — attend!, take notes!
Office hour: For now, on MSTeams by appointment
2-hour Tutorials (starting Thursday, September 9):
– Discuss student approaches to “Exercise” questions.
– “T5” (not on Mosaic) for not-in-person students, online, recorded
TA office hours: TBA, on “Course Help” channel on MSTeams
Studying and Homework: About 2–3 hours per lecture

— reading the textbook , writing proofs in CALCCHECKWeb

Grading
Homework, from one lecture to the next — in total: 10%

The weakest 2 or 3 homeworks are dropped (see outline)
MSAFs for homework are not processed

Roughly-weekly assignments — in total: 16%
The weakest 1 or 2 assignments are dropped (see outline)
MSAFs for assignments are not processed

2 Midterm Tests, closed book, on CALCCHECKWeb / on paper, each:
15% if not better than your final
20% if better than your final

— in total at least: 30%
— in total up to: 40%

Deferred midterms may be oral
Midterm weight will not be moved to final exam

Final (closed book, 2.5 hours, on CALCCHECKWeb / . . .) 34%–44%

= 100%

Possible bonus assignments and other bonus marks
— only count if you passed the course

Exams

Exercise questions, assignment questions, and the questions on midterm tests, and
on the final —

— will be somewhat similar. . .

All tests and exams are closed-book.
– The main difference to open-book lies in how you prepare. . .
– Knowledge is important:

Without the right knowledge, you would not even know what to look up where!

You need to be able and prepared to do both:
Write formalisations and proofs using CALCCHECK
Write formalisations and proofs by hand on paper

Know your stuff!
— . . . and not only in the exams . . .

— . . . and not only for this term . . .

— . . . similar to learning a new language

The Language of Logical Reasoning

The mathematical foundations of Computing Science involve language skills and
knowledge:

Vocabulary: Commonly known concepts and technical terms

Syntax/Grammar: How to produce complex statements and arguments

Semantics: How to relate complex statements with their meaning

Pragmatics: How people actually use the features of the language

Conscious and fluent use of the
language of logical reasoning

is the foundation for
precise specification and rigorous argumentation
in Computer Science and Software Engineering.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-07

Part 2: Expressions and Calculations

The Answer

H
1

St
ar

ti
ng

Po
in

t &DOFXODWLRQ��
������y���
�� ��)DFW�C�� ������C���
������y���������
�� ��)DFW�C�� �������C���
�������������y���������
�� ��''LVWULEXWLYLW\�RI�y�RYHU��(���
�������������y��������������y���
�� ��''LVWULEXWLYLW\�RI�y�RYHU��(���
�������y�������y��������y�������y���
�� ��',GHQWLW\�RI�y(���
�������y�������y������������������
�� ��)DFW�C��y��� ���C���
�������y��������������������������
�� ��)DFW�C���y��� ���C���
����������������������������������
�� ��)DFW�C������� ��C���
������������������������������
�� ��)DFW�C������� ���C���
�����������������������
�� ��)DFW�C�������� ���C���
������

Calculational Proof Format

E0= ⟨ Explanation of why E0 = E1 ⟩
E1= ⟨ Explanation of why E1 = E2 ⟩
E2= ⟨ Explanation of why E2 = E3 ⟩
E3

This is a proof for:
E0 = E3

Calculational Proof Format

E0= ⟨ Explanation of why E0 = E1 ⟩
E1= ⟨ Explanation of why E1 = E2 ⟩
E2= ⟨ Explanation of why E2 = E3 ⟩
E3

The calculational presentation as such is conjunctional: This reads as:

E0 = E1 ∧ E1 = E2 ∧ E2 = E3

Because = is transitive, this justifies:

E0 = E3

Syntax of Conventional Mathematical Expressions
Textbook 1.1, p. 7

A constant (e.g., 231) or variable (e.g., x) is an expression

If E is an expression, then (E) is an expression

If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.

For example, the negation symbol − is used as a unary prefix operator, so − 5 is an
expression.

If ⊗ is a binary infix operator and D and E are expressions,
then D⊗ E is an expression, with operands D and E.

For example, the symbols + and ⋅ are binary infix operators,
so 1 + 2 and (− 5) ⋅ (3 + x) are expressions.

Syntax of Conventional Mathematical Expressions

A constant (e.g., 231) or variable (e.g., x) is an expression
If E is an expression, then (E) is an expression
If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

The intention of this is that each expression is at least one of the following alternatives:
either some constant
or some variable
or some simpler expression in parentheses
or the application of some unary prefix operator

to some simpler expression
or the application of some binary infix operator

to two simpler expressions

Why is this an expression?

2 ⋅ 3 + 4
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

or the application of some binary infix operator to two simpler expressions

InfixApp

Const

4

Op

+
InfixApp

Const

3

Op

⋅
Const

2

InfixApp

InfixApp

Const

4

Op

+
Const

3

Op

⋅
Const

2

Which expression is it? Why?
Ô⇒ The multiplication operator ⋅ has higher precedence

than the addition operator +.

Table of Precedences[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ ⇐≡ (lowest precedence)

All non-associative binary infix operators associate to the left, except ∗∗,◁,⇒, →, which associate to the right.

Why are these expressions? Which expressions are these?
1 5 − 6 + 7

InfixApp

Const

7

Op

+
InfixApp

Const

6

Op

−
Const

5

InfixApp

InfixApp

Const

7

Op

+
Const

6

Op

−
Const

5

2 a + b − c
InfixApp

Var

c

Op

−
InfixApp

Var

b

Op

+
Var

a

InfixApp

InfixApp

Var

c

Op

−
Var

b

Op

+
Var

a

The operators + and − associate to the left, also mutually.

Associativity versus Association
If we write a + b + c, there appears to be no need to discuss whether we mean(a + b) + c or a + (b + c), because they evaluate to the same values:

(a + b) + c = a + (b + c) “+” is associative

If we write a − b − c, we mean (a − b) − c:

“−” associates to the left 9 − (5 − 2) ≠ (9 − 5) − 2

If we write abc
, we mean a(bc):

exponentiation associates to the right 2(32) ≠ (23)2

If we write a ∗∗ b ∗∗ c, we mean a ∗∗ (b ∗∗ c):

“∗∗” associates to the right

If we write a⇒ b ⇒ c, we mean a ⇒ (b ⇒ c):

“⇒” associates to the right F⇒(T⇒F) ≠ (F⇒T)⇒F

An Equational Theory of Integers — Axioms (Ch. 15)

(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
(15.3) Axiom, Additive identity: 0 + a = a

a + 0 = a

(15.4) Axiom, Multiplicative identity: 1 ⋅ a = a
a ⋅ 1 = a

(15.5) Axiom, Distributivity: a ⋅ (b + c) = a ⋅ b + a ⋅ c(b + c) ⋅ a = b ⋅ a + c ⋅ a
(15.13) Axiom, Unary minus: a + (−a) = 0

(15.14) Axiom, Subtraction: a − b = a + (−b)

An Equational Theory of Integers — Axioms (CALCCHECK)

Declaration: ℤ : Type
Declaration: _+_ : ℤ → (ℤ → ℤ)
— CalcCheck: Operator _+_: Associating to the left; precedence 100
Declaration: _·_ : ℤ → (ℤ → ℤ)
— CalcCheck: Operator _·_: Associating to the left; precedence 110
Axiom (15.1) (15.1a) “Associativity of +”: (a +b) + c = a + (b + c)
Axiom (15.1) (15.1b) “Associativity of ·”: (a · b) · c = a · (b · c)
Axiom (15.2) (15.2a) “Symmetry of +”: a + b =b + a
Axiom (15.2) (15.2b) “Symmetry of ·”: a · b = b· a
Axiom (15.3) “Additive identity” “Identity of +”: 0 + a = a
Axiom (15.4) “Multiplicative identity” “Identity of ·”: 1 · a = a
Axiom (15.5) “Distributivity” “Distributivity of · over +”: a · (b + c) = a · b + a · c
Axiom (15.9) “Zero of ·”: a · 0 = 0
Declaration: -_ : ℤ → ℤ
— CalcCheck: Operator -_: Non-associating; precedence 130
Declaration: _-_ : ℤ → ℤ
— CalcCheck: Operator _-_: Associating to the left; precedence 100
Axiom (15.13) “Unary minus”: a + - a = 0
Axiom (15.14) “Subtraction”: a - b = a + - b

Calculational Proofs of Theorems — (15.17) −(−a) = a

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (−a) = 0

Theorem (15.17): −(−a) = a
Proof:

−(−a)
= ⟨ Identity of + (15.3) ⟩

0 + −(−a)
= ⟨ Unary minus (15.13) ⟩

a + (−a) + −(−a)
= ⟨ Unary minus (15.13) ⟩

a + 0

= ⟨ Identity of + (15.3) ⟩
a

The Answer

H
1

St
ar

ti
ng

Po
in

t &DOFXODWLRQ��
������y���
�� ��)DFW�C�� ������C���
������y���������
�� ��)DFW�C�� �������C���
�������������y���������
�� ��''LVWULEXWLYLW\�RI�y�RYHU��(���
�������������y��������������y���
�� ��''LVWULEXWLYLW\�RI�y�RYHU��(���
�������y�������y��������y�������y���
�� ��',GHQWLW\�RI�y(���
�������y�������y������������������
�� ��)DFW�C��y��� ���C���
�������y��������������������������
�� ��)DFW�C���y��� ���C���
����������������������������������
�� ��)DFW�C������� ��C���
������������������������������
�� ��)DFW�C������� ���C���
�����������������������
�� ��)DFW�C�������� ���C���
������

Work through Homework 1

Submit by 9 a.m. on Thursday, Sept. 9

Get started working on Exercises 1.1,
1.2., 1.3

Go to yor tutorial to continue working
on Ex1 — bring your laptop!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-09

Part 1: Syntax of Mathematical Expressions

Mathematical Modelling

Textbook p. 2: How to specify an algorithm to compute b, an integer approximation to√
n for some integer n?

Square roots do not exist for negative integers!
Therefore, the algorithm must only be used for non-negative n.
Precondition: n ≥ 0

To compute an approximation???
42 is an approximation of

√
1000 !

“Reasonable” approximations (candidates for the postcondition):
b2 ≤ n ≤ (b + 1)2

abs(b2 − n) ≤ abs((b + 1)2 − n) and abs(b2 − n) ≤ abs((b − 1)2 − n)(b − 1)2 ≤ n ≤ b2

Now step back, and do “grammatical analysis”!

Natural-Language Grammatical Analysis: Sentence Structure Trees

Square roots do not exist for negative integers.

S

VP

VP

PP

NP

N

integers

Adj

negative

P

for

V

exist

VP

Adv

not

V

do

NP

N

roots

N

Square

Mathematical Modelling uses Mathematical Expressions
Textbook p. 2: How to specify an algorithm to compute b, an integer approximation to√

n for some integer n?
Square roots do not exist for negative integers!
Therefore, the algorithm must only be used for non-negative n.
Precondition: n > 0
To compute an approximation??? — 42 is an approximation of

√
1000 !

“Reasonable” approximations (candidates for the postcondition):
b2 ≤ n ≤ (b + 1)2

abs(b2 − n) ≤ abs((b + 1)2 − n) and abs(b2 − n) ≤ abs((b − 1)2 − n)(b − 1)2 ≤ n ≤ b2

Now step back, and do “grammatical analysis”!
How is all that math put together?
What are the different kinds of atoms (“words”)?
What are the different kinds of composite structures (“phrases”)?
What are the rules for analysis/synthesis of composite structures?

Grammatical Analysis for Mathematical Expression
b2 ≤ n ≤ (b + 1)2

E

ConjunctionalSeq

E

InfixApp

E

Const

2

Op

**

InfixApp

E

Const

1

Op

+
E

Var

b

ConjOp

≤
E

Var

n

ConjOp

≤
E

InfixApp

E

Const

2

Op

**

E

Var

b

Term Tree Presentation of Mathematical Expression

b2 ≤ n ≤ (b + 1)2

b2 ≤ n ∧ n ≤ (b + 1)2

∧
≤

**

2+

1b

n

≤
n**

2b

We write strings, but we think trees.

All the rules we have for implicit parentheses
only serve to encode the tree structure.

Syntax of Conventional Mathematical Expressions
Textbook 1.1, p. 7

A constant (e.g., 231) or variable (e.g., x) is an expression

If E is an expression, then (E) is an expression

If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.

For example, the negation symbol − is used as a unary prefix operator, so −5 is an
expression.

If ⊗ is a binary infix operator and D and E are expressions,
then D⊗ E is an expression, with operands D and E.

For example, the symbols + and ⋅ are binary infix operators,
so 1 + 2 and (−5) ⋅ (3 + x) are expressions.

Syntax of Conventional Mathematical Expressions

A constant (e.g., 231) or variable (e.g., x) is an expression
If E is an expression, then (E) is an expression
If ○ is a unary prefix operator and E is an expression, then ○E is an expression, with
operand E.
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

The intention of this is that each expression is at least one of the following alternatives:
either some constant
or some variable
or some simpler expression in parentheses
or the application of some unary prefix operator

to some simpler expression
or the application of some binary infix operator

to two simpler expressions

Why is this an expression?

2 ⋅ 3 + 4
If ⊗ is a binary infix operator and D and E are expressions, then D⊗ E is an
expression, with operands D and E.

or the application of some binary infix operator to two simpler expressions

Which expression is it?
+

4⋅
32

⋅
+

43

2

Why?

Ô⇒ The multiplication operator ⋅ has
higher precedence than the addition opera-
tor +.

Table of Precedences[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ ⇐≡ (lowest precedence)

All non-associative binary infix operators associate to the left, except ∗∗,◁,⇒, →, which associate to the right.

Why are these expressions? Which expressions are these?
1 n − k − 1 −

1−
kn

−
−

1k

n

2 5 − 6 + 7 +
7−

65

−
+

76

5

3 a + b − c −
c+

ba

+
−

cb

a

The operators + and − associate to the left, also mutually.

Precedences and Association — We write strings, but we think trees

All the rules we have for implicit parentheses only serve to encode the tree structure.

(We use underscores to denote operator argument positions.
So ⊗ is a binary infix operator, and ⊟ is a unary prefix operator.)

⊗ has higher precedence than ⊙ means
a⊗ b⊙ c = (a⊗ b)⊙ c
a⊙ b⊗ c = a⊙ (b⊗ c)

⊗ has higher precedence than ⊟ means ⊟ a⊗ b = ⊟ (a⊗ b)
⊟ has higher precedence than ⊗ means ⊟ a⊗ b = (⊟ a)⊗ b

⊗ associates to the left means a⊗ b⊗ c = (a⊗ b)⊗ c

⊗ associates to the right means a⊗ b⊗ c = a⊗ (b⊗ c)⊗ mutually associates to the left
with (same prec.) ⊙ means a⊗ b⊙ c = (a⊗ b)⊙ c

⊗ mutually associates to the
right

with (same prec.) ⊙ means a⊗ b⊙ c = a⊗ (b⊙ c)

Associativity versus Association
If we write a + b + c, there is no need to discuss whether we mean (a + b) + c or
a + (b + c), because they are the same:

(a + b) + c = a + (b + c) “+” is associative

If we write a − b − c, we mean (a − b) − c:

“−” associates to the left 9 − (5 − 2) ≠ (9 − 5) − 2

If we write abc
, we mean a(bc):

exponentiation associates to the right 2(32) ≠ (23)2

If we write a ∗∗ b ∗∗ c, we mean a ∗∗ (b ∗∗ c):

“∗∗” associates to the right

If we write a⇒ b ⇒ c, we mean a ⇒ (b ⇒ c):

“⇒” associates to the right F⇒(T⇒F) ≠ (F⇒T)⇒F

Conjunctional Operators

Chains can involve different conjunctional operators:

1 < i ≤ j < 5 = k

≡ ⟨ “Reflexivity of =” `x = x` — conjunctional operators ⟩
1 < i ∧ i ≤ j ∧ j < 5 ∧ 5 = k

≡ ⟨ “Reflexivity of =” — ∧ has lower precedence ⟩
(1 < i) ∧ (i ≤ j) ∧ (j < 5) ∧ (5 = k)
x < 5 ∈ S ⊆ T

≡ ⟨ “Reflexivity of =” — conjunctional operators ⟩
x < 5 ∧ 5 ∈ S ∧ S ⊆ T

≡ ⟨ “Reflexivity of =” — ∧ has lower precedence ⟩
(x < 5) ∧ (5 ∈ S) ∧ (S ⊆ T)

Remember this!!
!

Mathematical Expressions, Terms, Formulae . . .

“Expression” is not the only word used for this kind of concept.

Related terminology:
Both “term” and “expression” are frequently used names
for the same kind of concept.
The textbook’s “expression” subsumes both “term” and “formula” of conventional
first-order predicate logic.

Remember:
Expressions are understood as tree-structures

— “abstract syntax”
Expressions are written as strings

— “concrete syntax”
Parentheses, precedences, and association rules
only serve to disambiguate the encoding of trees in strings.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-09

Part 2: Substitution

Plan for Part 2
Substitution as such: Replaces variables with expressions in expressions, e.g.,

(x + 2 ⋅ y)[x,y ∶= 3 ⋅ a, b + 5]
= ⟨ Substitution ⟩

3 ⋅ a + 2 ⋅ (b + 5)
Applying substitution instances of theorems and making the substitution explicit:

2 ⋅ y + − (2 ⋅ y)
= ⟨ “Unary minus” `a + − a = 0` with `a ∶= 2 ⋅ y` ⟩

0

(The details of the underlying mechanisms, LADM 1.3, 1.5, are left to the next
lecture.)

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 1:

(x + y)[x ∶= z + 2]
= ⟨ Substitution — performing substitution ⟩

((z + 2) + y)
= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩

z + 2 + y

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 2:

(x ⋅ y)[x ∶= z + 2]
= ⟨ Substitution ⟩

((z + 2) ⋅ y)
= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩

(z + 2) ⋅ y

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 3:

(0 + a)[a ∶= − (− a)]
= ⟨ Substitution ⟩

(0 + (− (− a)))
= ⟨ “Reflexivity of =” — removing (some) unnecessary parenth. ⟩

0 + − (− a)

Textual Substitution
Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Example 4:

x + y[x ∶= z + 2]
= ⟨ “Reflexivity of =” — adding parentheses for clarity ⟩

x + (y[x ∶= z + 2])
= ⟨ Substitution ⟩

x + (y)
= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩

x + y

Note: Substitution [x ∶= R] is a highest precedence postfix operator

Textual Substitution

Let E and R be expressions and let x be a variable. We write:

E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of x replaced by (R).

Examples:

Expression Result

Unnecessary
parentheses
removed

x[x ∶= z + 2] (z + 2) z + 2(x + y)[x ∶= z + 2] ((z + 2) + y) z + 2 + y(x ⋅ y)[x ∶= z + 2] ((z + 2) ⋅ y) (z + 2) ⋅ y
x + y[x ∶= z + 2] x + y x + y

Note: Substitution [x ∶= R] is a highest precedence postfix operator

Sequential Substitution

(x + y)[x ∶= y − 3][y ∶= z + 2]
= ⟨ “Reflexivity of =” — adding parentheses for clarity ⟩

((x + y)[x ∶= y − 3])[y ∶= z + 2]
= ⟨ Substitution — performing inner substitution ⟩

(((y − 3) + y))[y ∶= z + 2]
= ⟨ Substitution — performing outer substitution ⟩

((((z + 2) − 3) + (z + 2)))
= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩

z + 2 − 3 + z + 2

On CALCCHECKWeb: Exercise 2.2: Substitutions

Simultaneous Textual Substitution

If R is a list R1, . . . ,Rn of expressions
and x is a list x1, . . . ,xn of distinct variables, we write:

E[x ∶= R]
to denote the simultaneous replacement of the variables of x
by the corresponding expressions of R,
each expression being enclosed in parentheses.

Example:(x + y)[x,y ∶= y − 3, z + 2]
= ⟨ Substitution — performing substitution ⟩

((y − 3) + (z + 2))
= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩

y − 3 + z + 2

Simultaneous Textual Substitution

If R is a list R1, . . . ,Rn of expressions
and x is a list x1, . . . ,xn of distinct variables, we write:

E[x ∶= R]
to denote the simultaneous replacement of the variables of x
by the corresponding expressions of R,
each expression being enclosed in parentheses.

Examples:

Expression Result

Unnecessary
parentheses
removed

x[x,y ∶= y − 3, z + 2] (y − 3) y − 3(y + x)[x,y ∶= y − 3, z + 2] ((z + 2) + (y − 3)) z + 2 + y − 3(x + y)[x,y ∶= y − 3, z + 2] ((y − 3) + (z + 2)) y − 3 + z + 2
x + y[x,y ∶= y − 3, z + 2] x + (z + 2) x + z + 2

Simultaneous Substitution:(x + y)[x,y ∶= y − 3, z + 2]= ⟨ Substitution — performing substitution ⟩((y − 3) + (z + 2))= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
y − 3 + z + 2

Sequential Substitution:(x + y)[x ∶= y − 3][y ∶= z + 2]= ⟨ “Reflexivity of =” — adding parentheses for clarity ⟩((x + y)[x ∶= y − 3])[y ∶= z + 2]= ⟨ Substitution — performing inner substitution ⟩(((y − 3) + y))[y ∶= z + 2]= ⟨ Substitution — performing outer substitution ⟩((((z + 2) − 3) + (z + 2)))= ⟨ “Reflexivity of =” — removing unnecessary parentheses ⟩
z + 2 − 3 + z + 2

An Equational Theory of Integers — Axioms (Ch. 15)

(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
(15.3) Axiom, Additive identity: 0 + a = a

a + 0 = a

(15.4) Axiom, Multiplicative identity: 1 ⋅ a = a
a ⋅ 1 = a

(15.5) Axiom, Distributivity: a ⋅ (b + c) = a ⋅ b + a ⋅ c(b + c) ⋅ a = b ⋅ a + c ⋅ a
(15.13) Axiom, Unary minus: a + (− a) = 0

(15.14) Axiom, Subtraction: a − b = a + (− b)

Calculational Proofs of Theorems — (15.17) − (− a) = a

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (− a) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof:

− (− a)
= ⟨ Identity of + (15.3) ⟩

0 + − (− a)
= ⟨ Unary minus (15.13) ⟩

a + (− a) + − (− a)
= ⟨ Unary minus (15.13) ⟩

a + 0

= ⟨ Identity of + (15.3) ⟩
a

Three diff
erent varia

bles named “a”!

Calculational Proofs of Theorems — (15.17) — Renamed Theorem Variables
(15.3x) Identity of + 0 + x = x (15.13y) Unary minus y + (− y) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof:

− (− a)
= ⟨ Identity of + (15.3x) ⟩

0 + − (− a)
= ⟨ Unary minus (15.13y) ⟩

a + (− a) + − (− a)
= ⟨ Unary minus (15.13y) ⟩

a + 0

= ⟨ Identity of + (15.3x) ⟩
a

Three diff
erent varia

bles “x”, “y”, “a”.

Details of Applying Theorems — (15.17) with Explicit Substitutions I

(15.3x) Identity of + 0 + x = x (15.13y) Unary minus y + (− y) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof:− (− a)

= ⟨ Identity of + (15.3x) with x ∶= − (− a) ⟩
0 + − (− a)

= ⟨ Unary minus (15.13y) with y ∶= a ⟩
a + (− a) + − (− a)

= ⟨ Unary minus (15.13y) with y ∶= − a ⟩
a + 0

= ⟨ Identity of + (15.3x) with x ∶= a ⟩
a

(0 + x = x)[x ∶= − (− a)] = (0 + − (− a) = − (− a))
(y + (− y) = 0)[y ∶= a] = (a + (− a) = 0)
(y + (− y) = 0)[y ∶= − a] = (− a + (− (− a)) = 0)

(0 + x = x)[x ∶= a)] = (0 + a = a

Details of Applying Theorems — (15.17) with Explicit Substitutions II

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (− a) = 0

Theorem (15.17) “Self-inverse of unary minus”: − (− a) = a
Proof: − (− a)

= ⟨ Identity of + (15.3) with a ∶= − (− a) ⟩
0 + − (− a)

= ⟨ Unary minus (15.13) with a ∶= a ⟩
a + (− a) + − (− a)

= ⟨ Unary minus (15.13) with a ∶= − a ⟩
a + 0

= ⟨ Identity of + (15.3) with a ∶= a ⟩
a Three

diff
ere

nt vari
ab

les
nam

ed
“a

”!

Specifying Substitutions for Theorem Application in CALCCHECK

Theorem (15.19) “Distributivity of unary minus over +”:
 -(a + b) = (- a) + (- b)
Proof:
 - (a + b)
 =⟨ (15.20) with `a ≔ a + b` ⟩
 - 1 · (a + b)
 =⟨ “Distributivity of · over +” with `a, b, c ≔ - 1, a, b` ⟩
 - 1 · a + - 1 · b
 =⟨ (15.20) with `a ≔ a` ⟩
 - a + - 1 · b
 =⟨ (15.20) with `a ≔ b` ⟩
 - a + - b

Backquotes enclose math embedded in English. (Markdown convention)
Substitution notation as in LADM: variables ∶= expressions
“∶=” reads “becomes” or “is/are replaced with”
“∶=” is entered by typing “/:=” or “/becomes”!
The variable list has the same length as the expression list.
No variable occurs twice in the variable list.
CALCCHECKWeb notebooks “with rigid matching” require all theorem
variables to be substituted. — “rigid matching” means: The theorems
you specify need to match without substitution

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-13

Part 1: Foundations of Applying Equations in Context

Plan for Today — LADM 1.2–1.6
Anatomy of calculation based on Substitution:

Inference rule Substitution: Justifies applying instances of theorems:

2 ⋅ y + − (2 ⋅ y)
= ⟨ “Unary minus” a + − a = 0 with ‘a ∶= 2 ⋅ y‘ ⟩

0
Inference rule Leibniz: Justifies applying (instances of) equational theorems deeper
inside expressions:

2 ⋅ x + 3 ⋅ (y − 5 ⋅ (4 ⋅ x + 7))
= ⟨ “Subtraction” a − b = a + − b with ‘a, b ∶= y,5 ⋅ (4 ⋅ x + 7)‘ ⟩

2 ⋅ x + 3 ⋅ (y + − (5 ⋅ (4 ⋅ x + 7)))
Reasoning about Assignment Commands in Imperative Programs

{ Q[x ∶= E] } x ∶= E { Q }
. . . and more inference rules!

What is an Inference Rule?

premise1 . . . premisen

conclusion

If all the premises are theorems,

then the conclusion is a theorem.

A theorem is a “proved truth”
— either an axiom,
— or the result of an inference rule application

The premises are also called hypotheses.

The conclusion and each premise all have to be Boolean

Axioms are inference rules with zero premises

Inference Rule: Substitution

(1.1) Substitution:
E

E[x ∶= R]
Example:
If a + 0 = a is a theorem, “Identity of +”

then 3 ⋅ b + 0 = 3 ⋅ b is also a theorem. “Identity of +” with ‘a ∶= 3 ⋅ b‘

a + 0 = a(a + 0 = a)[a ∶= 3 ⋅ b] a + 0 = a
3 ⋅ b + 0 = 3 ⋅ b

Example:

z ≥ x ↑ y ≡ z ≥ x ∧ z ≥ y
x + y ≥ x ↑ y ≡ x + y ≥ x ∧ x + y ≥ y

Inference Rule Scheme: Substitution

(1.1) Substitution:
E

E[x ∶= R]
Really an inference rule scheme:
works for every combination of

expression E,
variable x, and
expression R.

Example 1:
a + 0 = a

3 ⋅ b + 0 = 3 ⋅ bIf a + 0 = a is a theorem,
then 3 ⋅ b + 0 = 3 ⋅ b is also a theorem.

expression E is a + 0 = a
the variable x substituted into is a
the substituted expression R is 3 ⋅ b

Inference Rule Scheme: Substitution

(1.1) Substitution:
E

E[x ∶= R]
Really an inference rule scheme:
works for every combination of

expression E,
variable x, and
expression R.

Example 2: a ⋅ (b + c) = a ⋅ b + a ⋅ c(2 + x) ⋅ (b + c) = (2 + x) ⋅ b + (2 + x) ⋅ c
If a ⋅ (b + c) = a ⋅ b + a ⋅ c is a theorem,
then (2 + x) ⋅ (b + c) = (2 + x) ⋅ b + (2 + x) ⋅ c is also a theorem.

expression E is a ⋅ (b + c) = a ⋅ b + a ⋅ c
the variable x substituted into is a
the substituted expression R is 2 + x

Inference Rule Scheme: Substitution

(1.1) Substitution:
E

E[x ∶= R]
Really an inference rule scheme:
works for every combination of

expression E,
variable list x, and
corresponding expression list R.

Example:
If x + y = y + x is a theorem,
then b + 3 = 3 + b is also a theorem.

expression E is x + y = y + x
variable list x is x,y
corresponding expression list R is b,3

Logical Definition of Equality

Two axioms (i.e., postulated as theorems):
(1.2) Reflexivity of =: x = x

(1.3) Symmetry of =: (x = y) = (y = x)
Two inference rule schemes:

(1.4) Transitivity of =:
X = Y Y = Z

X = Z

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
— the rule of “replacing equals for equals”

Using Leibniz’ Rule in (15.21)

X = Y
E[z ∶= X] = E[z ∶= Y]Given: (15.20) − a = (− 1) ⋅ a

Prove: (15.21) (− a) ⋅ b = a ⋅ (− b)
Proving (15.21) (− a) ⋅ b = a ⋅ (− b):

(− a) ⋅ b
= ⟨ (15.20) — via Leibniz (1.5) with E chosen as z ⋅ b ⟩

((− 1) ⋅ a) ⋅ b
= ⟨ Associativity (15.1) and Symmetry (15.2) of ⋅ ⟩

a ⋅ ((− 1) ⋅ b)
= ⟨ (15.20) ⟩

a ⋅ (− b)

Using Leibniz together with Substitution in (15.21)

X = Y
E[z ∶= X] = E[z ∶= Y]Given: (15.20) − a = (− 1) ⋅ a

Prove: (15.21) (− a) ⋅ b = a ⋅ (− b)
Proving (15.21) (− a) ⋅ b = a ⋅ (− b):

(− a) ⋅ b
= ⟨ (15.20) — via Leibniz (1.5) with E chosen as z ⋅ b ⟩

((− 1) ⋅ a) ⋅ b
= ⟨ Associativity (15.1) and Symmetry (15.2) of ⋅ ⟩

a ⋅ ((− 1) ⋅ b)
= ⟨ (15.20) with a ∶= b — via Leibniz (1.5) with E chosen as a ⋅ z ⟩

a ⋅ (− b)

Combining Leibniz’ Rule with Substitution

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y] (15.20) − a = (− 1) ⋅ a
(1.1) Substitution:

F
F[v ∶= R]

Using Leibniz:

E[z ∶= X]
= ⟨ X = Y ⟩

E[z ∶= Y]

Using them together:

E[z ∶= X[v ∶= R]]
= ⟨ X = Y ⟩

E[z ∶= Y[v ∶= R]]

Example:

a ⋅ ((− 1) ⋅ b)
= ⟨ (15.20) with a ∶= b — E is a ⋅ z ⟩

a ⋅ (− b)
Justification:

X = Y
X[v ∶= R] = Y[v ∶= R] Substitution (1.1)

E[z ∶= X[v ∶= R]] = E[z ∶= Y[v ∶= R]] Leibniz (1.5)

Automatic Application of Associativity and Symmetry Laws

(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
You have been trained to reason “up to symmetry and associativity”

Making symmetry and associativity steps explicit is
always allowed
sometimes very useful for readability

CALCCHECK allows selective activation of symmetry and associativ-
ity laws

Ô⇒ “Exercise . . . / Assignment . . . : [. . .] without automatic asso-
ciativity and symmetry”

Ô⇒ Having to make symmetry and associativity steps explicit can
be tedious. . .

(15.17) with Explicit Associativity and Symmetry Steps

(15.3) Identity of + 0 + a = a (15.13) Unary minus a + (− a) = 0

Proving (15.17) − (− a) = a:

− (− a)= ⟨ Identity of + (15.3) ⟩
0 + − (− a)= ⟨ Unary minus (15.13) ⟩(a + (− a)) + − (− a)= ⟨ Associativity of + (15.1) ⟩
a + ((− a) + − (− a))= ⟨ Unary minus (15.13) ⟩
a + 0= ⟨ Symmetry of + (15.2) ⟩
0 + a= ⟨ Identity of + (15.3) ⟩
a

Opportunity for Practice: Equational Theory of Integers — Axioms and Theorems
(15.1) Associativity(a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

(15.2) Symmetry
a + b = b + a
a ⋅ b = b ⋅ a

(15.3) Identity of +
0 + a = a
a + 0 = a

(15.5) Distributivity
a ⋅ (b + c) = a ⋅ b + a ⋅ c(b + c) ⋅ a = b ⋅ a + c ⋅ a

(15.4) Identity of ⋅
1 ⋅ a = a
a ⋅ 1 = a

(15.13) Unary minus
a + (−a) = 0

(15.14) Subtraction
a − b = a + (−b)

(15.17) − (− a) = a

(15.18) − 0 = 0

(15.20) − a = −1 ⋅ a
(15.19) − (a + b) = − a + − b

(15.21) (− a) ⋅ b = a ⋅ (− b)

(15.22) a ⋅ (− b) = − (a ⋅ b)
(15.23) (− a) ⋅ (− b) = a ⋅ b
(15.24) a − 0 = a

(15.25) (a − b) + (c − d) = (a + c) − (b + d)
(15.25a) a + (b − c) = (a + b) − c

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-13

Part 2: Correctness of Assignment Commands

Expression Evaluation (LADM 1.1 end)
2 ⋅ 3 + 4

2 ⋅ (3 + 4)
2 ⋅ y + 4

A state is a “list of variables with associated values”. E.g.:

s1 = [(x,5), (y,6)] — (using Haskell notation for informal lists)

Evaluating an expression in a state:
“Replace variables with their values; then evaluate”:

x − y + 2 in state s1Ð→ 5 − 6 + 2 Ð→ (5 − 6) + 2 Ð→ (−1) + 2 Ð→ 1

x ⋅ 2 + y

x ⋅ (2 + y)
x ⋅ (z + y)

States as Program States

LADM 1.1: A state is a “list of variables with associated values”. E.g.:

s1 = [(x,5), (y,6)] — (using Haskell notation for informal lists)

Evaluating an expression in a state:
“Replace variables with their values; then evaluate”

In logic, “states” are usually called “variable assignments”
States can serve as a mathematical model of program states
Execution of imperative programs induces state transformation:

[(x,5), (y,6)]
↝ ⟨ x : = x + y ⟩

[(x,11), (y,6)]
↝ ⟨ y : = x − y ⟩

[(x,11), (y,5)]
State Predicates

Execution of imperative programs induces state transformation:

[(x,5), (y,6)] `x < y` holds

↝ ⟨ x : = x + y ⟩
[(x,11), (y,6)] `x < y` does not hold

↝ ⟨ y : = x − y ⟩
[(x,11), (y,5)] `x < y` does not hold

Boolean expressions containing variables can be used as state predicates:

P “holds in state s” iff P evaluates to true in state s

Precondition-Postcondition Specifications
Program correctness statement in LADM (and much current use):

{ P } C { Q }
This is called a “Hoare triple”.

Meaning: If command C is started in a state in which the precondition P holds,
then it will terminate only in a state in which the postcondition Q holds.

Hoare’s original notation:

P { C } Q

Dynamic logic notation (will be used in CALCCHECK):

P ⇒[C] Q

Correctness of Assignment Commands
Recall: Hoare triple: { P } C { Q }
Dynamic logic notation (will be used in CALCCHECK): P ⇒[C] Q
Meaning: If command C is started in a state in which the precondition P holds, then
it will terminate only in a state in which the postcondition Q holds.

Assignment Axiom: { Q[x ∶= E] } x : = E { Q } Q[x ∶= E] ⇒[x : = E] Q
Example:(x = 5)[x ∶= x + 1] ⇒[x : = x + 1] x = 5(x + 1 = 5) ⇒[x : = x + 1] x = 5

x + 1 = 5≡ ⟨ Substitution ⟩(x = 5)[x ∶= x + 1]⇒[x : = x + 1] ⟨ Assignment ⟩
x = 5

Substitution “∶=”:
One Unicode character;
type “/:=”

Assignment “ : = ”:
Two characters;
type “:=”

Correctness of Assignment Commands — Longer Example
Recall: Hoare triple: { P } C { Q }
Dynamic logic notation (will be used in CALCCHECK):

P ⇒[C] Q
Meaning: If command C is started in a state in which the precondition P holds, then
it will terminate only in a state in which the postcondition Q holds.

Assignment Axiom: { Q[x ∶= E] } x : = E { Q } Q[x ∶= E] ⇒[x : = E] Q
Longer example:

true≡ ⟨ Zero of ∨ ⟩
1 = 0∨ true≡ ⟨ Reflexivity of = ⟩
1 = 0∨1 = 1≡ ⟨ Substitution ⟩(x = 0∨x = 1)[x ∶= 1]⇒[x : = 1] ⟨ Assignment ⟩
x = 0∨x = 1

Sequential Composition of Commands

3ULPLWLYH�LQIHUHQFH�UXOH�Ù6(4Ú��

���Cü�3�ý�&]�ü�4�ýC���Cü�4�ý�&^�ü�5�ýC�

���1ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ�

������������Cü�3�ý�&]�¨�&^�ü�5�ýC�

3ULPLWLYH�LQIHUHQFH�UXOH�'6HTXHQFH(��
����C3��î?�&U�@��4C���C4��î?�&V�@��5C�
���1���������������������������������
������C3��î?�&U�)�&V�@��5C

Activated as transitivity rule
Therefore used implicitly in calculations, e.g., proving P ⇒[C1 ; C2] R by:

P

⇒[C1] ⟨ . . . ⟩
Q

⇒[C2] ⟨ . . . ⟩
R

No need to refer to this rule explicitly.

Example Proof for a
Sequence of Assignments

)DFW��[� ���](��\�� �[�����¨�[�� �\��\��)�[� ����

3URRI��
�������������[� ���

���������A�H�³&DQFHOODWLRQ�RI��´�I�
�������������[����� �������

���������A�H�)DFW�C������ ��C�I�
�������������[����� ���

���������A�H�6XEVWLWXWLRQ�I�
��������������\� ���>\�ß�[����@�

���������](�\�� �[�����)�H�³$VVLJQPHQW�]()´�I�
�������������\� ���

���������A�H�³&DQFHOODWLRQ�RI�Â´�ZLWK�)DFW�C�����C�I�
��������������Â�\� ���Â���

���������A�H�(YDOXDWLRQ�I�
���������������������Â�\� ����
���������A�H�³'LVWULEXWLYLW\�RI�Â�RYHU��´�I�

���������������Â�\�����Â�\� ����
���������A�H�³,GHQWLW\�RI�Â´�I�
�������������\���\� ����

���������A�H�6XEVWLWXWLRQ�I�
��������������[� ����>[�ß�\���\@�

���������](�[�� �\���\�)�H�³$VVLJQPHQW�]()´�I�
�������������[� ���

What Does this C Program Fragment Do?

Let x and y be variables of type int.

x = x + y;

y = x − y;

x = x − y;

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-14

Part 1: Boolean Expression

Plan for Today

LADM Chapter 2: Boolean Expressions
Meaning of Boolean Operators
Equality versus Equivalence
Truth Tables
Satisfiability and Validity
Modeling English Propositions

Starting with LADM Chapter 3: Propositional Calculus
Equivalence, Negation, Inequivalence

Truth Values

Boolean constants/values: false, true

The type of Boolean values: B

— This is the type of propositions, for example: (x = 1) ∶ B
— For any type t, equality = can be used on expressions of that type: = ∶ t→ t→ B

Boolean operators:¬ ∶ B→ B — negation, complement, “logical not”∧ ∶ B→ B→ B — conjunction, “logical and”∨ ∶ B→ B→ B — disjunction, “logical or”⇒ ∶ B→ B→ B — implication, “implies”, “if . . . then . . . ”≡ ∶ B→ B→ B — equivalence, “if and only if”, “iff”/≡ ∶ B→ B→ B — inequivalence, “exclusive or”

Table of Precedences[x ∶= e] (textual substitution) (highest precedence)
. (function application)
unary prefix operators +, −, ¬, #, ∼, P∗∗⋅ / ÷ mod gcd+ − ∪ ∩ × ○ ●↓ ↑
#◁ ▷ ˆ= ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)∨ ∧⇒ /⇒ ⇐ /⇐≡ /≡ (lowest precedence)

All non-associative binary infix operators associate to the left, except ∗∗,◁,⇒, →, which associate to the right.

Binary Boolean Operators: Conjunction

Args. ∧
F F F The moon is green, and 2 + 2 = 7.
F T F The moon is green, and 1 + 1 = 2.
T F F 1 + 1 = 2, and the moon is green.
T T T 1 + 1 = 2, and the sun is a star.

Binary Boolean Operators: Disjunction

Args. ∨
F F F The moon is green, or 2 + 2 = 7.
F T T The moon is green, or 1 + 1 = 2.
T F T 1 + 1 = 2, or the moon is green.
T T T 1 + 1 = 2, or the sun is a star.

This is known as “inclusive or” — see textbook p.34.

Binary Boolean Operators: Implication

Args. ⇒
F F T If the moon is green, then 2 + 2 = 7.
F T T If the moon is green, then 1 + 1 = 2.
T F F If 1 + 1 = 2, then the moon is green.
T T T If 1 + 1 = 2, then the sun is a star.

p⇒ q ≡ ¬p∨ q¬p⇒ q ≡ ¬¬p∨ q¬p⇒ q ≡ p∨ q

If you don’t eat your spinach,
I’ll spank you. ≡ You eat your spinach,

or I’ll spank you.

Binary Boolean Operators: Consequence

Args. ⇐
F F T The moon is green if 2 + 2 = 7.
F T F The moon is green if 1 + 1 = 2.
T F T 1 + 1 = 2 if the moon is green.
T T T 1 + 1 = 2 if the sun is a star.

p⇐ q ≡ p∨¬q

Binary Boolean Operators: Equivalence

Equality of Boolean values is also called equivalence and written ≡
(In some other places: ⇔)

p ≡ q can be read as: p is equivalent to q
or: p exactly when q
or: p if-and-only-if q
or: p iff q

p q p ≡ q
false false true The moon is green iff 2 + 2 = 7.
false true false The moon is green iff 1 + 1 = 2.
true false false 1 + 1 = 2 iff the moon is green.
true true true 1 + 1 = 2 iff the sun is a star.

Binary Boolean Operators: Inequivalence (“exclusive or”)

Args. /≡
F F F Either the moon is green, or 2 + 2 = 7.
F T T Either the moon is green, or 1 + 1 = 2.
T F T Either 1 + 1 = 2, or the moon is green.
T T F Either 1 + 1 = 2, or the sun is a star.

Equality versus Equivalence

The operators = (as Boolean operator) and ≡
have the same meaning (represent the same function),

but are used with different notational conventions:

different precedences (≡ has lowest)

different chaining behaviour:

≡ is associative:

(p ≡ q ≡ r) = ((p ≡ q) ≡ r) = (p ≡ (q ≡ r))
= is conjunctional:

(x = y = z) = ((x = y) ∧ (y = z))

Evaluation of Boolean Expressions Using Truth Tables

p q ¬p q∧¬p p∨(q∧¬p)
F F T F F
F T T T T
T F F F T
T T F F T

Identify variables
Identify subexpressions
Enumerate possible states (of the variables)
Evaluate (sub-)expressions in all states

Evaluation of Boolean Expressions Using Truth Tables

⟨(p,F), (q,T), (r,F)⟩
p q r ¬r q∧¬r p∨(q∧¬r)
F F F T F F
F F T F F F
F T F T T T
F T T F F F
T F F T F T
T F T F F T
T T F T T T
T T T F F T

/≡ ≡∧ ≠ ∨ no
r = ⇐ ⇒ na
nd

F F F F F F F F F F T T T T T T T T
F T F F F F T T T T F F F F T T T T
T F F F T T F F T T F F T T F F T T
T T F T F T F T F T F T F T F T F T

Alternative Presentation of Truth Tables

p q p ⇒ (q ∧ ¬p)
F F T F T
F T T T T
T F F F F
T T F F F

Identify variables
Identify subexpressions — in doubt, add parentheses!
Enumerate possible states (of the variables)
Evaluate (sub-)expressions in all states
writing the result below the operator forming the subexpression

Validity and Satisfiability

A boolean expression is satisfied in state s
iff it evaluates to true in state s.

A boolean expression is valid
iff it is satisfied in every state.

A valid boolean expression is called a tautology.

A boolean expression is satisfiable
iff there is a state in which it is satisfied.

A boolean expression is called a contradiction
iff it evaluates to false in every state.

Two boolean expressions are called logically equivalent
iff they evaluate to the same truth value in every state.

These definitions rely on states / truth tables: Semantic concepts

Modeling English Propositions 1

Henry VIII had one son and Cleopatra had two.

Henry VIII had one son and Cleopatra had two sons.

Declarations:

h ∶≡ Henry VIII had one son

c ∶≡ Cleopatra had two sons

Formalisation:

h∧ c

Modeling English Propositions — Recipe

Transform into shape with clear subpropositions

Introduce Boolean variables to denote subpropositions

Replace these subpropositions by their corresponding Boolean variables

Translate the result into a Boolean expression, using (no perfect translation rules are
possible!) for example:

and, but becomes ∧
or becomes ∨
not becomes ¬
it is not the case that becomes ¬
if p then q becomes p⇒ q

Ladies or Tigers

Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a
number of puzzles to follow:

[...] the king explained to the prisoner that each of the two rooms contained
either a lady or a tiger, but it could be that there were tigers in both rooms, or
ladies in both rooms, or then again, maybe one room contained a lady and the
other room a tiger.

In the first case, the following signs are on the doors of the rooms:

1
In this room there is a lady,
and in the other room there is
a tiger.

2
In one of these rooms there is a
lady, and in one of these rooms
there is a tiger.

We are told that one of the signs is true, and the other one is false.

“Which door would you open (assuming, of course,
that you preferred the lady to the tiger)?”

Ladies or Tigers — The First Case — Starting Formalisation

Raymond Smullyan provides, in The Lady or the Tiger?, the following context for a
number of puzzles to follow:

[...] the king explained to the prisoner that each of the two rooms contained either a lady
or a tiger, but it could be that there were tigers in both rooms, or ladies in both rooms, or
then again, maybe one room contained a lady and the other room a tiger.

R1L ∶= There is a lady in room 1

R1T ∶= There is a tiger in room 1

R2L ∶= There is a lady in room 2

R2T ∶= There is a tiger in room 2

[...] We are told that one of the signs is true, and the other one is false.

S1 ∶= Sign 1 is true

S2 ∶= Sign 2 is true

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-14

Part 2: Propositional Calculus: ≡, ¬, /≡

Propositional Calculus
Calculus: method of reasoning by calculation with symbols
Propositional Calculus: calculating

with Boolean expressions
containing propositional variables

The Textbook’s Propositional Calculus: Equational Logic E:
a set of axioms defining operator properties
four inference rules:

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y] We can apply equalities
inside expressions.

(1.4) Transitivity:
X = Y Y = Z

X = Z
We can chain equalities.

(1.1) Substitution:
E

E[x ∶= R] We can can use substitution
instances of theorems.

Equanimity:
X = Y X

Y — This is . . .

Theorems — Remember!
A theorem is

either an axiom
or the conclusion of an inference rule where the premises are theorems
or a Boolean expression proved (using the inference rules) equal to an axiom or a
previously proved theorem. (“— This is . . . ”)

Such proofs will be presented in the calculational style.

Note:
The theorem definition does not use evaluation/validity

But: All theorems in E are valid

All valid Boolean expressions are theorems in E
Important:

We will prove theorems without using validity!
This trains an essential mathematical skill!

Equivalence Axioms

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p
Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p
Example theorem — shown differently in the textbook:

Proving p ≡ p ≡ q ≡ q:

p ≡ p ≡ q ≡ q

= ⟨ (3.2) Symmetry of ≡, with p, q ∶= p, q ≡ q ⟩
p ≡ q ≡ q ≡ p — This is (3.2) Symmetry of ≡

Equivalence Axioms — Example Proof with Parentheses

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p
Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p
Example theorem — shown differently in the textbook:

Proving p ≡ p ≡ q ≡ q:

p ≡ (p ≡ (q ≡ q))
≡ ⟨ (3.2) Symmetry of ≡, with p, q ∶= p, (q ≡ q) ⟩

p ≡ ((q ≡ q) ≡ p) — This is (3.2) Symmetry of ≡

Equivalence Axioms — Introducing true

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p
Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p

(3.3) Axiom, Identity of ≡ : true ≡ q ≡ q
Can be used as:(true ≡ q) = q

true = (q ≡ q)

Equivalence Axioms, and Theorem (3.4)

(3.1) Axiom, Associativity of ≡ : ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ : p ≡ q ≡ q ≡ p

(3.3) Axiom, Identity of ≡ : true ≡ q ≡ q
Can be used as: true = (q ≡ q)
The least interesting theorem:

Proving (3.4) true:

true

= ⟨ Identity of ≡ (3.3), with q ∶= true ⟩
true ≡ true

= ⟨ Identity of ≡ (3.3), with q ∶= q ⟩
true ≡ q ≡ q — This is Identity of ≡ (3.3)

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p

(3.3) Axiom, Identity of ≡: true ≡ q ≡ q

Theorems and Metatheorems:

(3.4) true

(3.5) Reflexivity of ≡: p ≡ p

(3.6) Proof Method: To prove that P ≡ Q is a theorem,
transform P to Q or Q to P using Leibniz.

(3.7) Metatheorem: Any two theorems are equivalent.

Negation Axioms

(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(LADM: “Distributivity of ¬ over ≡”)

Can be used as:¬(p ≡ q) = (¬p ≡ q)
(¬(p ≡ q) ≡ ¬p) = q

(¬(p ≡ q) ≡ q) = ¬p

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator ○ that is defined in terms of another,
say ●, expand the definition of ○ to arrive at a formula that contains ●; exploit
properties of ● to manipulate the formula, and then (possibly) reintroduce ○ us-
ing its definition.

Textbook, p. 48

“Unfold-Fold strategy”

Inequivalence Theorems: Symmetry

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
Proving (3.16) Symmetry of /≡:

p /≡ q

= ⟨ (3.10) Definition of /≡ Unfold⟩
¬(p ≡ q)

= ⟨ (3.2) Symmetry of ≡ ⟩
¬(q ≡ p)

= ⟨ (3.10) Definition of /≡ Fold⟩
q /≡ p

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-16

Part 1: Propositional Calculus: ¬, /≡, ∨

Plan for Today

Continuing Propositional Calculus (LADM Chapter 3)
Negation, Inequivalence
Disjunction
Conjunction

Equivalence Axioms and Theorems

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡: p ≡ q ≡ q ≡ p — Can be used as:(p ≡ q) = (q ≡ p)

p = (q ≡ q ≡ p)(p ≡ q ≡ q) = p

(3.3) Axiom, Identity of ≡: true ≡ q ≡ q

Theorems and Metatheorems:

(3.4) true

(3.5) Reflexivity of ≡: p ≡ p

(3.6) Proof Method: To prove that P ≡ Q is a theorem,
transform P to Q or Q to P using Leibniz.

(3.7) Metatheorem: Any two theorems are equivalent.

Proof Method Equanimity: To prove P, prove P ≡ Q
where Q is a theorem. (Document via “– This is . . . ”.)

Special case: To prove P, prove P ≡ true.

Negation Axioms

(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(LADM: “Distributivity of ¬ over ≡”)

Can be used as:¬(p ≡ q) = (¬p ≡ q)
(¬(p ≡ q) ≡ ¬p) = q

(¬(p ≡ q) ≡ q) = ¬p

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)

Negation Axioms and Theorems
(3.8) Axiom, Definition of false: false ≡ ¬true

(3.9) Axiom, Commutativity of ¬ with ≡: ¬(p ≡ q) ≡ ¬p ≡ q

(3.10) Axiom, Definition of /≡: (p /≡ q) ≡ ¬(p ≡ q)
Theorems:

(3.11) ¬p ≡ q ≡ p ≡ ¬q

— can be used as “¬ connection”: (¬p ≡ q) ≡ (p ≡ ¬q)
— can be used as “Cancellation of ¬”: (¬p ≡ ¬q) ≡ (p ≡ q)

(3.12) Double negation: ¬¬p ≡ p

(3.13) Negation of false: ¬false ≡ true

(3.14) (p /≡ q) ≡ ¬p ≡ q

(3.15) Definition of ¬ via ≡: ¬p ≡ p ≡ false

Inequivalence Theorems

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
(3.17) Associativity of /≡: ((p /≡ q) /≡ r) ≡ (p /≡ (q /≡ r))
(3.18) Mutual associativity: ((p /≡ q) ≡ r) ≡ (p /≡ (q ≡ r))
(3.19) Mutual interchangeability: p /≡ q ≡ r ≡ p ≡ q /≡ r

Note: Mutual associativity is not (yet. . .) automated!

(But omission of parentheses is implemented, similar to
k −m + n
k +m − n
k −m − n

— None of these has m − n as subexpression!
— But the second one is equal to k + (m − n) . . .)

(3.23) Heuristic of Definition Elimination

To prove a theorem concerning an operator ○ that is defined in terms of another,
say ●, expand the definition of ○ to arrive at a formula that contains ●; exploit
properties of ● to manipulate the formula, and then (possibly) reintroduce ○ us-
ing its definition.

Textbook, p. 48

“Unfold-Fold strategy”

Inequivalence Theorems: Symmetry

(3.16) Symmetry of /≡: (p /≡ q) ≡ (q /≡ p)
Proving (3.16) Symmetry of /≡:

p /≡ q

= ⟨ (3.10) Definition of /≡ Unfold⟩
¬(p ≡ q)

= ⟨ (3.2) Symmetry of ≡ ⟩
¬(q ≡ p)

= ⟨ (3.10) Definition of /≡ Fold⟩
q /≡ p

Disjunction Axioms

(3.24) Axiom, Symmetry of ∨: p∨ q ≡ q∨p

(3.25) Axiom, Associativity of ∨: (p∨ q)∨ r ≡ p∨(q∨ r)
(3.26) Axiom, Idempotency of ∨: p∨p ≡ p

(3.27) Axiom, Distributivity of ∨ over ≡:

p∨(q ≡ r) ≡ p∨ q ≡ p∨ r

(3.28) Axiom, Excluded Middle: p∨¬p

The Law of the Excluded Middle (LEM)
Aristotle:

. . . there cannot be an intermediate between contradictories, but of one subject we
must either affirm or deny any one predicate. . .

Bertrand Russell in “The Problems of Philosophy”:

Three “Laws of Thought”:
1. Law of identity: “Whatever is, is.”
2. Law of noncontradiction: “Nothing can both be and not be.”
3. Law of excluded middle: “Everything must either be or not be.”

These three laws are samples of self-evident logical principles. . .

(3.28) Axiom, Excluded Middle: p∨¬p

— this will often be used as: p∨¬p ≡ true

Disjunction Axioms and Theorems

(3.24) Axiom, Symmetry of ∨: p∨ q ≡ q∨p

(3.25) Axiom, Associativity of ∨: (p∨ q)∨ r ≡ p∨(q∨ r)
(3.26) Axiom, Idempotency of ∨: p∨p ≡ p

(3.27) Axiom, Distr. of ∨ over ≡: p∨(q ≡ r) ≡ p∨ q ≡ p∨ r

(3.28) Axiom, Excluded Middle: p∨¬p

Theorems:
(3.29) Zero of ∨: p∨ true ≡ true

(3.30) Identity of ∨: p∨ false ≡ p

(3.31) Distrib. of ∨ over ∨: p∨(q∨ r) ≡ (p∨ q)∨(p∨ r)
(3.32) (3.32) p∨ q ≡ p∨¬q ≡ p

Heuristics of Directing Calculations

(3.33) Heuristic: To prove P ≡ Q, transform the expression with the most structure
(either P or Q) into the other.

Proving (3.29) p∨ true ≡ true:
p∨ true

≡ ⟨ Identity of ≡ (3.3) ⟩
p∨(q ≡ q)

≡ ⟨ Distr. of ∨ over ≡ (3.27) ⟩
p∨ q ≡ p∨ q

≡ ⟨ Identity of ≡ (3.3) ⟩
true

Proving (3.29) p∨ true ≡ true:
true

≡ ⟨ Identity of ≡ (3.3) ⟩
p∨p ≡ p∨p

≡ ⟨ Distr. of ∨ over ≡ (3.27) ⟩
p∨(p ≡ p)

≡ ⟨ Identity of ≡ (3.3) ⟩
p∨ true

?

(3.34) Principle: Structure proofs to minimize the number of rabbits
pulled out of a hat — make each step seem obvious, based on
the structure of the expression and the goal of the manipula-
tion.

(3.21) Heuristic

Identify applicable theorems by matching the structure of expressions or subex-
pressions. The operators that appear in a boolean expression and the shape of its
subexpressions can focus the choice of theorems to be used in manipulating it.

Obviously, the more theorems you know by heart and the more practice you have in
pattern matching, the easier it will be to develop proofs.

Textbook, p. 47

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-16

Part 2: Propositional Calculus: ∧

The Conjunction Axiom: The “Golden Rule”

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

Can be used as:
p∧ q = (p ≡ q ≡ p∨ q) — Definition of ∧(p ≡ q) = (p∧ q ≡ p∨ q)
. . .

Theorems:

(3.36) Symmetry of ∧: p∧ q ≡ q∧p

(3.37) Associativity of ∧: (p∧ q)∧ r ≡ p∧(q∧ r)
(3.38) Idempotency of ∧: p∧p ≡ p

(3.39) Identity of ∧: p∧ true ≡ p

(3.40) Zero of ∧: p∧ false ≡ false

(3.41) Distributivity of ∧ over ∧: p∧(q∧ r) ≡ (p∧ q)∧(p∧ r)
(3.42) Contradiction: p∧¬p ≡ false

Conjunction Theorems: Symmetry

(3.36) Symmetry of ∧: (p∧ q) ≡ (q∧p)
Proving (3.36) Symmetry of ∧:

p∧ q

≡ ⟨ (3.35) Definition of ∧ (Golden rule) — Unfold⟩
p ≡ q ≡ p∨ q

≡ ⟨ (3.2) Symmetry of ≡, (3.24) Symmetry of ∨ ⟩
q ≡ p ≡ q∨p

≡ ⟨ (3.35) Definition of ∧ (Golden rule) — Fold⟩
q∧p

Theorems Relating ∧ and ∨
(3.43) Absorption: p∧(p∨ q) ≡ p

p∨(p∧ q) ≡ p

(3.44) Absorption: p∧(¬p∨ q) ≡ p∧ q
p∨(¬p∧ q) ≡ p∨ q

(3.45) Distributivity of ∨ over ∧: p∨(q∧ r) ≡ (p∨ q)∧(p∨ r)
(3.46) Distributivity of ∧ over ∨: p∧(q∨ r) ≡ (p∧ q)∨(p∧ r)
(3.47) De Morgan: ¬(p∧ q) ≡ ¬p∨¬q¬(p∨ q) ≡ ¬p∧¬q

De Morgan’s Laws

Prove: (3.47) De Morgan: ¬(p∧ q) ≡ ¬p∨¬q¬(p∨ q) ≡ ¬p∧¬q

Use, in particular:

(3.32t) t∨u ≡ t∨¬u ≡ t

(3.35t) Axiom, Golden rule: t∧u ≡ t ≡ u ≡ t∨u

Theorems Relating ∧ and ≡
(3.48) (3.48) p∧ q ≡ p∧¬q ≡ ¬p

(3.49) Semi-distributivity of ∧ over ≡ p∧(q ≡ r) ≡ p∧ q ≡ p∧ r ≡ p

(3.50) Strong Modus Ponens p∧(q ≡ p) ≡ p∧ q

(3.51) Replacement: (p ≡ q)∧(r ≡ p) ≡ (p ≡ q)∧(r ≡ q)

Alternative Definitions of ≡ and /≡
(3.52) Definition of ≡: p ≡ q ≡ (p∧ q)∨(¬p∧¬q)
(3.53) Definition of /≡: p /≡ q ≡ (¬p∧ q)∨(p∧¬q)

Ladies or Tigers: First Case, Formalisation, Long S2
In the first case, the following signs are on the doors of the rooms:

1
In this room there is a lady, and in the other
room there is a tiger.

2
In one of these rooms there is a lady, and in
one of these rooms there is a tiger.

We are told that one of the signs is true, and the other one is false.

R1L ∶= There is a lady in room 1
R2T ∶= There is a tiger in room 2

S1 ≡ R1L∧R2T
S2 ≡ (R1L∨¬R2T)∧(¬R1L∨R2T)

S1 /≡ S2

Ladies or Tigers: First Case, Long S2, Solution
R1L ∶= There is a lady in room 1
R2T ∶= There is a tiger in room 2

S1 ≡ R1L∧R2T
S2 ≡ (R1L∨¬R2T)∧(¬R1L∨R2T)

S1 /≡ S2= ⟨ Def. S1, S2 ⟩(R1L∧R2T) /≡ ((R1L∨¬R2T)∧(¬R1L∨R2T))= ⟨ (3.14) p /≡ q ≡ ¬p ≡ q, (3.35) Golden Rule ⟩¬(R1L∧R2T) ≡ R1L∨¬R2T ≡ ¬R1L∨R2T ≡ R1L∨¬R2T∨¬R1L∨R2T= ⟨ (3.28) Excluded Middle, (3.29) Zero of ∨ ⟩¬(R1L∧R2T) ≡ R1L∨¬R2T ≡ ¬R1L∨R2T ≡ true= ⟨ (3.47) De Morgan, (3.3) Identity of ≡ ⟩¬R1L∨¬R2T ≡ R1L∨¬R2T ≡ ¬R1L∨R2T= ⟨ (3.32) p∨ q ≡ p∨¬q ≡ p ⟩¬R2T ≡ ¬R1L∨R2T= ⟨ (3.32) p∨ q ≡ p∨¬q ≡ p ⟩¬R2T ≡ ¬R1L∨¬R2T ≡ ¬R1L= ⟨ (3.35) Golden Rule ⟩¬R1L∧¬R2T= ⟨ R1T = ¬R1L and R2L = ¬R2T ⟩
R1T∧R2L

Raymond Smullyan posed many puzzles about an island that has two kinds of
inhabitants:

knights, who always tell the truth, and
knaves, who always lie.

You encounter two people A and B.
What are A and B if

1 A says “We are both knaves.”?

2 A says “At least one of us is a knave.”?

3 A says “If I am a knight, then so is B.”?

4 A says “We are of the same type.”?

5 A says “B is a knight” and

B says “The two of us are opposite types.”?

Explanation: AH ≡ A is a knight

Axiom schema “Knighthood”: A says “X” ≡ AH ≡ X

You encounter two people A and B. What are A and B if
4 A says “We are of the same type.”?

A says “AH ≡ BH”

≡ ⟨ “Knighthood” ⟩
AH ≡ (AH ≡ BH)

≡ ⟨ (3.3) Associativity of ≡ ⟩
AH ≡ AH ≡ BH≡ ⟨ (3.2) Symmetry of ≡: p ≡ q ≡ q ≡ p ⟩
BH

You encounter two people A and B. What are A and B if
4 A says “We are of the same type.”?

Explanation: AV ≡ A is a knave

Axiom schema “Knavehood”: A says X ≡ AV ≡ ¬X

A says (AV ≡ BV) ≡ AV ≡ ¬(AV ≡ BV) — This is “Knavehood”

≡ ⟨ (3.9) ¬(p ≡ q) ≡ ¬p ≡ q ⟩
A says (AV ≡ BV) ≡ AV ≡ AV ≡ ¬BV

≡ ⟨ (3.2) Symmetry of ≡: p ≡ q ≡ q ≡ p ⟩
A says (AV ≡ BV) ≡ ¬BV

Avoid Repetition in Proofs!

(3.22) Principle: Structure proofs to avoid repeating the same subexpression on many
lines.

Textbook, p. 48

You encounter two people A and B. What are A and B if
4 A says “We are of the same type.”?

Explanation: AV ≡ A is a knave

Axiom schema “Knavehood”: A says X ≡ AV ≡ ¬X

A says (AV ≡ BV)
≡ ⟨ “Knavehood” ⟩

AV ≡ ¬(AV ≡ BV)
≡ ⟨ (3.9) ¬(p ≡ q) ≡ ¬p ≡ q ⟩

AV ≡ AV ≡ ¬BV≡ ⟨ (3.2) Symmetry of ≡: p ≡ q ≡ q ≡ p ⟩
¬BV

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-20

Part 1: Natural Numbers, Natural Induction

Plan for Today

Natural Numbers and Induction

Continuing Propositional Calculus (LADM Chapter 3)
(Conjunction)
Implication

Read Parse Error Messages!

�������m��6XEVWLWXWLRQ���
����������\� ����>\� �]���\@�
�������î?�\�� �]���\�@�����'$VVLJQPHQW(��

Ô⇒

Submitting parse errors is unprofessional!

Carefully Check Indentation: Each Level ≥ 2 Spaces!

�������m��6XEVWLWXWLRQ���
����������\� �]���\�>\�`�]���\@�
���������î?�\�� �]���\�@�����'$VVLJQPHQW(���
����������\� ���

Ô⇒

Hint item where the parser expects an expression —

calculation operators need to be aligned
two spaces to the left of calculation expressions!

What is a natural number?

How is the set N of all natural numbers defined?

(Without referring to the integers)

(From first principles. . .)

Natural Numbers — N

The set of all natural numbers is written N.

In Computing, zero “0” is a natural number.

If n is a natural number, then its successor “suc n” is a natural number, too.

We write
“1” for “suc 0”
“2” for “suc 1”
“3” for “suc 2”
“4” for “suc 3”
. . .

Natural Numbers — Rigorous Definition

The set of all natural numbers is written N.

Zero “0” is a natural number.

If n is a natural number, then its successor “suc n” is a natural number, too.

Nothing else is a natural number.

Two natural numbers are equal if and only if they are constructed in the same way.
Example: suc suc suc 0 ≠ suc suc suc suc 0

This is an inductive definition.
(Like the definition of expressions. . .)

Every inductive definition gives rise to an induction principle
— a way to prove statements about the inductively defined elements

Natural Numbers — Induction Principle

The set of all natural numbers is written N.

Zero “0” is a natural number.

If n is a natural number, then its successor “suc n” is a natural number, too.

Induction principle for the natural numbers:

if P(0) If P holds for 0

and if P(m) implies P(suc m),
and whenever P holds for m, it also holds for suc m ,

then for all m ∶ N we have P(m).
then P holds for all natural numbers.

Natural Numbers — Induction Proofs
Induction principle for the natural numbers:

if P[m ∶= 0] If P holds for 0

and if we can obtain P[m ∶= suc m] from P,
and whenever P holds for m, it also holds for suc m ,

then P holds. then P holds for all natural numbers.

An induction proof using this looks as follows:

Theorem: P
Proof:

By induction on m ∶ N:
Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

P[m ∶= 0]
⌜P⌝....

P[m ∶= suc m]
P

Factorial — Inductive Definition
The set of all natural numbers is written N.
zero “0” is a natural number.
If n is a natural number, then its successor “suc n” is a natural number, too.
Nothing else is a natural number.
Two natural numbers are only equal if constructed in the same way.

N is an inductively-defined set.

The factorial operator “ !” on N can be defined as follows:
The factorial of a natural number is a natural number again:
! ∶ N→ N

0 ! = 1
For every n ∶ N, we have: (suc n) ! = (suc n) ⋅ (n !)

! is an inductively-defined function.

Proving properties about inductively-defined functions on N
frequently requires use of the induction principle for N.

Even Natural Numbers — Inductive Definition
The predicates even and odd are declared as Boolean-valued functions:
'HFODUDWLRQ��HYHQ��RGG�����®�x

Function application of function f to argument a is written as juxtaposition: f a
The definitions provided in Homework 5.1 are inductive definitions:
$[LRP�'=HUR�LV�HYHQ(���������������HYHQ���

$[LRP�'(YHQ�VXFFHVVRU��GLUHFW�(����HYHQ��VXF�Q��m�n��HYHQ�Q��

$[LRP�'2GG�LV�QRW�HYHQ(������������RGG�Q�m�n��HYHQ�Q�

even is an inductively-defined function.

Why does this define even for all possible arguments?
Because:

even takes one argument of type N
This argument is always either 0, or suc k for some smaller k ∶ N
Each clause covers one case completely.
The second clause “builds up” the domain of definition of even
from smaller to larger n.

Proving “Odd is not even”
7KHRUHP�'2GG�LV�QRW�HYHQ(���RGG�Q�m�n��HYHQ�Q��
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
��������RGG���
������m��"���
��������n��HYHQ����
����,QGXFWLRQ�VWHS��
��������RGG��VXF�Q��
������m��"���
��������n�HYHQ��VXF�Q��

$[LRP�'=HUR�LV�HYHQ(���������������HYHQ���

$[LRP�'(YHQ�VXFFHVVRU��GLUHFW�(����HYHQ��VXF�Q��m�n��HYHQ�Q��

$[LRP�'2GG�LV�QRW�HYHQ(������������RGG�Q�m�n��HYHQ�Q�

An induction proof looks as follows:
Theorem: P
Proof:

By induction on m ∶ N:
Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

Natural Number Addition — Inductive Definition

The set of all natural numbers is written N.
zero “0” is a natural number.
If n is a natural number, then its successor “suc n” is a natural number, too.
Nothing else is a natural number.
Two natural numbers are only equal if constructed in the same way.

N is an inductively-defined set.

Addition on N can be defined as follows:
The (infix) addition operator “+”, when applied to two natural numbers, produces
again a natural number+ ∶ N→ N→ N
For every q ∶ N, we have:

0 + q = q
For every n ∶ N we have: (suc n) + q = suc (n + q)

+ is an inductively-defined function.

Proving “Right-Identity of +”
7KHRUHP�'5LJKW�LGHQWLW\�RI��(��P����� �P�
3URRI��
��%\�LQGXFWLRQ�RQ�CP����C��
����%DVH�FDVH��
��������������
������ ��''HILQLWLRQ�RI���IRU��(���
����������
����,QGXFWLRQ�VWHS��
��������VXF�P�����
������ ��''HILQLWLRQ�RI���IRU�CVXFC(���
��������VXF��P������
������ ��,QGXFWLRQ�K\SRWKHVLV���
��������VXF�P

An induction proof looks as follows:
Theorem: P
Proof:

By induction on m ∶ N:
Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

Proving “Right-Identity of +” — Indentation!

7KHRUHP�'5LJKW�LGHQWLW\�RI��(��P����� �P�
3URRI��
VV%\�LQGXFWLRQ�RQ�CP����C��
VVVV%DVH�FDVH��
VVVVVVVV������
VVVVVV ��''HILQLWLRQ�RI���IRU��(���
VVVVVVVV��
VVVV,QGXFWLRQ�VWHS��
VVVVVVVVVXF�P�����
VVVVVV ��''HILQLWLRQ�RI���IRU�CVXFC(���
VVVVVVVVVXF��P������
VVVVVV ��,QGXFWLRQ�K\SRWKHVLV���
VVVVVVVVVXF�P

Press “Ctrl-Shift-v” to toggle “visible spaces”.

Proving “Right-Identity of +” — With Details

7KHRUHP�'5LJKW�LGHQWLW\�RI��(��P����� �P�
3URRI��
��%\�LQGXFWLRQ�RQ�CP����C��
����%DVH�FDVH�C������ ��C��
��������������
������ ��''HILQLWLRQ�RI���IRU��(���
����������
����,QGXFWLRQ�VWHS�CVXF�P����� �VXF�PC��
��������VXF�P�����
������ ��''HILQLWLRQ�RI���IRU�CVXFC(���
��������VXF��P������
������ ��,QGXFWLRQ�K\SRWKHVLV�CP����� �PC���
��������VXF�P

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-20

Part 2: Propositional Calculus: (∧),⇒

The Conjunction Axiom: The “Golden Rule”

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

Can be used as:
p∧ q = (p ≡ q ≡ p∨ q) — Definition of ∧(p ≡ q) = (p∧ q ≡ p∨ q)
. . .

Theorems:

(3.36) Symmetry of ∧: p∧ q ≡ q∧p

(3.37) Associativity of ∧: (p∧ q)∧ r ≡ p∧(q∧ r)
(3.38) Idempotency of ∧: p∧p ≡ p

(3.39) Identity of ∧: p∧ true ≡ p

(3.40) Zero of ∧: p∧ false ≡ false

(3.41) Distributivity of ∧ over ∧: p∧(q∧ r) ≡ (p∧ q)∧(p∧ r)
(3.42) Contradiction: p∧¬p ≡ false

Conjunction Theorems: Symmetry

(3.36) Symmetry of ∧: (p∧ q) ≡ (q∧p)
Proving (3.36) Symmetry of ∧:

p∧ q

≡ ⟨ (3.35) Definition of ∧ (Golden rule) — Unfold⟩
p ≡ q ≡ p∨ q

≡ ⟨ (3.2) Symmetry of ≡, (3.24) Symmetry of ∨ ⟩
q ≡ p ≡ q∨p

≡ ⟨ (3.35) Definition of ∧ (Golden rule) — Fold⟩
q∧p

Theorems Relating ∧ and ∨
(3.43) Absorption: p∧(p∨ q) ≡ p

p∨(p∧ q) ≡ p

(3.44) Absorption: p∧(¬p∨ q) ≡ p∧ q
p∨(¬p∧ q) ≡ p∨ q

(3.45) Distributivity of ∨ over ∧: p∨(q∧ r) ≡ (p∨ q)∧(p∨ r)
(3.46) Distributivity of ∧ over ∨: p∧(q∨ r) ≡ (p∧ q)∨(p∧ r)
(3.47) De Morgan: ¬(p∧ q) ≡ ¬p∨¬q¬(p∨ q) ≡ ¬p∧¬q

Boolean Lattice Duality
A Boolean-lattice expression is

either a variable,
or true or false
or an application of ¬ to a Boolean-lattice expression
or an application of ∧ or ∨ to two Boolean-lattice expressions.

The dual of a Boolean-lattice expressions is obtained by
replacing true with false and vice versa,
replacing ∧ with ∨ and vice versa.

The dual of a Boolean-lattice equation (equivalence) is the equation
between the duals of the LHS and the RHS.

Metatheorem “Boolean lattice duality”:
Every Boolean-lattice equation is valid iff its dual is valid.

Metatheorem “Boolean lattice duality”:
Every Boolean-lattice equation is a theorem iff its dual is a theorem.

Theorems Relating ∧ and ≡
(3.48) (3.48) p∧ q ≡ p∧¬q ≡ ¬p

(3.49) Semi-distributivity of ∧ over ≡ p∧(q ≡ r) ≡ p∧ q ≡ p∧ r ≡ p

(3.50) Strong modus ponens for ≡ p∧(q ≡ p) ≡ p∧ q

(3.51) Replacement: (p ≡ q)∧(r ≡ p) ≡ (p ≡ q)∧(r ≡ q)

Alternative Definitions of ≡ and /≡
(3.52) Alternative definition of ≡: p ≡ q ≡ (p∧ q)∨(¬p∧¬q)
(3.53) Alternative definition of /≡: p /≡ q ≡ (¬p∧ q)∨(p∧¬q)

Implication

(3.57) Axiom, Definition of Implication,
Definition of⇒ from ∨: p⇒ q ≡ p∨ q ≡ q

(3.58) Axiom, Consequence: p⇐ q ≡ q⇒p

Rewriting Implication:

(3.59) (Alternative) Definition of Implication,
Material implication: p⇒ q ≡ ¬p∨ q

(3.60) (Dual) Definition of Implication,
Definition of⇒ from ∧: p⇒ q ≡ p∧ q ≡ p

(3.61) Contrapositive: p⇒ q ≡ ¬q⇒¬p

All Propositional Axioms of the Equational Logic E

1 (3.1) Axiom, Associativity of ≡
2 (3.2) Axiom, Symmetry of ≡
3 (3.3) Axiom, Identity of ≡
4 (3.8) Axiom, Definition of false
5 (3.9) Axiom, Commutativity of ¬ with ≡
6 (3.10) Axiom, Definition of /≡
7 (3.24) Axiom, Symmetry of ∨
8 (3.25) Axiom, Associativity of ∨
9 (3.26) Axiom, Idempotency of ∨

10 (3.27) Axiom, Distributivity of ∨ over ≡
11 (3.28) Axiom, Excluded Middle
12 (3.35) Axiom, Golden rule
13 (3.57) Axiom, Definition of Implication
14 (3.58) Axiom, Definition of Consequence

The “Golden Rule” and Implication

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

Can be used as:
p∧ q = (p ≡ q ≡ p∨ q)(p ≡ q) = (p∧ q ≡ p∨ q)
. . .(p∧ q ≡ p) ≡ (q ≡ p∨ q)

(3.57) Axiom, Definition of Implication: p⇒ q ≡ p∨ q ≡ q

(3.60) (Dual) Definition of Implication: p⇒ q ≡ p∧ q ≡ p

Weakening/Strengthening Theorems

“p⇒ q” can be read “p is stronger-than-or-equivalent-to q”

“p⇒ q” can be read “p is at least as strong as q”

(3.76a) p ⇒p∨ q

(3.76b) p∧ q ⇒p

(3.76c) p∧ q ⇒p∨ q

(3.76d) p∨(q∧ r) ⇒p∨ q

(3.76e) p∧ q ⇒p∧(q∨ r)

Implication Theorems 2

(3.62) p⇒(q ≡ r) ≡ p∧ q ≡ p∧ r

(3.63) Distributivity of⇒ over ≡:
p⇒(q ≡ r) ≡ p⇒ q ≡ p⇒ r

(3.64) Self-distributivity of⇒:
p⇒(q⇒ r) ≡ (p⇒ q)⇒(p⇒ r)

(3.65) Shunting: p∧ q ⇒ r ≡ p⇒(q⇒ r)

Implication Theorems 3

(3.66) p∧(p⇒ q) ≡ p∧ q ⟨. . . p∧ q ≡ p⟩
(3.67) p∧(q⇒p) ≡ p ⟨. . . p∧ q ≡ p⟩
(3.68) p∨(p⇒ q) ≡ true ⟨. . . ¬p∨ q⟩
(3.69) p∨(q⇒p) ≡ q⇒p ⟨. . . p∨ q ≡ q⟩
(3.70) p∨ q ⇒ p∧ q ≡ p ≡ q ⟨. . . Golden Rule . . .⟩

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-21

Part 1: CALCCHECK-checked Mystery Steps

Plan for Today

Continuing Propositional Calculus (LADM Chapter 3)
CALCCHECK-checked mystery steps
Implication, continued
Implication as an Order, Order Relations, Order Concepts

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

What Equivalences/Equalities are in the Golden Rule?

p∧ q ≡ p ≡ q is not a consequence of (3.35) Golden rule!

p∧ q ≡ p∨ q is not a consequence of (3.35) Golden rule!

Equality versus Equivalence

The operators = (as Boolean operator) and ≡
have the same meaning (represent the same function),

but are used with different notational conventions:

different precedences (≡ has lowest)

different chaining behaviour:

≡ is associative: (p ≡ q ≡ r) = ((p ≡ q) ≡ r) = (p ≡ (q ≡ r))
= is conjunctional: (p = q = r) = ((p = q) ∧ (q = r))

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

What Equivalences/Equalities are in the Golden Rule?

p∧ q ≡ p ≡ q is not a consequence of (3.35) Golden rule!

p∧ q ≡ p∨ q is not a consequence of (3.35) Golden rule!

Equality versus Equivalence — in other words

Writing p = q = r is the same as writing (p = q) ∧ (q = r)
Writing p ≡ q ≡ r is the same as writing p ≡ (q ≡ r)

and the same as writing (p ≡ q) ≡ r

Writing p ≡ q ≡ r can also be seen to be
the same as writing p = (q = r)

and the same as writing (p = q) = r
— but only for Boolean expression p, q, r

How?

p∧p

≡ ⟨ (3.35) Golden rule p∧ q ≡ p ≡ q ≡ p∨ q ⟩
p∨p

≡ ⟨ (3.26) Idempotency of ∨ ⟩
p

?
How can the Golden rule have been applied here?

(3.35) Axiom, Golden rule: p∧ q ≡ p ≡ q ≡ p∨ q

Can be used as:
p∧ q = (p ≡ q ≡ p∨ q) — Definition of ∧(p∧ q ≡ p ≡ q) = (p∨ q)(p∧ q ≡ p) = (q ≡ p∨ q)(p ≡ q) = (p∧ q ≡ p∨ q)
. . .

Three Steps!

p∧p

≡ ⟨ (3.35) Golden rule (p∧ q) = (p ≡ q ≡ p∨ q) ⟩
p ≡ p ≡ p∨p

≡ ⟨ Adding parentheses ⟩
p ≡ (p ≡ p∨p)

≡ ⟨ (3.35) Golden rule (p∧ q ≡ p) = (q ≡ p∨ q) ⟩
p ≡ (p ≡ p∧p)

≡ ⟨ Removing parentheses ⟩
p ≡ p ≡ p∧p

≡ ⟨ (3.35) Golden rule (p∧ q ≡ p ≡ q) = (p∨ q) ⟩
p∨p

≡ ⟨ (3.26) Idempotency of ∨ ⟩
p

!
CALCCHECK-checked Mystery Steps

&DOFXODWLRQ��
����WUXH�m�S�m�n�S�
��m���������Cn�S�m�S�m�IDOVHC���
����IDOVH

?
&DOFXODWLRQ��
����S�m�n�T�m�S�=�T�
��m�����������
����n�S�=�n�T

?
If you don’t understand it, don’t submit it!
(Understand the precise way in which the rule has been applied!)

If you encounter such “mystery steps”, report!
(E.g. in MSTeams channels)

When reporting such cases, or asking questions about CALCCHECK,
in particular when writing e-mails,

include (plain UTF8) text, not images!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-21

Part 2: Implication

Implication Theorems 4

(3.71) Reflexivity of⇒: p⇒p ≡ true

(3.72) Right-zero of⇒: p⇒ true ≡ true

(3.73) Left-identity of⇒: true⇒p ≡ p

(3.74) Definition of ¬ from⇒: p⇒ false ≡ ¬p

(3.75) ex falso quodlibet: false⇒p ≡ true

Some Property Names

Let ⊙ and ⊕ be binary operators and ◻ be a constant.
(⊙ and ⊕ and ◻ are metavariables for operators respectively constants.)

“⊙ is symmetric”: x⊙ y = y⊙ x
“⊙ is associative”: (x⊙ y)⊙ z = x⊙ (y⊙ z)
“⊙ is mutually associative with ⊕ (from the left)”:(x⊙ y)⊕ z = x⊙ (y⊕ z)
For example:+ is mutually associative with −: (x + y) − z = x + (y − z)− is not mutually associative with +: (5 − 2) + 3 ≠ 5 − (2 + 3)

Some Property Names (ctd.)

Let ⊙ and ⊕ be binary operators and ◻ be a constant.
(⊙ and ⊕ and ◻ are metavariables for operators respectively constants.)

“⊙ is idempotent”: x⊙ x = x
“◻ is a left-unit (or left-identity) of ⊙”: ◻⊙ x = x
“◻ is a right-unit (or right-identity) of ⊙”: x⊙◻ = x
“◻ is a unit/identity of ⊙”: ◻⊙ x = x = x⊙◻
“◻ is a left-zero of ⊙”: ◻⊙ x = ◻
“◻ is a right-zero of ⊙”: x⊙◻ = ◻
“◻ is a zero of ⊙”: ◻⊙ x = ◻ = x⊙◻
“⊙ distributes over ⊕ from the left”:

x⊙ (y⊕ z) = (x⊙ y)⊕ (x⊙ z)
“⊙ distributes over ⊕ from the right”:(y⊕ z)⊙ x = (y⊙ x)⊕ (z⊙ x)
“⊙ distributes over ⊕”: ⊙ distributes over ⊕ from the left and⊙ distributes over ⊕ from the right

Implication Theorems 5

(3.77) Modus ponens: p∧(p⇒ q)⇒ q

(3.78) Case analysis: (p⇒ r)∧(q⇒ r) ≡ (p∨ q⇒ r)
(3.79) Case analysis: (p⇒ r)∧(¬p⇒ r) ≡ r

Do not be discouraged by the number of theorems. You do not have
to memorize them all. It will suffice to become familiar with them
and how they are organized, so you can find the ones you need when
developing a proof. The more practice you have using the theorems,
the more they will become your formal friends, who serve you in
your mathematical work.

LADM p. 42

Some Important Implication Theorems
Args. ⇒
F F T If the moon is green, then 2 + 2 = 7.
F T T If the moon is green, then 1 + 1 = 2.
T F F If 1 + 1 = 2, then the moon is green.
T T T If 1 + 1 = 2, then the sun is a star.

(3.71) Reflexivity of⇒: p⇒p ≡ true

(3.72) Right-zero of⇒: p⇒ true ≡ true

(3.73) Left-identity of⇒: true⇒p ≡ p

(3.74) Definition of ¬ from⇒: p⇒ false ≡ ¬p

(3.15) Definition of ¬ from ≡: ¬p ≡ p ≡ false

(3.75) ex falso quodlibet: false⇒p ≡ true

(3.65) Shunting: p∧ q ⇒ r ≡ p⇒(q⇒ r)
(3.77) Modus ponens: p ∧ (p⇒ q) ⇒ q

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-21

Part 3: Implication as Order, Order Relations

Implication as Order on Propositions
“p⇒ q” can be read “p is stronger-than-or-equivalent-to q”

— similar to “x ≤ y” as “x is less-or-equal y”
— similar to “x ≥ y” as “x is greater-or-equal y”

“p⇒ q” can be read “p is at least as strong as q”
— similar to “x ≤ y” as “x is at most y”
— similar to “x ≥ y” as “x is at least y”

(3.57) Axiom, Definition of⇒ from disjunction: p⇒ q ≡ p∨ q ≡ q
— defines the order from maximum: p⇒ q ≡ ((p∨ q) = q)

— analogous to: x ≤ y ≡ ((x ↑ y) = y)
— analogous to: k ∣ n ≡ ((lcm(k,n) = n)

(3.60) (Dual) Definition of⇒ from conjunction: p⇒ q ≡ p∧ q ≡ p
— defines the order from minimum: p⇒ q ≡ ((p∧ q) = p)

— analogous to: x ≤ y ≡ ((x ↓ y) = x)
— analogous to: k ∣ n ≡ ((gcd(k,n) = k)

One View of Relations

Let T1 and T2 be two types.

A function of type T1 → T2 → B can be considered as one view of a relation from T1 to T2

We will see a different view of relations later . . .
. . . and the way to switch between these views.
With such a way of switching, the two views “are the same” in colloquial mathematics
Therefore we will occasionally just use the term “relation” also for functions of types
T1 → T2 → B

A function of type T → T → B may then be called a relation on T.

We have seen: = ∶ T → T → B= ∶ Z → Z → B= ∶ N → N → B≤ ∶ N → N → B≡ ∶ B → B → B⇒ ∶ B → B → B

Order Relations
Let T be a type.

A relation ≤ on T is called:
reflexive iff x ≤ x is valid
transitive iff x ≤ y ∧ y ≤ z ⇒ x ≤ z is valid
antisymmetric iff x ≤ y ∧ y ≤ x ⇒ x = y is valid
an order (or ordering) iff it is reflexive, transitive, and antisymmetric

Orders you are familiar with: = ∶ T → T → B≤ ∶ Z → Z → B≥ ∶ Z → Z → B≤ ∶ N → N → B≥ ∶ N → N → B∣ ∶ N → N → B≡ ∶ B → B → B⇒ ∶ B → B → B⊆ ∶ set T → set T → B

Implication Theorems 6

(3.71) Reflexivity of⇒: p⇒p

(3.80b) Reflexivity wrt. Equivalence: (p ≡ q)⇒(p⇒ q)
(3.80) Mutual implication: (p⇒ q)∧(q⇒p) ≡ p ≡ q

(3.81) Antisymmetry: (p⇒ q)∧(q⇒p) ⇒ (p ≡ q)
(3.82a) Transitivity: (p⇒ q)∧(q⇒ r) ⇒ (p⇒ r)
(3.82b) Transitivity: (p ≡ q)∧(q⇒ r) ⇒ (p⇒ r)
(3.82c) Transitivity: (p⇒ q)∧(q ≡ r) ⇒ (p⇒ r)

Some Order-Related Concepts

An order ≤ on T may have (or may not have):
a least element denoted b: A constant b such that b ≤ x is valid≤ ∶ Z → Z → B has no least element≤ ∶ N → N → B has least element 0≥ ∶ N → N → B has no least element∣ ∶ N → N → B has least element 1

a greatest element denoted t: A constant t such that x ≤ t is valid≤ ∶ N → N → B has no greatest element≥ ∶ N → N → B has greatest element 0∣ ∶ N → N → B has greatest element 0

have binary maxima: An operation ⊔ such that x ⊔ y is
the least element that is at least x and also at least y

have binary minima: An operation ⊓ such that x ⊓ y is
the greatest element that is at most x and also at most y

Monotonicity, Isotonicity, Antitonicity

Let ≤ be an order on T

Let f ∶ T → T be a function on T

Then f is called
monotonic iff x ≤ y ⇒ f x ≤ f y is a theorem
isotonic iff x ≤ y ≡ f x ≤ f y is a theorem
antitonic iff x ≤ y ⇒ f y ≤ f x is a theorem

Examples:
suc ∶ N→ N is isotonic
pred ∶ N→ N is monotonic, but not isotonic+ ∶ N→ N→ N is isotonic in the first argument:
x ≤ y ≡ x + z ≤ y + z is a theorem+ ∶ N→ N→ N is isotonic in the second argument:
x ≤ y ≡ z + x ≤ z + y is a theorem− ∶ N→ N→ N is monotonic in the first argument:
x ≤ y ⇒ x − z ≤ y − z is a theorem− ∶ N→ N→ N is antitonic in the second argument:
x ≤ y ⇒ z − y ≤ z − x is a theorem

Monotonicity and Antitonicity Theorems for⇒
(4.2) Left-Monotonicity of ∨: (p⇒ q) ⇒ (p∨ r⇒ q∨ r)
(4.3) Left-Monotonicity of ∧: (p⇒ q) ⇒ p∧ r ⇒ q∧ r

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-23

Part 1: Leibniz as Axiom, Replacement Theorems

Plan for Today

Continuing Propositional Calculus (LADM Chapter 3)
Leibniz as axiom, and “Replacement” theorems

Sum and Product Quantification
(approaching LADM chapter 8)
Quantification expansion

(Next week: LADM chapter 4, and then chapters 8 and 9.)

Announcement for the CS Society: Hiring Year Reps

The CS Society is hiring year reps and applications are out now! Here is the link to the
google form: https://forms.gle/Z6fPPCcbCvb6G5ECA

The form is also on our discord: https://discord.com/invite/gwgrkgb

As a CS Society Year Representative, you will be responsible for:
Actively communicating with CS students to determine ways to improve student life.
Attending weekly meetings, and relaying important information to your peers.
Attending (some super fun) events, or planning some of your own!
Being the voice for your year!

Applications are due on Friday, 24th September 2021.

Leibniz’s Rule as an Axiom
Recall the inference rule (scheme):

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
Axiom scheme (E can be any expression, and z any variable):

(3.83) Axiom, Leibniz: (e = f)⇒(E[z ∶= e] = E[z ∶= f])
What is the difference?

Given a theorem X = Y and an expression E,
the inference rule (1.5) produces a new theorem E[z ∶= X] = E[z ∶= Y]
(3.83) is a theorem((e = f)⇒(E[z ∶= e] = E[z ∶= f])) = true

Can be used deep inside nested expressions
— making use of local assumptions

Leibniz’s Rule as an Axiom — Examples

Recall the inference rule (scheme):

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
Axiom scheme (E can be any expression, and z any variable):

(3.83) Axiom, Leibniz: (e = f)⇒(E[z ∶= e] = E[z ∶= f])
Examples

n = k + 1⇒n ⋅ (k − 1) = (k + 1) ⋅ (k − 1)
n = k + 1⇒ (z ⋅ (k − 1))[z ∶= n] = (z ⋅ (k − 1))[z ∶= k + 1]

(n = k + 1⇒n ⋅ (k − 1) = k2 − 1) = true⇒ (n > 5⇒(n = k + 1⇒n ⋅ (k − 1) = k2 − 1))= (n > 5⇒ true)
Leibniz’s Rule Axiom, and Further Replacement Rules

Axiom scheme (E can be any expression; z, e, f ∶ t can be of any type t):

(3.83) Axiom, Leibniz: (e = f) ⇒ (E[z ∶= e] = E[z ∶= f])
— Axiom (3.83) is rarely useful directly!

— Allmost all applications are via derived “Replacement” theorems

Replacement rules: (P can be any expression of type B)

(3.84a) “Replacement”: (e = f)∧P[z ∶= e] ≡ (e = f)∧P[z ∶= f]
(3.84b) “Replacement”: (e = f)⇒P[z ∶= e] ≡ (e = f)⇒P[z ∶= f]
(3.84c) “Replacement”: q∧(e = f)⇒P[z ∶= e] ≡ q∧(e = f)⇒P[z ∶= f]

Using a Replacement (LADM: “Substitution”) Rule

Replacement rule: (P can be any expression of type B)

(3.84a) “Replacement”: (e = f)∧P[z ∶= e] ≡ (e = f)∧P[z ∶= f]
Textbook-style application:

k = n + 1 ∧ k ⋅ (n − 1) = n2 − 1= ⟨ (3.84a) “Replacement” ⟩
k = n + 1 ∧ (n + 1) ⋅ (n − 1) = n2 − 1

Not so fast! — CALCCHECK cannot do second-order matching (yet):

k = n + 1 ∧ k ⋅ (n − 1) = n ⋅ n − 1= ⟨ Substitution ⟩
k = n + 1 ∧ (z ⋅ (n − 1) = n ⋅ n − 1)[z ∶= k]= ⟨ (3.84a) “Replacement” ⟩
k = n + 1 ∧ (z ⋅ (n − 1) = n ⋅ n − 1)[z ∶= n + 1]= ⟨ Substitution ⟩
k = n + 1 ∧ (n + 1) ⋅ (n − 1) = n ⋅ n − 1

Some Replacements

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (x > f 5))
≡ ⟨ ? ⟩

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (y < g 7))
((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > (f 5))

≡ ⟨ ? ⟩
((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > g y))
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (x > f 5))

≡ ⟨ ? ⟩
((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (y < g 7))

Replacements 1 & 2

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (x > f 5))
≡ ⟨ (3.51) “Replacement” (p ≡ q)∧(r ≡ p) ≡ (p ≡ q)∧(r ≡ q) ⟩

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ≡ (y < g 7))

((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > (f 5))
≡ ⟨ Substitution ⟩

((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > z)[z ∶= (f 5)]
≡ ⟨ (3.84a) “Replacement”(e = f)∧P[z ∶= e] ≡ (e = f)∧P[z ∶= f],

Substitution
⟩

((f 5) = (g y)) ∧ ((f x ≤ g y) ≡ x > g y))
Replacements 1 & 2 in CALCCHECK

&DOFXODWLRQ�
������[�!�I����e��\���J�����4���I�[�h�J�\��e��[�!�I����
��e{�!5HSODFHPHQW"�|
������[�!�I����e��\���J�����4���I�[�h�J�\��e��\���J����

&DOFXODWLRQ�
������I���� ��J�\���4���I�[�h�J�\��e��[�!�I����
��e{�6XEVWLWXWLRQ�|
������I���� ��J�\���4���I�[�h�J�\��e��[�!�]��>]�X�I��@
��e{�!5HSODFHPHQW"��6XEVWLWXWLRQ�|
������I���� ��J�\���4���I�[�h�J�\��e��[�!�J�\��

&DOFXODWLRQ�
������[�!�I����e��\���J�����4���I�[�h�J�\��e��[�!�I����
��e{�6XEVWLWXWLRQ�|
������[�!�I����e��\���J�����4���I�[�h�J�\��e�]�>]�X��[�!�I���@
��e{�!5HSODFHPHQW"��6XEVWLWXWLRQ�|
������[�!�I����e��\���J�����4���I�[�h�J�\��e��\���J����

Replacement 3

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (x > f 5))
≡ ⟨ Substitution ⟩

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ z)[z ∶= (x > f 5)]
≡ ⟨ (3.84a) “Replacement”(e = f)∧P[z ∶= e] ≡ (e = f)∧P[z ∶= f],

“Definition of ≡” (p ≡ q) = (p = q), Substitution
⟩

((x > f 5) ≡ (y < g 7)) ∧ ((f x ≤ g y) ⇒ p(x − 1)∨ (y < g 7))
In CALCCHECK, ≡ does not match =!

Explicit conversions using “Definition of ≡” are necessary.

Leibniz’s Rule Axiom, and Further Replacement Rules

Axiom scheme (E can be any expression; z can be of any type):

(3.83) Axiom, Leibniz: (e = f)⇒(E[z ∶= e] = E[z ∶= f])
Replacement rules: (P can be any expression of type B)

(3.84a) “Replacement”: (e = f)∧P[z ∶= e] ≡ (e = f)∧P[z ∶= f]
(3.84b) “Replacement”: (e = f)⇒P[z ∶= e] ≡ (e = f)⇒P[z ∶= f]
(3.84c) “Replacement”: q∧(e = f)⇒P[z ∶= e] ≡ q∧(e = f)⇒P[z ∶= f]
(Below, p and z are of type B)

(3.85a) Replace by true: p ⇒ P[z ∶= p] ≡ p ⇒ P[z ∶= true]

Replacing Variables by Boolean Constants
In each of the following, P can be any expression of type B:

(3.85a) Replace by true: p⇒P[z ∶= p] ≡ p⇒P[z ∶= true]
(3.85b) q∧p⇒P[z ∶= p] ≡ q∧p⇒P[z ∶= true]
(3.86a) Replace by false: P[z ∶= p]⇒p ≡ P[z ∶= false]⇒p
(3.86b) P[z ∶= p]⇒p∨ q ≡ P[z ∶= false]⇒p∨ q

(3.87) Replace by true: p∧P[z ∶= p] ≡ p∧P[z ∶= true]
(3.88) Replace by false: p∨P[z ∶= p] ≡ p∨P[z ∶= false]
(3.89) Shannon: P[z ∶= p] ≡ (p∧P[z ∶= true])∨(¬p∧P[z ∶= false])
Note: Using Shannon on all propositional variables in sequence

is equivalent to producing a truth table.

“Prove the following theorems (without using Shannon or the
proof method of case analysis by Shannon), . . . ”

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-23

Part 2: ∑ and∏ Quantification,

Quantification expansion

Counting Integral Points
How many integral points are in the triangle

(0,n)∣ /(0,0) — (n,0) ?

∑n
x=0 (n − x + 1)= ⟨ Summing 1 values ⟩∑n
x=0 (∑n−x

y=0 1)= ⟨ Switch to LADM notation ⟩(∑x 0 ≤ x ≤ n ● (∑y 0 ≤ y ≤ n − x ● 1))= ⟨ Nesting ⟩(∑x,y 0 ≤ x ≤ n ∧ 0 ≤ y ≤ n − x ● 1)= ⟨ Isotonicity of + ⟩(∑x,y 0 ≤ x ≤ n ∧ x ≤ x + y ≤ n ● 1)= ⟨ Def. of⇒ (3.60) with Transitivity of ≤ ⟩(∑x,y 0 ≤ x ≤ x + y ≤ n ● 1)= ⟨ Switching to N, and 0 is the least natural number ⟩(∑x,y ∶ N x + y ≤ n ● 1)

Counting Integral Points

How many integral points are in the triangle
(0,n)∣ /(0,0) — (n,0) ?

(∑x,y ∶ N x + y ≤ n ● 1)

How many integral points are in the circle of radius n around (0,0)?

(∑x,y ∶ Z x ⋅ x + y ⋅ y ≤ n ⋅ n ● 1)

Sum Quantification Examples

(∑ k ∶ N k < 5 ● k)
“The sum of all natural numbers less than five”

(∑ k ∶ N k < 5 ● k ⋅ k)
“For all natural numbers k that are less than 5, adding up the value of k ⋅ k”

“The sum of all squares of natural numbers less than five”

(∑ x,y ∶ N x ⋅ y = 120 ● 2 ⋅ (x + y))
“For all natural numbers x and y with product 120, adding up
the value of 2 ⋅ (x + y)”

“The sum of the perimeters of all integral rectangles with area 120”

Product Quantification Examples

“The factorial of n is the product of all positive integers up to n”

factorial ∶ N→ N

factorial n = (∏ k ∶ N 0 < k ≤ n ● k)

“The product of all odd natural numbers below 50.”

(∏ n ∶ N ¬(2 ∣ n) ∧ n < 50 ● n)
(∏ k ∶ N 2 ⋅ k + 1 < 50 ● 2 ⋅ k + 1)
(∏ k ∶ N k < 25 ● 2 ⋅ k + 1)

Sum and Product Quantification

(∑ x R ● E)
“For all x satisfying R, summing up the value of E”

“The sum of all E for x with R”

(∑ x ∶ T ● E)
“For all x of type T, summing up the value of E”

“The sum of all E for x of type T”

(∏ x R ● E)
“The product of all E for x with R”

(∏ x ∶ T ● E)
“The product of all E for x of type T”

General Shape of Sum and Product Quantifications

(∑ x ∶ t1; y, z ∶ t2 R ● E)
(∏ x ∶ t1; y, z ∶ t2 R ● E)

Any number of variables x, y, z can be quantified over

The quantified variables may have type annotations (which act as type
declarations)

Expression R ∶ B is the range of the quantification

Expression E is the body of the quantification

E will have a number type (N, Z, Q, R, C)

Both R and E may refer to the quantified variables x, y, z

The type of the whole quantification expression is the type of E.

LADM/CALCCHECK Quantification Notation

Conventional sum quantification notation:
n∑

i=1
e = e[i ∶= 1] + . . . + e[i ∶= n]

The textbook uses a different, but systematic linear notation:

(∑ i 1 ≤ i ≤ n ∶ e) or (+ i 1 ≤ i ≤ n ∶ e)
We use a variant with a “spot” “●” instead of the colon “:” and only use “big” operators:

(∑ i 1 ≤ i ≤ n ● e)
Reasons for using this kind of linear quantification notation:

Clearly delimited introduction of quantified variables (dummies)

Arbitrary Boolean expressions can define the range(∑ i 1 ≤ i ≤ 7 ∧ even i ● i) = 2 + 4 + 6

The notation extends easily to multiple quantified variables:(∑ i, j ∶ Z 1 ≤ i < j ≤ 4 ● i/j) = 1/2 + 1/3 + 1/4 + 2/3 + 2/4 + 3/4
Expanding Sum and Product Quantification

Sum quantification (∑) is “addition (+) of arbitrarily many terms”:

(∑ i 5 ≤ i < 9 ● i ⋅ (i + 1))
= ⟨ Quantification expansion ⟩

(i ⋅ (i + 1))[i ∶= 5] + (i ⋅ (i + 1))[i ∶= 6] + (i ⋅ (i + 1))[i ∶= 7] + (i ⋅ (i + 1))[i ∶= 8]
= ⟨ Substitution ⟩

5 ⋅ (5 + 1) + 6 ⋅ (6 + 1) + 7 ⋅ (7 + 1) + 8 ⋅ (8 + 1)
Product quantification (∏) is “multiplication (⋅) of arbitrarily many factors”:

(∏ i 0 ≤ i < 3 ● 5 ⋅ i + 1)
= ⟨ Quantification expansion ⟩

(5 ⋅ i + 1)[i ∶= 0] ⋅ (5 ⋅ i + 1)[i ∶= 1] ⋅ (5 ⋅ i + 1)[i ∶= 2]
= ⟨ Substitution ⟩

(5 ⋅ 0 + 1) ⋅ (5 ⋅ 1 + 1) ⋅ (5 ⋅ 2 + 1)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-23

Part 3: Natural Induction — Recap.

Proving “Even double”
7KHRUHP�'(YHQ�GRXEOH(��HYHQ��Q���Q��
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
��������HYHQ���������
������m��"���
��������"�
����,QGXFWLRQ�VWHS��
��������HYHQ��VXF�Q���VXF�Q��
������m��"���
��������"

$[LRP�'=HUR�LV�HYHQ(���������������HYHQ���

$[LRP�'(YHQ�VXFFHVVRU��GLUHFW�(����HYHQ��VXF�Q��m�n��HYHQ�Q��

$[LRP�'2GG�LV�QRW�HYHQ(������������RGG�Q�m�n��HYHQ�Q�
$[LRP�''HILQLWLRQ�RI���IRU��(�����������������Q� �Q�
$[LRP�''HILQLWLRQ�RI���IRU�CVXFC(����VXF�P����Q� �VXF��P���Q�

An induction proof looks as follows:
Theorem: P
Proof:

By induction on m ∶ N:
Base case:

Proof for P[m ∶= 0]
Induction step:

Proof for P[m ∶= suc m]
using Induction hypothesis P

Proving “Even double”

7KHRUHP�'(YHQ�GRXEOH(��HYHQ��Q���Q��
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
��������HYHQ���������
������m��''HILQLWLRQ�RI���IRU��(���
��������HYHQ���
������m��'=HUR�LV�HYHQ(���
��������WUXH�
����,QGXFWLRQ�VWHS��
��������HYHQ��VXF�Q���VXF�Q��
������m��''HILQLWLRQ�RI���IRU�CVXFC(���
��������HYHQ��VXF��Q���VXF�Q���
������m��'(YHQ�VXFFHVVRU(���
��������RGG��Q���VXF�Q��
������m��'$GGLQJ�WKH�VXFFHVVRU(���
��������RGG��VXF��Q���Q���
������m��'2GG�VXFFHVVRU(���
��������HYHQ��Q���Q��
������m��,QGXFWLRQ�K\SRWKHVLV���
��������WUXH

$[LRP�'=HUR�LV�HYHQ(���������������HYHQ���

$[LRP�'(YHQ�VXFFHVVRU��GLUHFW�(����HYHQ��VXF�Q��m�n��HYHQ�Q��

$[LRP�'2GG�LV�QRW�HYHQ(������������RGG�Q�m�n��HYHQ�Q�
$[LRP�''HILQLWLRQ�RI���IRU��(�����������������Q� �Q�
$[LRP�''HILQLWLRQ�RI���IRU�CVXFC(����VXF�P����Q� �VXF��P���Q�

Proving “Even double” — Using “— This is . . . ”

7KHRUHP�'(YHQ�GRXEOH(��HYHQ��Q���Q��
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
��������HYHQ���������
������m��''HILQLWLRQ�RI���IRU��(���
��������HYHQ����������������7KLV�LV�'=HUR�LV�HYHQ(�
����,QGXFWLRQ�VWHS��
��������HYHQ��VXF�Q���VXF�Q��
������m��''HILQLWLRQ�RI���IRU�CVXFC(���
��������HYHQ��VXF��Q���VXF�Q���
������m��'(YHQ�VXFFHVVRU(���
��������RGG��Q���VXF�Q��
������m��'$GGLQJ�WKH�VXFFHVVRU(���
��������RGG��VXF��Q���Q���
������m��'2GG�VXFFHVVRU(���
��������HYHQ��Q���Q���������7KLV�LV�LQGXFWLRQ�K\SRWKHVLV

Proving “Even double” — With Explicit Details

7KHRUHP�'(YHQ�GRXEOH(��HYHQ��Q���Q��
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH�CHYHQ��������C��
��������HYHQ���������
������m��''HILQLWLRQ�RI���IRU��(���
��������HYHQ����������������7KLV�LV�'=HUR�LV�HYHQ(�
����,QGXFWLRQ�VWHS�CHYHQ��VXF�Q���VXF�Q�C��
��������HYHQ��VXF�Q���VXF�Q��
������m��''HILQLWLRQ�RI���IRU�CVXFC(���
��������HYHQ��VXF��Q���VXF�Q���
������m��'(YHQ�VXFFHVVRU(���
��������RGG��Q���VXF�Q��
������m��'$GGLQJ�WKH�VXFFHVVRU(���
��������RGG��VXF��Q���Q���
������m��'2GG�VXFFHVVRU(���
��������HYHQ��Q���Q�
��������7KLV�LV�LQGXFWLRQ�K\SRWKHVLV�CHYHQ��Q���Q�C

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-27

Part 1: Transitivity Calculations, Monotonicity

Plan for Today

LADM Chapter 4: “Relaxing the Proof Style” — Introducing Structured Proofs
extending the calculational proof format to transitive operators
Monotonicity
Resolving antecedents of used implications using with

?

7 ⋅ 8
= ⟨ Evaluation ⟩

(10 − 3) ⋅ (12 − 4)
≤ ⟨ Fact: 3 ≤ 4 ⟩

(10 − 4) ⋅ (12 − 4)
≤ ⟨ Fact: 4 ≤ 5 ⟩

(10 − 4) ⋅ (12 − 5)
= ⟨ Evaluation ⟩

6 ⋅ 7
= ⟨ Evaluation ⟩

42

This proves: 7 ⋅ 8 ≤ 42

Calculational Proof Format

E0= ⟨ Explanation of why E0 = E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2= ⟨ Explanation of why E2 = E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 = E1 ∧ E1 = E2 ∧ E2 = E3

Because = is transitive, this justifies:

E0 = E3

Calculational Proof Format

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1≤ ⟨ Explanation of why E1 ≤ E2 — with comment ⟩
E2≤ ⟨ Explanation of why E2 ≤ E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 ≤ E2 ∧ E2 ≤ E3

Because ≤ is transitive, this justifies:

E0 ≤ E3

Calculational Proof Format

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2≤ ⟨ Explanation of why E2 ≤ E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 = E2 ∧ E2 ≤ E3

Because ≤ is reflexive and transitive, this justifies:

E0 ≤ E3

Calculational Proof Format

E0⇒ ⟨ Explanation of why E0⇒E1 ⟩
E1≡ ⟨ Explanation of why E1 ≡ E2 — with comment ⟩
E2⇒ ⟨ Explanation of why E2⇒E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

(E0⇒E1) ∧ (E1 ≡ E2) ∧ (E2⇒E3)
Because ⇒ is reflexive and transitive, this justifies:

E0⇒E3

Calculational Proof Format

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2< ⟨ Explanation of why E2 < E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 = E2 ∧ E2 < E3

Because < is transitive, and because ≤ is the reflexive closure of <, this justifies:

E0 < E3

Calculational Proof Format

E0≤ ⟨ Explanation of why E0 ≤ E1 ⟩
E1= ⟨ Explanation of why E1 = E2 — with comment ⟩
E2≥ ⟨ Explanation of why E2 ≥ E3 ⟩
E3

Because the calculational presentation is conjunctional, this reads as:

E0 ≤ E1 ∧ E1 = E2 ∧ E2 ≥ E3

This justifies nothing about the relation between E0 and E3 !

Leibniz is Special to Equality

How about the following?

x − 3

≤ ⟨ Fact: 3 ≤ 4 ⟩
x − 4

Remember:

(1.5) Leibniz:
X = Y

E[z ∶= X] = E[z ∶= Y]
Leibniz is available only for equality

Example Application of “Monotonicity of −”

− ∶ N→ N→ N is monotone in the first argument:
x ≤ y ⇒ x − z ≤ y − z is a theorem

Theorem “Monotonicity of − ”∶ a ≤ b ⇒ a − c ≤ b − c

&DOFXODWLRQ��
���������Q�
��p��'0RQRWRQLFLW\�RI��(�ZLWK�)DFW�C���p���C���
���������Q

This step can be justified without “with” as follows:

&DOFXODWLRQ��
���������Q��p�������Q�
��m��'/HIW�LGHQWLW\�RI�î(���
����WUXH��î��������Q��p�������Q��
��m��)DFW�C���p���C���
��������p������î��������Q��p�������Q��
����7KLV�LV�'0RQRWRQLFLW\�RI��(

Modus Pones via with2

Modus ponens theorem: (3.77) Modus ponens: p∧(p⇒ q)⇒ q

Modus ponens inference rule:

(“Implication elimination” rule)
P⇒Q P

Q ⇒-Elim
f ∶ A→ B x ∶ A(f x) ∶ B

Fct. app.

Applying implication theorems:

Q1⊑ ⟨ “Theorem 1” `P⇒(Q1 ⊑ Q2)` with “Theorem 2” `P` ⟩
Q2

A proof for P⇒Q can be used as a recipe
for turning a proof for P into a proof for Q.

Theorem “Monotonicity of − ”∶ a ≤ b ⇒ a − c ≤ b − c

&DOFXODWLRQ��
���������Q�
��p��'0RQRWRQLFLW\�RI��(�ZLWK�)DFW�C���p���C���
���������Q

Example Application of “Antitonicity of −”

− ∶ N→ N→ N is antitone in the second argument:
x ≤ y ⇒ z − y ≤ z − x is a theorem

Theorem “Antitonicity of − ”∶ b ≤ c ⇒ a − c ≤ a − b

&DOFXODWLRQ��
����P�����
��p��'$QWLWRQLFLW\�RI��(�ZLWK�)DFW�C��p��C���
����P����

Multiplication on N is Monotonic. . .
Calculation∶

42= ⟨ Evaluation ⟩
6 ⋅ 7= ⟨ Evaluation ⟩(10 − 4) ⋅ (12 − 5)≤ ⟨ “Monotonicity of ⋅ ” with

“Antitonicity of − ” with Fact `3 ≤ 4`⟩(10 − 3) ⋅ (12 − 5)≤ ⟨ “Monotonicity of ⋅ ” with
“Antitonicity of − ” with Fact `4 ≤ 5`⟩(10 − 3) ⋅ (12 − 4)= ⟨ Evaluation ⟩

7 ⋅ 8

with2 Works Also With ≡ — Example Using “Isotonicity of +”

+ ∶ N→ N→ N is isotone in the first argument:
x ≤ y ≡ x + z ≤ y + z is a theorem

&DOFXODWLRQ��
��������Q�
��p��',VRWRQLFLW\�RI��(�ZLWK�)DFW�C��p��C���
��������Q

This step can be justified without “with” as follows:

&DOFXODWLRQ��
��������Q�p�����Q�
��m��',GHQWLW\�RI�m(���
����WUXH��m������Q�p�����Q�
��m��)DFW�C��p��C���
������p����m������Q�p�����Q�
��������7KLV�LV�',VRWRQLFLW\�RI��(

Lectures, Homework, Exercises, Assignments

Lectures iuntroduce new material

Just like in in-person lectures, you can raise your hand and ask questions

Homework takes up the new material from the lecture.

Intended for “hands-on reading” Intended for reading and practicing for retaining

Exercises are discussed (selectively) in tutorials

— after possible homework covering that new material

Assignments follow on after exercises have been discussed in tutorials.

(While there are assignments, most homework will be short.)

You always need everything that came before!

How would you do Homework without CalcCheck?

Seen on the “Course Help” channel: Calculation∶
∑ k, n ∶ N 3 ≤ k < 5 ∧ 4 ≤ n < 6 ● k ⋅ n

= ⟨ Quantification expansion ⟩
(k ⋅ n) [k, n ∶= 3, 4]

+ (k ⋅ n) [k, n ∶= 4, 5]
= ⟨ Substitution, Evaluation ⟩

32

Without CALCCHECK, probably:
This looks good enough; submit.
Notice lost marks when the
homework is returned.

With CALCCHECK:
Notice that there is a problem right away.
Alternatives:

1 Work towards figuring out the problem.
(This may involve asking on “Course Help”...)

2 Decide that this is good enough for submitting —
pen-and-paper compatibility mode

3 Anything in-between. . .
It is OK to submit homework/assignments that are not 100% correct!

What Was The Problem Anyways?

From H6.3: ∑ k, n ∶ N 3 ≤ k < 5 ∧ 4 ≤ n < 6 ● k ⋅ n

For each state for all quantified variables, where that state satisfies the range predicate,
add up the corresponding substitution instance of the body.

The states for k,n satisfying the range predicate 3 ≤ k < 5 ∧ 4 ≤ n < 6 are:[⟨ k, 3 ⟩, ⟨ n, 4 ⟩][⟨ k, 3 ⟩, ⟨ n, 5 ⟩][⟨ k, 4 ⟩, ⟨ n, 4 ⟩][⟨ k, 4 ⟩, ⟨ n, 5 ⟩]
. . . corresponding substitution instances of the body:

Calculation∶
∑ k, n ∶ N 3 ≤ k < 5 ∧ 4 ≤ n < 6 ● k ⋅ n

= ⟨ Quantification expansion ⟩
(k ⋅ n) [k, n ∶= 3, 4]

+ (k ⋅ n) [k, n ∶= 3, 5]
+ (k ⋅ n) [k, n ∶= 4, 4]
+ (k ⋅ n) [k, n ∶= 4, 5]

= ⟨ Substitution, Evaluation ⟩
63

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-27

Part 2: Subproofs, Assuming, . . .

CALCCHECK: Subproof Hint Items
You have used the following kinds of hint items:

Theorem name references “Identity of ≡”
Theorem number references (3.32)
Certain key words and key phrases: Substitution, Evaluation, Induction hypothesis
Fact `Expression`
Composed hint items: “Identity of +” with `Substitution`

“Monotonicity of +” with HintItem

A new kind of hint item:
Subproof for `Expression`:

Proof

For example, Fact `3 = 2 + 1` is really syntactic sugar for a subproof:
&DOFXODWLRQ��
������y�[�
�� ��6XESURRI�IRU�C�� ������C��
������%\�HYDOXDWLRQ�
������
������������y�[

Abbreviated Proofs for Implications

This:

p

≡ ⟨ Why p ≡ q ⟩
q

⇒ ⟨ Why q⇒ r ⟩
r

proves: p⇒ r

Because:

(p ≡ q)∧(q⇒ r)
⇒ ⟨ (3.82b) Transitivity of⇒ ⟩

p⇒ r

(4.1) — Creating the Proof “Bottom-up”
Proving (4.1) p⇒(q⇒p):

p⇒ ⟨ (3.76a) Weakening p⇒p∨ q ⟩¬q∨p≡ ⟨ (3.59) Definition of implication ⟩
q⇒p

We have: Axiom (3.58) Consequence: p⇐ q ≡ q⇒p

This means that the⇐ relation is the converse of the⇒ relation.

Theorem: The converse of a transitive relation is transitive again, and
the converse of an order is an order again.

CALCCHECK supports activation of such converse properties, enabling
reversed presentations following mathematical habits of transitivity
calculations such as the above.

— “ . . . propositional logic following LADM chapters 3 and 4 . . . ”

(4.1)
Proving (4.1) p⇒(q⇒p):

q⇒p≡ ⟨ (3.59) Definition of implication ⟩¬ q∨p⇐ ⟨ (3.76a) Strenghtening — used as p∨ q⇐p ⟩
p

In CALCCHECK, if the converse property is not activated, then⇐ is a separate operator
requiring explicit conversion:

7KHRUHP��������S�æ��T�æ�S��
3URRI��
����T�æ�S�
��e{�!'HILQLWLRQ�RI�æ"��������|�
����n�T�5�S�
��ä{�!6WUHQJWKHQLQJ"������D���!'HILQLWLRQ�RI�ä"�|�
����S

(4.1) Implicitly Using “Consequence”
Axiom (3.58) Consequence: p⇐ q ≡ q⇒p

Proving (4.1) p⇒(q⇒p):

q⇒p

≡ ⟨ (3.59) Definition of implication ⟩
¬ q∨p

⇐ ⟨ (3.76a) Strenghtening p⇒p∨ q ⟩
p

Recall: Weakening/Strengthening Theorems

(3.76a) p ⇒p∨ q

(3.76b) p∧ q ⇒p

(3.76c) p∧ q ⇒p∨ q

(3.76d) p∨(q∧ r) ⇒p∨ q

(3.76e) p∧ q ⇒p∧(q∨ r)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-28

Part 1: Assuming the Antecedent

Plan for Today

Textbook Chapter 4: “Relaxing the Proof Style” — New Proof Structures

Proving implications: Assuming the antecedent

Proving By cases

Using theorems as proof methods
Proof by Contrapositive
Proof by Mutual Implication

Universal and Existential Quantification

(4.2) Left-Monotonicity of ∨
(p⇒ q) ⇒ (p∨ r⇒ q∨ r)

p∨ r⇒ q∨ r

≡ ⟨ (3.57) Definition of⇒ p⇒ q ≡ p∨ q ≡ q ⟩
p∨ r∨ q∨ r ≡ q∨ r

≡ ⟨ (3.26) Idempotency of ∨ ⟩
p∨ q∨ r ≡ q∨ r

≡ ⟨ (3.27) Distributivity of ∨ over ≡ ⟩
(p∨ q ≡ q)∨ r

≡ ⟨ (3.57) Definition of⇒ p⇒ q ≡ p∨ q ≡ q ⟩
(p⇒ q)∨ r

⇐ ⟨ (3.76a) Strengthening p⇒p∨ q ⟩
p⇒ q

(4.3) Left-Monotonicity of ∧
Proving (4.3) (p⇒ q) ⇒ p∧ r ⇒ q∧ r:

p∧ r ⇒ q∧ r≡ ⟨ (3.60) Definition of⇒ ⟩
p∧ r∧ q∧ r ≡ p∧ r≡ ⟨ (3.38) Idempotency of ∧ ⟩(p∧ q)∧ r ≡ p∧ r≡ ⟨ (3.49) Semi-distributivity of ∧ ⟩((p∧ q) ≡ p)∧ r ≡ r≡ ⟨ (3.60) Definition of⇒ ⟩(p⇒ q)∧ r ≡ r≡ ⟨ (3.60) Definition of⇒ ⟩
r⇒(p⇒ q)⇐ ⟨ (4.1) p⇒(q⇒p) ⟩
p⇒ q

Proving Implications...

How to prove the following?

“=-Congruence of +”: b = c ⇒ a + b = a + c

“We have been doing this via Leibniz (1.5).”
One of the “Replacement” theorems of the “Leibniz as Axiom” section can help.

It may be nicer to turn this into a situation where the inference rule Leibniz (1.5) can
be used again. . .

Assuming the Antecedent:

/HPPD�' �&RQJUXHQFH�RI��(���E� �F��î��D���E� �D���F
3URRI��
��$VVXPLQJ�CE� �FC��
������D���E�
���� ��$VVXPSWLRQ�CE� �FC���
������D���F

Assuming the Antecedent
To prove an implication p⇒ q
we can prove its conclusion q using p as assumption:

Assuming `p`:

Proof of q
possibly using: Assumption `p`

Justification:
(4.4) (Extended) Deduction Theorem: Suppose adding P1, . . . ,Pn as axioms to proposi-

tional logic E, with the variables of the Pi considered to be constants, allows Q to
be proved.

Then P1 ∧ . . .∧Pn⇒Q is a theorem.
That is:

Assumptions cannot be used with substitutions (with ‘a, b ∶= e, f ‘)
— just like induction hypotheses.

“Assuming the Antecedent” is not allowed in LADM Chapter 3!

Inference Rule for Proving Implications: ⇒-Introduction

One way to prove P⇒Q:

Assuming `P`:

Proof of Q
possibly using: Assumption `P`

(And Assuming `P`: . . . can only prove theorems of shape P⇒⋯.)

This directly corresponds to an application of the inference rule “⇒-Introduction”
(which is missing in the Rosen book used in COMPSCI 1DM3):

⌜P⌝....
Q

P⇒Q ⇒-Intro

⌜x ∶ A⌝....
e ∶ B(λx ∶ A ● e) ∶ A→ B λ-Abstraction

Proving and Using Implication Theorems: Assuming and with2

“Cancellation of ⋅”: z ≠ 0 ⇒ (z ⋅ x = z ⋅ y ≡ x = y)
7KHRUHP�³1RQ�]HUR�PXOWLSOLFDWLRQ´��D�����\��E����\�D�Â�E������

�3URRI��
�����$VVXPLQJ�CD����C���CE����C��

�����������������D�Â�E�����
�������������AG�³'HILQLWLRQ�RI��´�H�

�����������������¤��D�Â�E� ����
�������������AG�³=HUR�RI�Â´�H�
�����������������¤��D�Â�E� �D�Â����
�������������AG�³&DQFHOODWLRQ�RI�Â´�ZLWK�$VVXPSWLRQ�CD���C�H�

�����������������¤��E� ����
�������������AG�³'HILQLWLRQ�RI��´��$VVXPSWLRQ�CE����C�H�

�����������������WUXH

HintItem1 with HintItem2 and HintItem3, HintItem4 parses as
(HintItem1 with (HintItem2 and HintItem3)), HintItem4

(4.3) Left-Monotonicity of ∧ (shorter proof, LADM)

(4.3) (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r))
PROOF:

Assume p⇒ q (which is equivalent to p∧ q ≡ p)

p∧ r

≡ ⟨ Assumption p∧ q ≡ p ⟩
p∧ q∧ r

⇒ ⟨ (3.76b) Weakening ⟩
q∧ r

How to do “which is equivalent to” in CALCCHECK?
Transform before assuming
or transform the assumption when using it
or “Assuming . . . and using with . . . ”

Transform Before Assuming
Theorem (4.3) “Left-monotonicity of ∧ ” “Monotonicity of ∧ ”∶

(p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

(p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
≡ ⟨ “Definition of⇒ from ∧ ” ⟩

(p ∧ q ≡ p) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof for this∶

Assuming `p ∧ q ≡ p`∶
p ∧ r

≡ ⟨ Assumption `p ∧ q ≡ p` ⟩
p ∧ q ∧ r

⇒ ⟨ “Weakening ” ⟩
q ∧ r

Transform Assumption When Used
(4.3) (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r))
PROOF:

Assume p⇒ q (which is equivalent to p∧ q ≡ p)

p∧ r≡ ⟨ Assumption p∧ q ≡ p ⟩
p∧ q∧ r⇒ ⟨ (3.76b) Weakening ⟩
q∧ r

7KHRUHP�������!/HIW�PRQRWRQLFLW\�RI�4"���S�æ�T��æ��S�4�U�æ�T�4�U��
3URRI��
��$VVXPLQJ�CS�æ�TC��
������S�4�U�
����e{�$VVXPSWLRQ�CS�æ�TC�ZLWK�!'HILQLWLRQ�RI�æ"��������|�
������S�4�T�4�U�
����æ{�!:HDNHQLQJ"�|�
������T�4�U

Assuming . . . and using with . . .
(4.3) (p⇒ q) ⇒ ((p∧ r) ⇒ (q∧ r))
PROOF:

Assume p⇒ q (which is equivalent to p∧ q ≡ p)

p∧ r≡ ⟨ Assumption p∧ q ≡ p ⟩
p∧ q∧ r⇒ ⟨ (3.76b) Weakening ⟩
q∧ r

7KHRUHP�������'/HIW�PRQRWRQLFLW\�RI�<(�'0RQRWRQLFLW\�RI�<(��
�����S�î�T��î���S�<�U��î��T�<�U���
3URRI��
��$VVXPLQJ�CS�î�TC�DQG�XVLQJ�ZLWK�''HILQLWLRQ�RI�î(���������
������S�<�U�
����m��$VVXPSWLRQ�CS�î�TC���
������S�<�T�<�U�
����î��':HDNHQLQJ(������E����
������T�<�U

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-28

Part 2: Case Analysis and Other Proof Methods

LADM General Case Analysis

(4.6) (p∨ q∨ r)∧(p⇒ s)∧(q⇒ s)∧(r⇒ s) ⇒ s

Proof pattern for general case analysis:

Prove: S
By cases: P, Q, R

(proof of P∨Q∨R — omitted if obvious)
Case P : (proof of P⇒S)
Case Q : (proof of Q⇒S)
Case R : (proof of R⇒S)

LADM Case Analysis Example: (4.2) (p⇒ q) ⇒ p∨ r ⇒ q∨ r

Assume p⇒ q
Assume p∨ r
Prove: q∨ r
By Cases: p, r — p∨ r holds by assumption
Case p :

p
⇒ ⟨ Assumption p⇒ q ⟩

q
⇒ ⟨ Weakening (3.76a) ⟩

q∨ r

Case r :
r

⇒ ⟨ Weakening (3.76a) ⟩
q∨ r

CALCCHECK By cases with “Zero or successor of predecessor”: n = 0 ∨ n = suc (pred n)
7KHRUHP�'5LJKW�LGHQWLW\�RI�VXEWUDFWLRQ(��P����� �P�
3URRI��
��%\�FDVHV��CP� ��C��CP� �VXF��SUHG�P�C�
����&RPSOHWHQHVV��%\�'=HUR�RU�VXFFHVVRU�RI�SUHGHFHVVRU(�
����&DVH�CP� ��C��
��������P����� �P�
������m��$VVXPSWLRQ�CP� ��C���
�������������� ���
��������7KLV�LV�'6XEWUDFWLRQ�IURP�]HUR(�
����&DVH�CP� �VXF��SUHG�P�C��
��������P�����
������ ��$VVXPSWLRQ�CP� �VXF��SUHG�P�C���
���������VXF��SUHG�P�������
������ ��'6XEWUDFWLRQ�RI�]HUR�IURP�VXFFHVVRU(���
��������VXF��SUHG�P��
������ ��$VVXPSWLRQ�CP� �VXF��SUHG�P�C���
��������P

Case Analysis with Calculation for “Completeness:” . . .
7KHRUHP���������³3RVLWLYLW\�RI�VTXDUHV´��E�����\SRV��E�Â�E��

�3URRI��
�����$VVXPLQJ�CE����C��

���������%\�FDVHV��CSRV�EC��C¤�SRV�EC�
�������������&RPSOHWHQHVV��

�������������������������SRV�E�²�¤�SRV�E�
���������������������AG�³([FOXGHG�0LGGOH´�H�

�������������������������WUXH�
�������������&DVH�CSRV�EC��
�����������������%\�������D��ZLWK�$VVXPSWLRQ�CSRV�EC�

�������������&DVH�C¤�SRV�EC��
�������������������������WUXH�

���������������������AG�$VVXPSWLRQ�C¤�SRV�EC�H�
�������������������������¤�SRV�E�

���������������������AG�������E��ZLWK�$VVXPSWLRQ�CE����C�H�
�������������������������SRV����E��

���������������������AG�³,GHPSRWHQF\�RI�±´�H�
�������������������������SRV����E��±�SRV����E��

���������������������\G�³3RVLWLYLW\�XQGHU�Â´�H�
�������������������������SRV����E�Â���E��

���������������������AG���������H�
�������������������������SRV��E�Â�E�

After “Completeness:” goes a proof for the disjunction of all cases listed after “By
cases:”
This can be any kind of proof.
Inside the “Case ‘p‘:” block, you may use “Assumption ‘p‘”

Proof by Contrapositive

(3.61) Contrapositive: p⇒ q ≡ ¬q⇒¬p

(4.12) Proof method: Prove P⇒Q by proving its contrapositive ¬Q⇒¬P

Proving x + y ≥ 2 ⇒ x ≥ 1∨y ≥ 1:

¬(x ≥ 1∨y ≥ 1)≡ ⟨ De Morgan (3.47) ⟩¬(x ≥ 1) ∧ ¬(y ≥ 1)≡ ⟨ Def. ≥ (15.39) with Trichotomy (15.44) ⟩
x < 1 ∧ y < 1⇒ ⟨ Monotonicity of + (15.42) ⟩
x + y < 1 + 1≡ ⟨ Def. 2 ⟩
x + y < 2≡ ⟨ Def. ≥ (15.39) with Trichotomy (15.44) ⟩¬(x + y ≥ 2)

Proof by Contrapositive in CALCCHECK — Using
7KHRUHP�³([DPSOH�IRU�XVH�RI�&RQWUDSRVLWLYH´�[���\�����\�[�����²�\�����

�3URRI��
�����8VLQJ�³&RQWUDSRVLWLYH´��

���������6XESURRI�IRU�C¤��[�����²�\������\�¤��[���\����C��
�������������������������¤��[�����²�\������

���������������������AG�³'H�0RUJDQ´�H�
�������������������������¤��[������±�¤��\������

���������������������AG�³&RPSOHPHQW�RI��´�ZLWK��������H�
�������������������������[�����±�\�����

���������������������\G�³��0RQRWRQLFLW\�RI��´�H�
�������������������������[���\���������

���������������������AG�(YDOXDWLRQ�H�
�������������������������[���\�����

���������������������AG�³&RPSOHPHQW�RI��´�ZLWK��������H�
�������������������������¤��[���\�����

“Using HintItem1 : subproof1 subproof2”
is processed as “By HintItem1 with subproof1 and subproof2”
If you get the subproof goals wrong, the with heuristic has no chance to succeed. . .

Proof by Mutual Implication — Using
(3.80) Mutual implication: (p⇒ q)∧(q⇒p) ≡ p ≡ q

7KHRUHP�������$��!7ULFKRWRP\���$"��
����D���E��e��D� �E��e��D�!�E�
3URRI��
��8VLQJ�!0XWXDO�LPSOLFDWLRQ"��
����6XESURRI�IRU�CD� �E��æ���D���E��e��D�!�E�C��
������$VVXPLQJ�CD� �EC��
����������D���E�
��������e{�!&RQYHUVH�RI��"��$VVXPSWLRQ�CD� �EC�|�
����������D�!�E�
����6XESURRI�IRU�C�D���E��e��D�!�E��æ�D� �EC��
��������D���E��e��D�!�E�
������e{�!'HILQLWLRQ�RI��"��!'HILQLWLRQ�RI�!"�|�
��������SRV��E���D��e�SRV��D���E��
������e{�������������������!6XEWUDFWLRQ"�|�
��������SRV��E���D��e�SRV�����E���D���
������æ{�������F��|�
��������E���D� ���
������e{�!&DQFHOODWLRQ�RI��"�|�
��������E���D���D� �����D�
������e{�!,GHQWLW\�RI��"��!6XEWUDFWLRQ"��!8QDU\�PLQXV"�|�
��������D� �E�

Proof by Contradiction

(3.74) p⇒ false ≡ ¬p

(4.9) Proof by contradiction: ¬p⇒ false ≡ p

“This proof method is overused”

If you intuitively try to do a proof by contradiction:
Formalise your proof
This may already contain a direct proof!
So check whether contradiction is still necessary
. . ., or whether your proof can be transformed into one that does not use
contradiction.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-28

Part 3: Universal and Existential Quantification

Formalise:

Distributivity of addition over multiplication does not hold.

k + (m ⋅ n) ≠ (k +m) ⋅ (k + n) ???

Universal and Existential Quantification

(∀ x ● P)
“For all x, we have P”

(∀ x R ● P)
“For all x with R, we have P”

(∃ x ● P)
“There exists an x such that P (holds)”
“For some x, we have P”

(∃ x R ● P)
“There exists an x with R such that P (holds)”
“For some x with R, we have P”

Formalise:

Distributivity of addition over multiplication does not hold.

(k + (m ⋅ n) ≠ (k +m) ⋅ (k + n))[k,m,n ∶=?, ?, ?]
∃ k,m,n ∶ N ● k + (m ⋅ n) ≠ (k +m) ⋅ (k + n)
∃ k,m,n ∶ N ● ¬(k + (m ⋅ n) = (k +m) ⋅ (k + n))
¬(∀ k,m,n ∶ N ● k + (m ⋅ n) = (k +m) ⋅ (k + n))

Expanding Universal and Existential Quantification

Universal quantification (∀) is “conjunction (∧) with arbitrarily many conjuncts”:

(∀ i 1 ≤ i < 3 ● i ⋅ d ≠ 6)
= ⟨ Quantification expansion, substitution ⟩

1 ⋅ d ≠ 6 ∧ 2 ⋅ d ≠ 6

Existential quantification (∃) is “disjunction (∨) with arbitrarily many disjuncts”:

(∃ i 0 ≤ i < 21 ● b[i] = 0)
= ⟨ Quantification expansion, substitution ⟩

b[0] = 0 ∨ b[1] = 0 ∨ . . . ∨ b[20] = 0

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-30

Part 1: More About the Natural Numbers

Plan for Today

More About the Natural Numbers

More About Command Correctness

Next Week: Quantification

Midterm 1, Tuesday Oct. 5, 13:30–14:20, ONLINE
The main emphasis of M1 will be on:

Propositional calculus, LADM chapter 3 (Ex2.7, Ex3.2, Ex3.3, H4, H5.2, Ex3.4, A2.1, H6.1,
(Ex4.2))
Natural numbers and induction proofs (H5.1, Ex3.5, A2.2, Ex4.1, Ex4.6)

Additionally, the following can occur in M1:
Correctness proofs (H3.1, Ex2.6, A1.3, H8)
Quantification expansion (H6.2, H6.3, Ex4.5)
Monotonicity (H7, Ex4.3)
Integers (Ex2, A1.1, A1.2)

— (No promise that the will be a correctness proof on M1.)
— (No promise that the won’t be a correctness proof on M1.)
Topics can be combined.
Multiple-choice questions can occur.
M1 will be written without proof checking (but with syntax checking).

Limited to things you are expected to confidently get right.

FYI: I never answer “How many questions will there be on the test?”.

The Predecessor Functionpred on N
The “predecessor function” pred is total; since zero has no predecessor, it maps 0 to 0.

Declaration∶ pred ∶ N → N
Axiom “Predecessor of zero ”∶ pred 0 = 0
Axiom “Predecessor of successor ”∶ pred (suc n) = n

Whe then have:
Theorem “Zero or successor of predecessor”: n = 0 ∨ n = suc (pred n)

This is useful for case analysis proofs of properties that so far you have shown “By
induction” without using the induction hypothesis:

Theorem “Right-identity of subtraction ”∶ m − 0 = m
Proof:

By cases∶ `m = 0`, `m = suc (pred m)`
Completeness: By “Zero or successor of predecessor ”
Case `m = 0`∶

?

Case `m = suc (pred m)`∶
?

Defining (Monus) Subtraction Inductively

$[LRP�'6XEWUDFWLRQ�IURP�]HUR(������������������������������������Q�� ����

$[LRP�'6XEWUDFWLRQ�RI�]HUR�IURP�VXFFHVVRU(��������VXF�P������������� ��VXF�P

$[LRP�'6XEWUDFWLRQ�RI�VXFFHVVRU�IURP�VXFFHVVRU(���VXF�P�����VXF�Q��� ��P���Q

Note: 2 − 5 = 0

Why does this define − for all possible arguments?
Because:

− takes two arguments of type N
Each of these arguments is always either 0, or suc k for some smaller
k ∶ N
Of the four possible combinations, two are covered by “Subtraction
from zero”

The remaining two clauses cover one of the remaining cases each.

The third clause “builds up” the domain of definition of − from
smaller to larger m and n.

Defining Subtraction Inductively Using Three Clauses

$[LRP�'6XEWUDFWLRQ�IURP�]HUR(������������������������������������Q�� ����

$[LRP�'6XEWUDFWLRQ�RI�]HUR�IURP�VXFFHVVRU(��������VXF�P������������� ��VXF�P

$[LRP�'6XEWUDFWLRQ�RI�VXFFHVVRU�IURP�VXFFHVVRU(���VXF�P�����VXF�Q��� ��P���Q

Ô⇒ Some properties of subtraction need nested induction proofs!

Ô⇒ Inside nested induction steps, used induction hypotheses must be made explicit!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-09-30

Part 2: More Command Correctness

Partial Correctness for Pre-Postcondition Specs in Dynamic Logic Notation
Program correctness statement in LADM (and much current use):{ P } C { Q }
This is called a “Hoare triple”.

Partial Correctness Meaning: If command C is started in a state in which the
precondition P holds
then it will terminate only in states in which the postcondition Q holds.

Dynamic logic notation (used in CALCCHECK):
P ⇒[C] Q

Assignment Axiom: { Q[x ∶= E] } x ∶= E { Q } Q[x ∶= E] ⇒[x ∶= E] Q

Sequential composition:

3ULPLWLYH�LQIHUHQFH�UXOH�'6HTXHQFH(��
����C3��î?�&U�@��4C���C4��î?�&V�@��5C�
���1���������������������������������
������C3��î?�&U�)�&V�@��5C

Command Sequences
Axiom “Assignment ”∶ P[x ∶= E] ⇒ x ∶ = E P

Primitive inference rule “Sequence ”∶
`P ⇒ C1 Q`, `Q ⇒ C2 R`

⊢——————————————————

`P ⇒ C1 ; C2 R`

Fact∶ x = 5 ⇒ y ∶ = x + 1 ; x ∶ = y + y x = 12
Proof:

x = 5≡ ⟨ “Cancellation of + ” ⟩
x + 1 = 5 + 1≡ ⟨ Fact `5 + 1 = 6` ⟩
x + 1 = 6≡ ⟨ Substitution ⟩(y = 6)[y ∶= x + 1]⇒ y ∶ = x + 1 ⟨ “Assignment ” ⟩
y = 6≡ ⟨ “Cancellation of ⋅ ” with Fact `2 ≠ 0` ⟩
2 ⋅ y = 2 ⋅ 6≡ ⟨ Evaluation ⟩(1 + 1) ⋅ y = 12≡ ⟨ “Distributivity of ⋅ over + ” ⟩
1 ⋅ y + 1 ⋅ y = 12≡ ⟨ “Identity of ⋅ ” ⟩
y + y = 12≡ ⟨ Substitution ⟩(x = 12)[x ∶= y + y]⇒ x ∶ = y + y ⟨ “Assignment ” ⟩
x = 12

Using converse
operator for
backward pre-
sentation:

[]⇐

)DFW��[� ���]���\�� �[�����¨�[�� �\���\����[� ���

3URRI��
������������[� ����

����������[�� �\���\��[�H�²$VVLJQPHQW³�ZLWK�6XEVWLWXWLRQ�I�
������������\���\� ����

��������@�H�²,GHQWLW\�RI��³�I�
����������������\�������\� ����

��������@�H�²'LVWULEXWLYLW\�RI���RYHU��³�I�
����������������������\� ����

��������@�H�(YDOXDWLRQ�I�
����������������\� �������

��������@�H�²&DQFHOODWLRQ�RI��³�ZLWK�)DFW�C����C�I�
������������\� ���

����������\�� �[������[�H�²$VVLJQPHQW³�ZLWK�6XEVWLWXWLRQ�I�
������������[����� ���

��������@�H�)DFW�C������ ��C�I�
������������[����� �������

��������@�H�²&DQFHOODWLRQ�RI��³�I�
������������[� ��

Transitivity Rules for Calculational Command Correctness Reasoning
Primitive inference rule “Sequence ”∶

`P ⇒ C1 Q`, `Q ⇒ C2 R`

⊢——————————————————

`P ⇒ C1 ; C2 R`

Strengthening the precondition:

�����C3U�î�3VC����C3V�î?�&�@�4C�
���1������������������������������
����������C3U�î?�&�@�4C

Weakening the postcondition:

�����C3�î?�&�@�4UC����C4U�î�4VC�
���1������������������������������
����������C3�î?�&�@�4VC�

Activated as transitivity rules

Therefore used implicitly in calculations, e.g.,
proving P ⇒[C1 #C2] R to the right

No need to refer to these rules explicitly.

P

⇒[C1] ⟨ . . . ⟩
Q

⇒ ⟨ . . . ⟩
Q′

⇒[C2] ⟨ . . . ⟩
R

Conditional Commands

Pascal:
if condition then
statement1

else
statement2

Ada:

if condition then
statement1

else
statement2

end if;

C/Java:
if (condition)
statement1

else
statement2

Python:
if condition:
statement1

else:
statement2

sh:

if condition
then
statement1

else
statement2

fi

Conditional Rule

Primitive inference rule “Conditional ”∶
`B ∧ P ⇒ C1 Q`, `¬ B ∧ P ⇒ C2 Q`

⊢———————————————————————

`P ⇒ if B then C1 else C2 fi Q`

)DFW�'6LPSOH�&21'(��
���WUXH�î?�LI�[� ���WKHQ�\�� ����HOVH�[�� ���IL�@�[� ���
3URRI��
����WUXH�
��î?�LI�[� ���WKHQ�\�� ����HOVH�[�� ���IL�@���6XESURRI��
������8VLQJ�'&RQGLWLRQDO(��
��������6XESURRI�IRU�C�WUXH�<�[� ����î?�\�� ����@�[� ��C��
������������"�
��������6XESURRI�IRU�C�WUXH�<�n��[� �����î?�[�� ���@�[� ��C��
������������"�
������
����[� ���

)DFW�'6LPSOH�&21'(��
���WUXH�î?�LI�[� ���WKHQ�\�� ����HOVH�[�� ���IL�@�[� ���
3URRI��
����WUXH�
��î?�LI�[� ���WKHQ�\�� ����HOVH�[�� ���IL�@���6XESURRI��
������8VLQJ�'&RQGLWLRQDO(��
��������6XESURRI�IRU�C�WUXH�<�[� ����î?�\�� ����@�[� ��C��
������������WUXH�<�[� ���
����������m��',GHQWLW\�RI�<(���
������������[� ���
����������m��6XEVWLWXWLRQ���
�������������[� ���>\�`���@�
����������î?�\�� ����@���'$VVLJQPHQW(���
������������[� ���
��������6XESURRI�IRU�C�WUXH�<�n��[� �����î?�[�� ���@�[� ��C��
������������WUXH�<�n��[� ����
����������î��'5LJKW�]HUR�RI�î(���
������������WUXH�
����������m��'5HIOH[LYLW\�RI� (���
�������������� ���
����������m��6XEVWLWXWLRQ���
�������������[� ���>[�`��@�
����������î?�[�� ���@����'$VVLJQPHQW(���
������������[� ���
������
����[� ��

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-04

Part 1: Order on Integers via Positivity

Plan for Today

Order on Integers via Positivity (LADM chapter 15, pp. 307–308)Ô⇒ Opportunities for structured proofs

Quantification laws at the example of ∑

Thursday: General quantification, LADM chapter 8

Midterm 1, Tuesday Oct. 5, 13:30–14:20, ONLINE
The main emphasis of M1 will be on:

Propositional calculus, LADM chapter 3 (Ex2.7, Ex3.2, Ex3.3, H4, H5.2, Ex3.4, A2.1, H6.1,
(Ex4.2))
Natural numbers and induction proofs (H5.1, Ex3.5, A2.2, Ex4.1, Ex4.6)

Additionally, the following can occur in M1:
Correctness proofs (H3.1, Ex2.6, A1.3, H8)
Quantification expansion (H6.2, H6.3, Ex4.5)
Monotonicity (H7, Ex4.3)
Integers (Ex2, A1.1, A1.2)

— (No promise that the will be a correctness proof on M1.)
— (No promise that the won’t be a correctness proof on M1.)
Topics can be combined.
Multiple-choice questions can occur.
M1 will be written without proof checking (but with syntax checking).

Limited to things you are expected to confidently get right.

FYI: I never answer “How many questions will there be on the test?”.

LADM Theory of Integers — Positivity and Ordering

(15.30) Axiom, Addition in pos: pos a∧pos b ⇒ pos (a + b)
(15.31) Axiom, Multiplication in pos: pos a∧pos b ⇒ pos (a ⋅ b)
(15.32) Axiom: ¬ pos 0

(15.33) Axiom: b ≠ 0 ⇒ (pos b ≡ ¬pos (−b))
(15.34) Positivity of Squares: b ≠ 0 ⇒ pos (b ⋅ b)
(15.35) pos a ⇒ (pos b ≡ pos (a ⋅ b)
(15.36) Axiom, Less: a < b ≡ pos (b − a)
(15.37) Axiom, Greater: a > b ≡ pos (a − b)
(15.38) Axiom, At most: a ≤ b ≡ a < b ∨ a = b

(15.39) Axiom, At least: a ≥ b ≡ a > b ∨ a = b

(15.40) Positive elements: pos b ≡ 0 < b

LADM Theory of Integers — Ordering Properties

(15.41) Transitivity: (a) a < b ∧ b < c ⇒ a < c(b) a ≤ b ∧ b < c ⇒ a < c(c) a < b ∧ b ≤ c ⇒ a < c(d) a ≤ b ∧ b ≤ c ⇒ a ≤ c

(15.42) Monotonicity of +: a < b ≡ a + d < b + d

(15.43) Monotonicity of ⋅: 0 < d ⇒ (a < b ≡ a ⋅ d < b ⋅ d)
(15.44) Trichotomy: (a < b ≡ a = b ≡ a > b) ∧¬(a < b ∧ a = b ∧ a > b)
(15.45) Antisymmetry of ≤: a ≤ b ∧ a ≥ b ≡ a = b

(15.46) Reflexivity of ≤: a ≤ a

Structured Proof Example from LADM

15.1. INTEGRAL DOMAINS 307

and write b < c if integer b occurs before integer c in this list. We
now restrict attention to integral domains that have such an order. To
define an order, we first define a predicate pos.b for b in domain D, with
interpretation "b appears after 0 in the order", or "b is positive". Note
that this interpretation is not the real definition of pos.b, but only the
interpretation we want pos.b to have.

Predicate pos.b is defined by four axioms. The first says that the sum of
two positive elements is positive. The second says that the product of two
positive elements is positive. The third says that 0 is not positive. The
fourth says that for any non-zero element b , exactly one of b and -b is
positive.

(15.30) Axiom, Addition: pos.a 1\ pos.b ::::} pos(a +b)

(15.31) Axiom, Multiplication: pos.a 1\ pos.b ::::} pos(a·b)

(15.32) Axiom: •pos.O

(15.33) Axiom: b :f: 0 ::::} (pos.b = •pos(-b))

An integral domain D with predicate pos that satisfies axioms (15.30)
(15.33) is called an ordered domain, and the ordering is a linear order
or total order (see Definition (14.50) on page 287). The integers are an
ordered domain, as are the rational numbers and the real numbers (and
many others). In all ordered domains, we have the following two theorems,
the first of which says that the square of a non-zero element is positive.

Theorems for pos

(15.34) b :f: 0 ::::} pos(b·b)

(15.35) pos.a ::::} (pos.b = pos(a·b))

We prove (15.34). For arbitrary nonzero b in D, we prove pos(b·b) by
case analysis: either pos.b or -.pos.b holds (see (15.33)).

Case pos.b. By axiom (15.31) with a,b := b,b, pos(b·b) holds.

Case •pos.b 1\ b :f: 0. We have the following.

pos(b·b)
((15.23), with a, b := b, b)

pos((-b)· (-b))
-¢= (Multiplication (15.31))

pos(-b) 1\ pos(-b)
(Idempotency of 1\ (3.38))

15.1. INTEGRAL DOMAINS 307

and write b < c if integer b occurs before integer c in this list. We
now restrict attention to integral domains that have such an order. To
define an order, we first define a predicate pos.b for b in domain D, with
interpretation "b appears after 0 in the order", or "b is positive". Note
that this interpretation is not the real definition of pos.b, but only the
interpretation we want pos.b to have.

Predicate pos.b is defined by four axioms. The first says that the sum of
two positive elements is positive. The second says that the product of two
positive elements is positive. The third says that 0 is not positive. The
fourth says that for any non-zero element b , exactly one of b and -b is
positive.

(15.30) Axiom, Addition: pos.a 1\ pos.b ::::} pos(a +b)

(15.31) Axiom, Multiplication: pos.a 1\ pos.b ::::} pos(a·b)

(15.32) Axiom: •pos.O

(15.33) Axiom: b :f: 0 ::::} (pos.b = •pos(-b))

An integral domain D with predicate pos that satisfies axioms (15.30)
(15.33) is called an ordered domain, and the ordering is a linear order
or total order (see Definition (14.50) on page 287). The integers are an
ordered domain, as are the rational numbers and the real numbers (and
many others). In all ordered domains, we have the following two theorems,
the first of which says that the square of a non-zero element is positive.

Theorems for pos

(15.34) b :f: 0 ::::} pos(b·b)

(15.35) pos.a ::::} (pos.b = pos(a·b))

We prove (15.34). For arbitrary nonzero b in D, we prove pos(b·b) by
case analysis: either pos.b or -.pos.b holds (see (15.33)).

Case pos.b. By axiom (15.31) with a,b := b,b, pos(b·b) holds.

Case •pos.b 1\ b :f: 0. We have the following.

pos(b·b)
((15.23), with a, b := b, b)

pos((-b)· (-b))
-¢= (Multiplication (15.31))

pos(-b) 1\ pos(-b)
(Idempotency of 1\ (3.38))

308 15. A THEORY OF INTEGERS

pos(-b)
(Double negation (3.12) -note that b =j:. 0; (15.33))

•pos.b -the case under consideration

A corollary of this theorem is that 1 (= 1·1) is positive, so -1 is negative.

We are finally ready to define the conventional inequality relations, which
are predicates over pairs of elements of D .

(15.36) Axiom, Less: a < b = pos(b- a)

(15.37) Axiom, Greater: a> b = pos(a- b)

(15.38) Axiom, At most: a ~ b = a < b V a = b

(15.39) Axiom, At least: a ~ b = a > b V a = b

Now we can prove that the positive elements are greater than 0 (i.e.
pos.b = b > 0) and the negative elements are less than 0. A host of other
theorems follow, a few of which are given below. Theorem (15.44), the law
of Trichotomy, says that exactly one of a < b , a = b , and a > b is true .
According to the discussion on page 46, the first conjunct of (15.44) is true
iff one or three of its equivalents are true , and the second conjunct is true
iff fewer than three of them are true .

Some theorems for arithmetic relations

(15.40) Positive elements: pos.b = 0 < b

(15.41) Transitivity: (a) a < b 1\ b < c =? a < c

(b) a ~ b 1\ b < c =? a < c

(c) a< b 1\ b ~ c =? a< c

(d) a~ b 1\ b ~ c =? a~ c

(15.42) Monotonicity: a< b = a+ d < b + d

(15.43) Monotonicity: 0 < d =? (a< b = a·d < b·d)

(15.44) Trichotomy: (a< b = a= b = a> b) 1\

-..,(a<b 1\ a=b 1\ a>b)

(15.45) Antisymmetry: a~ b 1\ b ~a = a= b

(15.46) Reflexivity: a ~ a

(15.47) a= b = (Vz:DI: z ~a = z ~b)

We prove the first of the Transitivity theorems (15.41a). The proof uses
(b- a)+ (c- b)= c- a, which is proved in an exercise.

The Same Proof in CALCCHECK

Theorem (15.34) “Positivity of squares ”∶ b ≠ 0 ⇒ pos (b ⋅ b)
Proof:

Assuming `b ≠ 0`∶
By cases∶ `pos b`, `¬ pos b`

Completeness: By “Excluded middle ”
Case `pos b`∶

By “Positivity under ⋅ ” (15.31) with assumption `pos b`
Case `¬ pos b`∶

pos (b ⋅ b)≡ ⟨ (15.23) ` − a ⋅ − b = a ⋅ b` ⟩
pos ((− b) ⋅ (− b))⇐ ⟨ “Positivity under ⋅ ” (15.31) ⟩
pos (− b) ∧ pos (− b)≡ ⟨ “Idempotency of ∧ ”, “Double negation ” ⟩¬ ¬ pos (− b)≡ ⟨ “Positivity under unary minus ” (15.33) with assumption `b ≠ 0` ⟩¬ pos b — This is assumption `¬ pos b`

Case Analysis with Calculation for “Completeness:” . . .
7KHRUHP���������³3RVLWLYLW\�RI�VTXDUHV´��E�����\SRV��E�Â�E��

�3URRI��
�����$VVXPLQJ�CE����C��

���������%\�FDVHV��CSRV�EC��C¤�SRV�EC�
�������������&RPSOHWHQHVV��

�������������������������SRV�E�²�¤�SRV�E�
���������������������AG�³([FOXGHG�0LGGOH´�H�

�������������������������WUXH�
�������������&DVH�CSRV�EC��
�����������������%\�������D��ZLWK�$VVXPSWLRQ�CSRV�EC�

�������������&DVH�C¤�SRV�EC��
�������������������������WUXH�

���������������������AG�$VVXPSWLRQ�C¤�SRV�EC�H�
�������������������������¤�SRV�E�

���������������������AG�������E��ZLWK�$VVXPSWLRQ�CE����C�H�
�������������������������SRV����E��

���������������������AG�³,GHPSRWHQF\�RI�±´�H�
�������������������������SRV����E��±�SRV����E��

���������������������\G�³3RVLWLYLW\�XQGHU�Â´�H�
�������������������������SRV����E�Â���E��

���������������������AG���������H�
�������������������������SRV��E�Â�E�

After “Completeness:” goes a proof for the disjunction of all cases
listed after “By cases:”
This can be any kind of proof.
Inside the “Case ‘p‘:” block, you may use “Assumption ‘p‘”

The CALCCHECK Language — Calculational Proofs on Steroids

LADM emphasises use of axioms and theorems in calculations over other inference
rules

Besides calculations, CALCCHECK has the following proof structures:
By hint — for discharging simple proof obligations,

Assuming ‘expression‘: — for assuming the antecedent,

By cases: ‘expression1‘,. . . ,‘expressionn‘ — for proofs by case analysis

By induction on ‘var ∶ type‘: — for proofs by induction

Using hint: — for turning theorems into inference rules

For any ‘var ∶ type‘: — corresponding to ∀-introduction

This does not sound that different from LADM —

— but in CALCCHECK, these are actually used!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-04

Part 2: Quantification, Variable Binding

LADM/CALCCHECK Quantification Notation

Conventional sum quantification notation:
n∑

i=1
e = e[i ∶= 1] + . . . + e[i ∶= n]

The textbook uses a different, but systematic linear notation:

(∑ i 1 ≤ i ≤ n ∶ e) or (+ i 1 ≤ i ≤ n ∶ e)
We use a variant with a “spot” “●” instead of the colon “:” and only use “big” operators:

(∑ i 1 ≤ i ≤ n ● e)
Reasons for using this kind of linear quantification notation:

Clearly delimited introduction of quantified variables (dummies)

Arbitrary Boolean expressions can define the range(∑ i 1 ≤ i ≤ 7 ∧ even i ● i) = 2 + 4 + 6

The notation extends easily to multiple quantified variables:(∑ i, j ∶ Z 1 ≤ i < j ≤ 4 ● i/j) = 1/2 + 1/3 + 1/4 + 2/3 + 2/4 + 3/4

Formalise:

The sum of the first n odd natural numbers is equal to n2.

Formalise it in a way that makes it easy to prove!

7KHRUHP�'2GG�QXPEHU�VXP(��

�����-�L�����:�L���Q�-�VXF�L���L�� �Q�y�Q

The sum of the first n odd natural numbers is equal to n2

7KHRUHP�'2GG�QXPEHU�VXP(��
�����-�L�����:�L���Q�-�VXF�L���L�� �Q�y�Q�
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
���������-�L�����:�L�����-�VXF�L���L��
������ ��"���
��������

�
������ ��"���
����������y���
����,QGXFWLRQ�VWHS��
���������-�L�����:�L���VXF�Q�-�VXF�L���L��
������ ��"���
��������

�
������ ��"���
��������VXF�Q�y�VXF�Q

Empty Range Axioms

(8.13) Axiom, Empty Range:

(∑ x false ● E) = 0

(∏ x false ● E) = 1

The sum of the first n odd natural numbers is equal to n2

7KHRUHP�'2GG�QXPEHU�VXP(��
�����-�L�����:�L���Q�-�VXF�L���L�� �Q�y�Q�
3URRI��
��%\�LQGXFWLRQ�RQ�CQ����C��
����%DVH�FDVH��
���������-�L�����:�L�����-�VXF�L���L��
������ ��'1RWKLQJ�LV�OHVV�WKDQ�]HUR(���
���������-�L�����:�IDOVH�-�VXF�L���L��
������ ��'(PSW\�UDQJH�IRU�-(��
����������
������ ��''HILQLWLRQ�RI�y�IRU��(���
����������y���
����,QGXFWLRQ�VWHS��
���������-�L�����:�L���VXF�Q�-�VXF�L���L��
������ ��'6SOLW�RII�WHUP�DW�WRS(��6XEVWLWXWLRQ���
���������-�L�����:�L���Q�-�VXF�L���L�����VXF�Q���Q��
������ ��,QGXFWLRQ�K\SRWKHVLV���
��������VXF�Q���Q���Q�y�Q�
������ ��''HILQLWLRQ�RI�y�IRU�CVXFC(���
��������VXF�Q���Q�y�VXF�Q�
������ ��''HILQLWLRQ�RI�y�IRU�CVXFC(���
��������VXF�Q�y�VXF�Q�

Manipulating Ranges

(8.23) Theorem Split off term: For n ∶ N and dummies i ∶ N,

(∑ i 0 ≤ i < n + 1 ● P) = (∑ i 0 ≤ i < n ● P) + P[i ∶= n]
(∑ i 0 ≤ i < n + 1 ● P) = P[i ∶= 0] + (∑ i 0 < i < n + 1 ● P)

Typical uses: Induction proofs, verification of loops

Generalisation: NÐ→ Z, 0Ð→ m ∶ Z (with m ≤ n)

The following work both with m,n, i ∶ N and with m,n, i ∶ Z:

Theorem: Split off term from top:

m ≤ n ⇒(∑ i m ≤ i < n + 1 ● P) = (∑ i m ≤ i < n ● P) + P[i ∶= n]
Theorem: Split off term from bottom:

m ≤ n ⇒(∑ i m ≤ i < n + 1 ● P) = P[i ∶= m] + (∑ i m + 1 ≤ i < n + 1 ● P)
Disjoint Range Split (LADM)

(8.16) Axiom, Range Split:

(Σ x Q∨R ● P) = (Σ x Q ● P) + (Σ x R ● P)
provided Q∧R = false and each sum is defined.

(8.16) Axiom, Range Split:

(Π x Q∨R ● P) = (Π x Q ● P) ⋅ (Π x R ● P)
provided Q∧R = false and each product is defined.

That is: Summing up over a large range can be done
by adding the results
of summing up two disjoint and complementary subranges.

Ô⇒ “Divide and conquer” algorithm design pattern

DIVIDE ET IMPERA
— Gaius Julius Caesar

Proving Split-off Term

(8.16) Axiom, Range Split:(Σ x Q∨R ● P) = (Σ x Q ● P) + (Σ x R ● P)
provided Q∧R = false and each sum is defined.

7KHRUHP�'6SOLW�RII�WHUP(�'6SOLW�RII�WHUP�DW�WRS(��
�����-�L�����:�L���VXF�Q�-�(�� ��-�L�����:�L���Q�-�(����(>L�`�Q@

Use range split firstÔ⇒Need to transform the range expression i < suc n into an appropriate disjunction
The second range will have one elementÔ⇒ The second sum has range i = nÔ⇒ The second sum disappears via the one-point rule

Axioms for One-element Ranges

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘D’),

(∑x x = D ● E) = E[x ∶= D]
(∏x x = D ● E) = E[x ∶= D]
(∀x x = D ● P) = P[x ∶= D]
(∃x x = D ● P) = P[x ∶= D]Example:

(∑ i ∶ N ● 5 + 2 ⋅ i < 7 5 + 7 ⋅ i)
= ⟨ . . . ⟩

(∑ i ∶ N ● i = 0 5 + 7 ⋅ i)
= ⟨ One-point rule ⟩

(5 + 7 ⋅ i)[i ∶= 0]
= ⟨ Substitution ⟩

5 + 7 ⋅ 0

Bound / Free Variable Occurrences

(∑ i ∶ N i < x ● i + 1) = 10 example expression

Is this true or false? In which states?

We have: (∑ i ∶ N i < x ● i + 1) = 10 ≡ x = 4

The value of this example expression in a state depends only on x, not on i!

Renaming quantified variables does not change the meaning:

(∑ i ∶ N i < x ● i + 1) = (∑ j ∶ N j < x ● j + 1)
Occurrences of quantified variables inside the quantified expression are bound

Non-bound variable occurences are called free

Variables of the same name may occur both free and bound
in the same expression, e.g.: 3 ⋅ i + (∑ i ∶ N i < x ● 2 ⋅ i)
The variable declarations after the quantification operator
may be called binding occurrences.

Variable Binding is Everywhere!

Calculus: f (y) = ∫ 1

0
x2y2dx

Imperative Programming (here C):

int f(int x){
int q;
q = x * x;
return 2 * q;}

Functional Programming (here Haskell):

f x = let q = x * x in 2 * q

The occurs Meta-Predicate

Definition: occurs(‘v’, ‘e’) means that at least one variable in the list v of variables occurs
free in at least one expression in expression list e.

occurs(‘i’, ‘5 ⋅ i’) √
occurs(‘i’, ‘0 ⋅ i’) √
occurs(‘i’, ‘5 ⋅ k’) ×
occurs(‘i’, ‘(∑ i 0 ≤ i < k ● ni)’) ×
occurs(‘n’, ‘(∑ i 0 ≤ i < k ● ni)’) √
occurs(‘i,n’, ‘(∑ i 0 ≤ i < k ● ni)’) √
occurs(‘i,n’, ‘(∑ i,n 1 ≤ i ⋅ n ≤ k ● ni)’) ×

The ¬occurs Proviso for the One-point Rule

(8.14) Axiom, One-point Rule for ∑: Provided ¬occurs(‘x’, ‘E’),(∑x x = E ● P) = P[x ∶= E]
(8.14) Axiom, One-point Rule for∏: Provided ¬occurs(‘x’, ‘E’),(∏x x = E ● P) = P[x ∶= E]
Examples:(∑x x = 1 ● x ⋅ y) = 1 ⋅ y

(∏x x = y + 1 ● x ⋅ x) = (y + 1) ⋅ (y + 1)
Counterexamples:(∑x x = x + 1 ● x) ? x + 1 — “=” not valid!

(∏x x = 2 ⋅ x ● y + x) ? y + 2 ⋅ x — “=” not valid!

Textual Substitution Revisited
Let E and R be expressions and let x be a variable. Original definition:

We write: E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of
x replaced by (R).

This was for expressions E built from constants, variables, operator applications only!

In presence of variable binders, such as ∑, ∏, ∀, ∃ and substitution,
only free occurrences of x can be replaced
and we need to avoid “capture of free variables”:

(8.11) Provided ¬occurs(‘y’, ‘x,F’),(∑ y R ● P)[x ∶= F] = (∑ y R[x ∶= F] ● P[x ∶= F])
(8.11) is part of the Substitution keyword in CALCCHECK.

Substitution Examples

(8.11) Provided ¬occurs(‘y’, ‘x,F’),

(∑ y R ● P)[x ∶= F] = (∑ y R[x ∶= F] ● P[x ∶= F])

(∑ x 1 ≤ x ≤ 2 ● y)[y ∶= y + z]= ⟨ substitution ⟩(∑ x 1 ≤ x ≤ 2 ● y + z)
(∑ x 1 ≤ x ≤ 2 ● y)[y ∶= y + x]= ⟨ (8.21) Variable renaming ⟩(∑ z 1 ≤ z ≤ 2 ● y)[y ∶= y + x]= ⟨ substitution ⟩(∑ z 1 ≤ z ≤ 2 ● y + x)

Substitution Examples (ctd.)

(8.11) Provided ¬occurs(‘y’, ‘x,F’),

(∑ y R ● P)[x ∶= F] = (∑ y R[x ∶= F] ● P[x ∶= F])
(∑ x 1 ≤ x ≤ 2 ● y)[x ∶= y + x]= ⟨ (8.21) Variable renaming ⟩(∑ z 1 ≤ z ≤ 2 ● y)[x ∶= y + x]= ⟨ Substitution ⟩(∑ z 1 ≤ z ≤ 2 ● y)= ⟨ (8.21) Variable renaming ⟩(∑ x 1 ≤ x ≤ 2 ● y)

(8.11f) Provided ¬occurs(‘x’, ‘E’),

E[x ∶= F] = E

Renaming of Bound Variables

(8.21) Axiom, Dummy renaming (α-conversion):(∑ x R ● P) = (∑ y R[x ∶= y] ● P[x ∶= y])
provided ¬occurs(‘y’, ‘R,P’).

(∑ i 0 ≤ i < k ● ni)
= ⟨ Dummy renaming (8.21), ¬occurs(‘j’, ‘0 ≤ i < k, ni’) ⟩

(∑ j 0 ≤ j < k ● nj)
(∑ i 0 ≤ i < k ● ni)

? ⟨ Dummy renaming (8.21) ×⟩
(∑ k 0 ≤ k < k ● nk)

In CALCCHECK, renaming of bound variables is part of “Reflexivity of =”,
but can also be mentioned explicitly.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-07

Part 1: with3: Rewriting Theorems Using Equations

Plan for Today

with3: Rewriting Theorems Using Equations

General Quantification (LADM chapter 8) — Variable Binding

Predicate Logic 1:
Axioms and Theorems about Universal and Existential Quantification
(LADM chapter 9)

with — Overview
CALCCHECK currently knows three kinds of “with”:

“with1”: For explicit substitutions: “Identity of +” with ‘x ∶= 2‘

ThmA with ThmB and ThmB2 . . .
“with2”: If ThmA gives rise to an implication A1⇒A2⇒ . . .(L = R):

Perform conditional rewriting, rigidly applying Lσ ↦ Rσ

if using ThmB and ThmB2 . . . to prove A1σ, A2σ, . . . succeeds

“with3”: ThmA with ThmB
If ThmB gives rise to an equality/equivalence L = R:

Rewrite ThmA with L↦ R to ThmA′,
and use ThmA′ for rewriting the goal.

Using hi1:
sp1
sp2

is essentially syntactic sugar for: By hi1 with sp1 and sp2

with2: Conditional Rewriting

ThmA with ThmB and ThmB2 . . .

If ThmA gives rise to an implication A1⇒A2⇒ . . .(L = R):
Find substitution σ such that Lσ matches goal

Resolve A1σ, A2σ, . . . using ThmB and ThmB2 . . .

Rewrite goal applying Lσ ↦ Rσ rigidly.

E.g.: “Cancellation of ⋅” with Assumption ‘m + n ≠ 0‘

when trying to prove (m + n) ⋅ (n + 2) = (m + n) ⋅ 5 ⋅ k:

“Cancellation of ⋅” is: c ≠ 0⇒(c ⋅ a = c ⋅ b ≡ a = b)
We try to use: c ⋅ a = c ⋅ b↦ a = b, so L is c ⋅ a = c ⋅ b
Matching L against goal produces σ = [a, b, c ∶= (n + 2), (5 ⋅ k), (m + n)]
(c ≠ 0)σ is (m + n) ≠ 0

and can be proven by “Assumption ‘m + n ≠ 0‘”

The goal is rewritten to (a = b)σ, that is, (n + 2) = 5 ⋅ k.

with3: Rewriting Theorems before Rewriting
ThmA with ThmB

If ThmB gives rise to an equality/equivalence L = R:
Rewrite ThmA with L↦ R
E.g.: Assumption `p⇒ q` with (3.60) `p⇒ q ≡ p∧ q ≡ q`

The local theorem p⇒ q (resulting from the Assumption)
rewrites via: p⇒ q ↦ p ≡ p∧ q (from (3.60))
to: p ≡ p∧ q
which can be used for the rewrite: p ↦ p∧ q

Theorem (4.3) “Left-monotonicity of ∧ ”∶ (p ⇒ q) ⇒ ((p ∧ r) ⇒ (q ∧ r))
Proof:

Assuming `p ⇒ q`∶
p ∧ r≡ ⟨ Assumption `p ⇒ q` with “Definition of⇒ from ∧ ” ⟩
p ∧ q ∧ r⇒ ⟨ “Weakening ” ⟩
q ∧ r

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-07

Part 2: General Quantification

Quantification Examples

(∑ i 0 ≤ i < 4 ● i ⋅ 8)
= ⟨ Quantification expansion, substitution ⟩

0 ⋅ 8+1 ⋅ 8+2 ⋅ 8+3 ⋅ 8
(∏ i 0 ≤ i < 3 ● i + (i + 1))

= ⟨ Quantification expansion, substitution ⟩(0 + 1) ⋅(1 + 2) ⋅(2 + 3)
(∀ i 1 ≤ i < 3 ● i ⋅ d ≠ 6)

= ⟨ Quantification expansion, substitution ⟩
1 ⋅ d ≠ 6∧2 ⋅ d ≠ 6

(∃ i 0 ≤ i < 21 ● b i = 0)
= ⟨ Quantification expansion, substitution ⟩

b 0 = 0∨ b 1 = 0∨ . . . ∨ b 20 = 0

General Quantification

It works not only for +, ∧, ∨ . . .
Let a type T and an operator ⋆ ∶ T × T → T be given.
If for an appropriate u ∶ T we have:

Symmetry: b ⋆ c = c ⋆ b

Associativity: (b ⋆ c) ⋆ d = b ⋆ (c ⋆ d)
Identity u: u ⋆ b = b = b ⋆ u

we may use ⋆ as quantification operator:

(⋆ x ∶ T1,y ∶ T2 R ● P)
R ∶ B is the range of the quantification

P ∶ T is the body of the quantification

P and R may refer to the quantified variables x and y

The type of the whole quantification expression is T.

General Quantification: Instances
Let a type T and an operator ⋆ ∶ T × T → T be given.
If for an appropriate u ∶ T we have:

Symmetry: b ⋆ c = c ⋆ b
Associativity: (b ⋆ c) ⋆ d = b ⋆ (c ⋆ d)
Identity u: u ⋆ b = b = b ⋆ u

we may use ⋆ as quantification operator: (⋆ x ∶ T1,y ∶ T2 R ● P)∨ ∶ B ×B→ B is symmetric (3.24), associative (3.25),
and has false as identity (3.30) — the “big operator” for ∨ is ∃”:(∃ k ∶ N k > 0 ● k ⋅ k < k + 1)∧ ∶ B ×B→ B is symmetric (3.36), associative (3.27),
and has true as identity (3.39) — the “big operator” for ∧ is ∀”:(∀ k ∶ N k > 2 ● prime k ⇒ ¬ prime (k + 1))+ ∶ Z ×Z→ Z is symmetric (15.2), associative (15.1),
and has 0 as identity (15.3) — the “big operator” for + is ∑”:(∑ n ∶ Z 0 < n < 100∧prime n ● n ⋅ n)

Trivial Range Axioms

(8.13) Axiom, Empty Range (where u is the identity of ⋆):

(⋆ x false ● P) = u

(∀ x false ● P) = true

(∃ x false ● P) = false

(∑ x false ● P) = 0

(∏ x false ● P) = 1

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),

(⋆x x = E ● P) = P[x ∶= E]

Manipulating Ranges

(8.23) Theorem Split off term: For n ∶ N and dummies i ∶ N,

(⋆ i 0 ≤ i < n + 1 ● P) = (⋆ i 0 ≤ i < n ● P) ⋆ P[i ∶= n]
(⋆ i 0 ≤ i < n + 1 ● P) = P[i ∶= 0] ⋆ (⋆ i 0 < i < n + 1 ● P)

Typical uses: Induction proofs, verification of loops

Generalisation: NÐ→ Z, 0Ð→ m ∶ Z (with m ≤ n)

The following work both with m,n, i ∶ N and with m,n, i ∶ Z:

Theorem: Split off term from top:

m ≤ n ⇒(⋆ i m ≤ i < n + 1 ● P) = (⋆ i m ≤ i < n ● P) ⋆ P[i ∶= n]
Theorem: Split off term from bottom:

m ≤ n ⇒(⋆ i m ≤ i < n + 1 ● P) = P[i ∶= m] ⋆ (⋆ i m + 1 ≤ i < n + 1 ● P)
Recall: Bound / Free Variable Occurrences

(∑ i ∶ N i < x ● i + 1) = 10 example expression

Is this true or false? In which states?

We have: (∑ i ∶ N i < x ● i + 1) = 10 ≡ x = 4

The value of this example expression in a state depends only on x, not on i!

Renaming quantified variables does not change the meaning:

(∑ i ∶ N i < x ● i + 1) = (∑ j ∶ N j < x ● j + 1)
Occurrences of quantified variables inside the quantified expression are bound

Non-bound variable occurences are called free

Variables of the same name may occur both free and bound
in the same expression, e.g.: 3 ⋅ i + (∑ i ∶ N i < x ● 2 ⋅ i)
The variable declarations after the quantification operator
may be called binding occurrences.

Variable Binding is Everywhere! Including in Substitution!

Another example expression: (x + 3 = 5 ⋅ i)[i ∶= 9]
Is this true or false? In which states?

(x + 3 = 5 ⋅ i)[i ∶= 9]≡ ⟨ Substitution, . . . ⟩
x = 42

The value of (x + 3 = 5 ⋅ i)[i ∶= 9] in a state depends only on x, not on i!

Renaming substituted variables does not change the meaning:

(x + 3 = 5 ⋅ i)[i ∶= 9] ≡ (x + 3 = 5 ⋅ j)[j ∶= 9]
Occurrences of substituted variables inside the target expression are bound
The variable occurrences to the left of ∶= in substitutions
may be called binding occurrences.
Non-bound variable occurences are called free.

i > 0 ∧ (x + 3 = 5 ⋅ i)[i ∶= 7 + i]
Substitution does not bind to the right of ∶= !

The occurs Meta-Predicate (ctd.)

Definition: occurs(‘v’, ‘e’) means that at least one variable in the list v of variables occurs
free in at least one expression in expression list e.

occurs(‘i,n’, ‘(∑ i,n 1 ≤ i ⋅ n ≤ k ● ni), (∑ n 0 ≤ n < k ● ni)’) √
occurs(‘i’, ‘(i ⋅ (5 + i))[i ∶= k + 2]’) × Substitution is a variable binder, too!

occurs(‘i’, ‘(i ⋅ (5 + i))[i ∶= i + 2]’) √

The ¬occurs Proviso for the One-point Rule

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),

(∀x x = E ● P) ≡ P[x ∶= E]
(∃x x = E ● P) ≡ P[x ∶= E]

Examples:(∀x x = 1 ● x ⋅ y = y) ≡ 1 ⋅ y = y

(∃x x = y + 1 ● x ⋅ x > 42) ≡ (y + 1) ⋅ (y + 1) > 42

Counterexamples:(∀x x = x + 1 ● x = 42) ? x + 1 = 42 — “≡” not valid!

(∃x x = 2 ⋅ x ● y + x = 42) ? y + 2 ⋅ x = 42 — “≡” not valid!

Automatic extraction of ¬occurs Provisos

(8.14) Axiom, One-point Rule: Provided ¬occurs(‘x’, ‘E’),

(∀ x x = E ● P) ≡ P[x ∶= E]
(∃ x x = E ● P) ≡ P[x ∶= E]

Investigate the binders in scope at the metavariables P and E:
P on the LHS occurs in scope of the binder ∀ x
P on the RHS occurs in scope of the binder [x ∶= . . .]

Therefore: Whether x occurs in P or not does not raise any problems.

E on the LHS occurs in scope of the binder ∀ x
E on the RHS occurs in scope no binders

Therefore: An x that is free in E would be bound on the LHS,
but escape into freedom on the RHS!

CALCCHECK derives and checks ¬occurs provisos automatically.

Textual Substitution Revisited
Let E and R be expressions and let x be a variable. Original definition:

We write: E[x ∶= R] or Ex
R

to denote an expression that is the same as E but with all occurrences of
x replaced by (R).

This was for expressions E built from constants, variables, operator applications only!

In presence of variable binders, such as ∑, ∏, ∀, ∃ and substitution,
only free occurrences of x can be replaced
and we need to avoid “capture of free variables”:

(8.11) Provided ¬occurs(‘y’, ‘x,F’),(⋆ y R ● P)[x ∶= F] = (⋆ y R[x ∶= F] ● P[x ∶= F])
LADM Chapter 8:
“⋆ is a metavariable for operators + , ⋅ , ∧ , ∨ ” (resp. ∑, ∏, ∀, ∃)

(8.11) is part of the Substitution keyword in CALCCHECK.

Read LADM Chapter 8!

Substitution Examples

(8.11) Provided ¬occurs(‘y’, ‘x,F’),

(⋆ y R ● P)[x ∶= F] = (⋆ y R[x ∶= F] ● P[x ∶= F])

(∑ x 1 ≤ x ≤ 2 ● y)[y ∶= y + z]= ⟨ substitution ⟩(∑ x 1 ≤ x ≤ 2 ● y + z)
(∑ x 1 ≤ x ≤ 2 ● y)[y ∶= y + x]= ⟨ (8.21) Variable renaming ⟩(∑ z 1 ≤ z ≤ 2 ● y)[y ∶= y + x]= ⟨ substitution ⟩(∑ z 1 ≤ z ≤ 2 ● y + x)

Substitution Examples (ctd.)

(8.11) Provided ¬occurs(‘y’, ‘x,F’),

(⋆ y R ● P)[x ∶= F] = (⋆ y R[x ∶= F] ● P[x ∶= F])
(∑ x 1 ≤ x ≤ 2 ● y)[x ∶= y + x]= ⟨ (8.21) Variable renaming ⟩(∑ z 1 ≤ z ≤ 2 ● y)[x ∶= y + x]= ⟨ Substitution ⟩(∑ z 1 ≤ z ≤ 2 ● y)= ⟨ (8.21) Variable renaming ⟩(∑ x 1 ≤ x ≤ 2 ● y)

(8.11f) Provided ¬occurs(‘x’, ‘E’),

E[x ∶= F] = E

Renaming of Bound Variables

(8.21) Axiom, Dummy renaming (α-conversion):(⋆ x R ● P) = (⋆ y R[x ∶= y] ● P[x ∶= y]) provided ¬occurs(‘y’, ‘R,P’).

(∑ i 0 ≤ i < k ● ni)
= ⟨ Dummy renaming (8.21), ¬occurs(‘j’, ‘0 ≤ i < k, ni’) ⟩

(∑ j 0 ≤ j < k ● nj)
(∑ i 0 ≤ i < k ● ni)

? ⟨ Dummy renaming (8.21) ×⟩
(∑ k 0 ≤ k < k ● nk) k captured!

Generally, use fresh variables for renaming to avoid variable capture!

In CALCCHECK, renaming of bound variables is part of “Reflexivity of =”,
but can also be mentioned explicitly.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-07

Part 3: Predicate Logic 1

Generalising De Morgan to Quantification

¬(∃ i 0 ≤ i < 4 ● P)
= ⟨ Expand quantification ⟩

¬(P[i ∶= 0] ∨ P[i ∶= 1] ∨ P[i ∶= 2] ∨ P[i ∶= 3])
= ⟨ (3.47) De Morgan ⟩

¬P[i ∶= 0] ∧ ¬P[i ∶= 1] ∧ ¬P[i ∶= 2] ∧ ¬P[i ∶= 3]
= ⟨ Contract quantification ⟩

(∀ i 0 ≤ i < 4 ● ¬P)
(9.18b,c,a) Generalised De Morgan:¬(∃ x R ● P) ≡ (∀ x R ● ¬P)(∃ x R ● ¬P) ≡ ¬(∀ x R ● P)¬(∃ x R ● ¬P) ≡ (∀ x R ● P)
(9.17) Axiom, Generalised De Morgan:(∃ x R ● P) ≡ ¬(∀ x R ● ¬P)

“Trading” Range Predicates with Body Predicates in ∀
(9.2) Axiom, Trading: (∀ x R ● P) ≡ (∀ x ● R⇒P)
Trading Theorems for ∀:

(9.3a) (∀ x R ● P) ≡ (∀ x ● ¬R∨P)
(9.3b) (∀ x R ● P) ≡ (∀ x ● R∧P ≡ R)
(9.3c) (∀ x R ● P) ≡ (∀ x ● R∨P ≡ P)
(9.4a) (∀ x Q∧R ● P) ≡ (∀ x Q ● R⇒P)
(9.4b) (∀ x Q∧R ● P) ≡ (∀ x Q ● ¬R∨P)
(9.4c) (∀ x Q∧R ● P) ≡ (∀ x Q ● R∧P ≡ R)
(9.4d) (∀ x Q∧R ● P) ≡ (∀ x Q ● R∨P ≡ P)

“Trading” Range Predicates with Body Predicates in ∃
(9.2) Axiom, Trading: (∀ x R ● P) ≡ (∀ x ● R⇒P)
(9.17) Axiom, Generalised De Morgan: (∃ x R ● P) ≡ ¬(∀ x R ● ¬P)
(9.19) Trading for ∃: (∃ x R ● P) ≡ (∃ x ● R∧P)
(9.20) Trading for ∃: (∃ x Q∧R ● P) ≡ (∃ x Q ● R∧P)

Instantiation for ∀P[x ∶= E]
≡ ⟨ (8.14) One-point rule ⟩(∀ x x = E ● P)
⇐ ⟨ (9.10) Range weakening for ∀ ⟩(∀ x true∨x = E ● P)
≡ ⟨ (3.29) Zero of ∨ ⟩(∀ x true ● P)
≡ ⟨ true range in quantification ⟩(∀ x ● P)

This proves: (9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]

∀ x ● P
P[x ∶= E] ∀-Elim

The one-point rule is “sharper” than Instantiation.

Using sharper rules often means fewer dead ends. . .

A sharp version obtained via (3.60):(∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Using Instantiation for ∀

(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
A sharp version of Instantiation obtained via (3.60): (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]
Proving (∀ x ● x + 1 > x) ⇒ y + 2 > y:

(∀ x ● x + 1 > x)
= ⟨ Instantiation (9.13) with (3.60) ⟩

(∀ x ● x + 1 > x) ∧ y + 1 > y

⇒ ⟨ Left-Monotonicity of ∧ (4.3) with Instantiation (9.13) ⟩
(y + 1) + 1 > y + 1 ∧ y + 1 > y

⇒ ⟨ Transitivity of > (15.41) ⟩
y + 1 + 1 > y

= ⟨ 1 + 1 = 2 ⟩
y + 2 > y

Using Instantiation for ∀
(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
A sharp version of Instantiation obtained via (3.60): (∀ x ● P) ≡ (∀ x ● P)∧P[x ∶= E]

Theorem∶ (∀ x ∶ Z ● x < x + 1) ⇒ y < y + 2
Proof:(∀ x ∶ Z ● x < x + 1)

≡ ⟨ “Instantiation ” (9.13) with (3.60) − − − explicit substitution needed! ⟩
(∀ x ∶ Z ● x < x + 1) ∧ (x < x + 1)[x ∶= y + 1]

≡ ⟨ Substitution, Fact `1 + 1 = 2` ⟩
(∀ x ∶ Z ● x < x + 1) ∧ y + 1 < y + 2

⇒ ⟨ “Monotonicity of ∧ ” with “Instantiation ” ⟩
(x < x + 1)[x ∶= y] ∧ y + 1 < y + 2

≡ ⟨ Substitution ⟩
y < y + 1 ∧ y + 1 < y + 2

⇒ ⟨ “Transitivity of < ” ⟩
y < y + 2

Theorems and Universal Quantification

(9.16) Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

This is another justification for implicit use of “Instantiation” (9.13)(∀ x ● P) ⇒ P[x ∶= E]:
Theorem∶ (∀ x ∶ Z ● x < x + 1) ⇒ y < y + 2
Proof:

Assuming (1) `∀ x ∶ Z ● x < x + 1`∶
y

< ⟨ Assumption (1) — implicit instantiation with E ∶= y ⟩
y + 1

< ⟨ Assumption (1) — implicit instantiation with E ∶= y + 1 ⟩
y + 1 + 1

= ⟨ Fact `1 + 1 = 2` ⟩
y + 2

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-18

Part 1: General Quantification (continued)

Plan for Today

General Quantification (LADM chapter 8) — Calculating with Quantifications

Predicate Logic 2:
Proving Universal and Existential Quantifications
(LADM chapter 9)

Leibniz Rules for Quantification

Try to use x + x = 2 ⋅ x and Leibniz (1.5)
X = Y

E[z ∶= X] = E[z ∶= Y] to obtain:

(∑ x 0 ≤ x < 9 ● x + x) = (∑ x 0 ≤ x < 9 ● 2 ⋅ x)
Choose E as: (∑ x 0 ≤ x < 9 ● z)
Perform substitution: (∑ x 0 ≤ x < 9 ● z)[z ∶= x + x](∑ y 0 ≤ y < 9 ● x + x)
Not possible with (1.5)!
— E[z ∶= X] = E[z ∶= Y] renames x!

Special Leibniz rule for quantification:
P = Q(⋆ x R ● E[z ∶= P]) = (⋆ x R ● E[z ∶= Q])

LADM Leibniz Rules for Quantification

Rewrite equalities in the range context of quantifications:

(8.12) Leibniz
P = Q(⋆ x E[z ∶= P] ● S) = (⋆ x E[z ∶= Q] ● S)

Rewrite equalities in the body context of quantifications:

(8.12) Leibniz
R ⇒ (P = Q)(⋆ x R ● E[z ∶= P]) = (⋆ x R ● E[z ∶= Q])

(These inference rules will also be used implicitly.)

Important: P = Q needs to be a theorem!

These rules are not available for local Assumptions!

(Because x may occur in P, Q.)

Variable Binding Rearrangements

(8.19) Axiom, Interchange of dummies:

(⋆ x R ● (⋆ y S ● P)) = (⋆ y S ● (⋆ x R ● P))
provided ¬occurs(‘y’, ‘R’) and ¬occurs(‘x’, ‘S’), and each quantification is defined.

(8.20) Axiom, Nesting:

(⋆ x,y R∧S ● P) = (⋆ x R ● (⋆ y S ● P))
provided ¬occurs(‘y’, ‘R’).

(8.21) Axiom, Dummy renaming (α-conversion):

(⋆ x R ● P) = (⋆ y R[x ∶= y] ● P[x ∶= y])
provided ¬occurs(‘y’, ‘R,P’).

Substitution (8.11) prevents capture of y by binders in R or P

Permutation of Bound Variables

Apparently not provable for general quantification from the quantification axioms in the
textbook:

Dummy list permutation:(⋆ x,y R ● P) = (⋆ y,x R ● P)
(without side conditions restricting variable occurrences!)

However, the following are easily provable from (8.19) Interchange of dummies —
Exercise:

Dummy list permutation for ∀:(∀ x,y R ● P) = (∀ y,x R ● P)
Dummy list permutation for ∃:(∃ x,y R ● P) = (∃ y,x R ● P)

Distributivity
(8.15) Axiom, (Quantification) Distributivity:

(⋆ x R ● P) ⋆ (⋆ x R ● Q) = (⋆ x R ● P ⋆Q),
provided each quantification is defined.

(∑ i ∶ N i < n ● f i) + (∑ i ∶ N i < n ● g i)
= ⟨ Quantification Distributivity (8.15) ⟩

(∑ i ∶ N i < n ● f i + g i)
Note: Some quantifications are not defined, e.g.: (∑n ∶ N ● n)
Note that quantifications over ∧ or ∨ are always defined:

(∀ x R ● P)∧(∀ x R ● Q) = (∀ x R ● P∧Q)
(∃ x R ● P)∨(∃ x R ● Q) = (∃ x R ● P∨Q)

Disjoint Range Split

(8.16) Axiom, Range split:

(⋆ x R∨S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided R∧S = false and each quantification is defined.

(Σ x R∨S ● P) = (Σ x R ● P) + (Σ x S ● P)
provided R∧S = false and each sum is defined.

(∀ x R∨S ● P) = (∀ x R ● P)∧(∀ x S ● P)
provided R∧S = false.

(∃ x R∨S ● P) = (∃ x R ● P)∨(∃ x S ● P)
provided R∧S = false.

Range Split “Axioms”

(8.16) Axiom, Range split:(⋆ x R∨S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided R∧S = false and each quantification is defined.

(8.17) Axiom, Range Split:(⋆ x R∨S ● P) ⋆ (⋆ x R∧S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided each quantification is defined.

(8.18) Axiom, Range Split for idempotent ⋆:(⋆ x R∨S ● P) = (⋆ x R ● P) ⋆ (⋆ x S ● P)
provided each quantification is defined.

(∀ x R∨S ● P) = (∀ x R ● P)∧(∀ x S ● P)
(∃ x R∨S ● P) = (∃ x R ● P)∨(∃ x S ● P)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-18

Part 2: Predicate Logic (continued)

Combined Quantification Examples
“There is a least integer.”

“There exists an integer b such that every integer n is at least b”.

“There exists an integer b such that for every integer n, we have b ≤ n”.

(∃b ∶ Z ● (∀n ∶ Z ● b ≤ n))
“π can be enclosed within rational bounds that are less than any ε apart”

“For every positive real number ε, there are rational numbers r and s with
r < s < r + ε, such that r < π < s”

(∀ε ∶ R 0 < ε● (∃ r, s ∶ Q r < s < r + ε ● r < π < s))

Implicit Universal Quantification in Theorems 1

(9.16) Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

(If proving “x + 1 > x” is considered to really mean proving “∀ x ● x + 1 > x”, then the x in
“x + 1 > x” is called implicitly universally quantified.)

Proof method: To prove (∀ x ● P),
we prove P for arbitrary x.

In CALCCHECK:
Proving (∀ v ∶ N ● P): For any ‘v ∶ N‘:

Proof for P

Inference rule:

P∀ x ● P
∀-Intro (prov. x not free in assumptions)

Using “For any” for “Proof by Generalisation”
In CALCCHECK:

Proving (∀ v ∶ N ● P): For any ‘v ∶ N‘:
Proof for P

Proving ∀ x ∶ N ● x < x + 1:

For any `x ∶ N`:
x < x + 1≡ ⟨ Identity of + ⟩
x + 0 < x + 1≡ ⟨ Cancellation of + ⟩
0 < 1≡ ⟨ Fact `1 = suc 0` ⟩
0 < suc 0≡ ⟨ Zero is less than successor ⟩
true

Implicit Universal Quantification in Theorems 2

(9.16) Metatheorem: P is a theorem iff (∀ x ● P) is a theorem.

LADM Proof method: To prove (∀ x R ● P),
we prove P for arbitrary x in range R.

That is:
Assume R to prove P (and assume nothing else that mentions x)
This proves R⇒P
Then, by (9.16), (∀ x ● R⇒P) is a theorem.
With (9.2) Trading for ∀, this is transformed into (∀ x R ● P).

In CALCCHECK:
Proving (∀ v ∶ N ● P): For any ‘v ∶ N‘:

Proof for P

Proving (∀ v ∶ N R ● P): For any ‘v ∶ N‘ satisfying ‘R‘:
Proof for P using Assumption R

Using “For any . . . satisfying” for “Proof by Generalisation”
In CALCCHECK:

Proving (∀ v ∶ N R ● P): For any ‘v ∶ N‘ satisfying ‘R‘:
Proof for P using Assumption R

Proving ∀ x ∶ N x < 2 ● x < 3 :

For any `x ∶ N` satisfying `x < 2`:
x

< ⟨ Assumption `x < 2` ⟩
2

< ⟨ Fact `2 < 3` ⟩
3

∃-Introduction

Recall: (9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
Dual: (9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
An expression E with P[x ∶= E] is called a “witness” of (∃ x ● P).

Proving an existential quantification via ∃-Introduction requires “exhibiting a witness”.

Inference rule:

P[x ∶= E]∃ x ● P
∃-Intro

∀ x ● P
P[x ∶= E] ∀-Elim

Using ∃-Introduction for “Proof by Example”

(9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
An expression E with P[x ∶= E] is called a “witness” of (∃ x ● P).

Proving an existential quantification via ∃-Introduction requires “exhibiting a witness”.

(∃ x ∶ N ● x ⋅ x < x + x)
⇐ ⟨ ∃-Introduction ⟩

(x ⋅ x < x + x)[x ∶= 1]
≡ ⟨ Substitution ⟩

1 ⋅ 1 < 1 + 1

≡ ⟨ Evaluation ⟩
true

Using ∃-Introduction for “Proof by Counter-Example”

(9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
¬(∀ x ∶ N ● x + x < x ⋅ x)

≡ ⟨ Generalised De Morgan ⟩
(∃ x ∶ N ● ¬(x + x < x ⋅ x))

⇐ ⟨ ∃-Introduction ⟩
(¬(x + x < x ⋅ x))[x ∶= 2]

≡ ⟨ Substitution ⟩
¬(2 + 2 < 2 ⋅ 2)

≡ ⟨ Fact `2 + 2 < 2 ⋅ 2 ≡ false` ⟩
¬false

≡ ⟨ Negation of false ⟩
true

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-18

Part 3: Monotonicity of ∀ and ∃

Recall: Monotonicity With Respect To⇒
Let ≤ be an order on T, and let f ∶ T → T be a function on T. Then f is called

monotonic iff x ≤ y ⇒ f x ≤ f y ,
antitonic iff x ≤ y ⇒ f y ≤ f x .

(4.2) Left-Monotonicity of ∨: (p⇒ q) ⇒ (p∨ r⇒ q∨ r)
(4.3) Left-Monotonicity of ∧: (p⇒ q) ⇒ p∧ r ⇒ q∧ r

Antitonicity of ¬: (p⇒ q) ⇒ ¬q ⇒ ¬p

Left-Antitonicity of⇒: (p⇒ q) ⇒ (q⇒ r) ⇒ (p⇒ r)
Right-Monotonicity of⇒: (p⇒ q) ⇒ (r⇒p) ⇒ (r⇒ q)
Guarded Right-Monotonicity of⇒: (r⇒(p⇒ q)) ⇒ (r⇒p) ⇒ (r⇒ q)

Transitivity Laws are Monotonicity Laws

Notice: The following two “are” transitivity of⇒:● Left-Antitonicity of⇒: (p⇒ q) ⇒ (q⇒ r) ⇒ (p⇒ r)● Right-Monotonicity of⇒: (p⇒ q) ⇒ (r⇒p) ⇒ (r⇒ q)
This works also for other orders — with general monotonicity: Let≤1 be an order on T1, and ≤2 be an order on T2,

f ∶ T1 → T2 be a function from T1 to T2.
Then f is called

monotonic iff x ≤1 y ⇒ f x ≤2 f y,
antitonic iff x ≤1 y ⇒ f y ≤2 f x.

Transitivity of ≤ is antitonitcity of (≤ r) ∶ Z→ B:● Left-Antitonicity of ≤: (p ≤ q) ⇒ (q ≤ r) ⇒ (p ≤ r)
● Right-Monotonicity of ≤: (p ≤ q) ⇒ (r ≤ p) ⇒ (r ≤ q)

Weakening/Strengthening for ∀ and ∃ — “Cheap Antitonicity/Monotonicity”

(9.10) Range weakening/strengthening for ∀: (∀ x Q∨R ● P) ⇒ (∀ x Q ● P)
(9.11) Body weakening/strengthening for ∀: (∀ x R ● P∧Q) ⇒ (∀ x R ● P)
(9.25) Range weakening/strengthening for ∃: (∃ x R ● P) ⇒ (∃ x Q∨R ● P)
(9.26) Body weakening/strengthening for ∃: (∃ x R ● P) ⇒ (∃ x R ● P∨Q)
Recall:

(9.2) Trading for ∀: (∀ x R ● P) ≡ (∀ x ● R ⇒ P)
(9.19) Trading for ∃: (∃ x R ● P) ≡ (∃ x ● R ∧ P)

Monotonicity for ∀
(9.12) Monotonicity of ∀:

(∀ x R ● P1⇒P2) ⇒ ((∀ x R ● P1) ⇒ (∀ x R ● P2))
Range-Antitonicity of ∀:

(∀ x ● R2⇒R1) ⇒ ((∀ x R1 ● P) ⇒ (∀ x R2 ● P))
(∀ x ● R2⇒R1)⇒ ⟨ (9.12) with shunted (3.82a) Transitivity of⇒ ⟩
(∀ x ● (R1⇒P)⇒(R2⇒P))

⇒ ⟨ (9.12) Monotonicity of ∀ ⟩
(∀ x ● R1⇒P)⇒(∀ x ● R2⇒P)

= ⟨ (9.2) Trading for ∀ ⟩
(∀ x R1 ● P)⇒(∀ x R2 ● P)

Monotonicity for ∃
(9.27) (Body) Monotonicity of ∃:

(∀ x R ● P1⇒P2) ⇒ ((∃ x R ● P1) ⇒ (∃ x R ● P2))
Range-Monotonicity of ∃:

(∀ x ● R1⇒R2) ⇒ ((∃ x R1 ● P) ⇒ (∃ x R2 ● P))

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-19

Part 1: Monotonicity of ∀ and ∃
Plan for Today

Predicate logic: Universal and Existential Quantification

Introduction to Sequences (Finite Lists)

Monotonicity for ∀
(9.12) Monotonicity of ∀:

(∀ x R ● P1⇒P2) ⇒ ((∀ x R ● P1) ⇒ (∀ x R ● P2))
Range-Antitonicity of ∀:

(∀ x ● R2⇒R1) ⇒ ((∀ x R1 ● P) ⇒ (∀ x R2 ● P))
(∀ x ● R2⇒R1)⇒ ⟨ (9.12) with shunted (3.82a) Transitivity of⇒ ⟩
(∀ x ● (R1⇒P)⇒(R2⇒P))

⇒ ⟨ (9.12) Monotonicity of ∀ ⟩
(∀ x ● R1⇒P)⇒(∀ x ● R2⇒P)

= ⟨ (9.2) Trading for ∀ ⟩
(∀ x R1 ● P)⇒(∀ x R2 ● P)

Monotonicity for ∃
(9.27) (Body) Monotonicity of ∃:

(∀ x R ● P1⇒P2) ⇒ ((∃ x R ● P1) ⇒ (∃ x R ● P2))
Range-Monotonicity of ∃:

(∀ x ● R1⇒R2) ⇒ ((∃ x R1 ● P) ⇒ (∃ x R2 ● P))

Predicate Logic Laws You Really Need To Know
(8.13) Empty Range: (∀ x false ● P) = true(∃ x false ● P) = false

(8.14) One-point Rule: Provided ¬occurs(‘x’, ‘E’), (∀x x = E ● P) ≡ P[x ∶= E](∃x x = E ● P) ≡ P[x ∶= E]
(9.17) Generalised De Morgan: (∃ x R ● P) ≡ ¬(∀ x R ● ¬P)
(9.2) Trading for ∀: (∀ x R ● P) ≡ (∀ x ● R⇒P)
(9.4a) Trading for ∀: (∀ x Q∧R ● P) ≡ (∀ x Q ● R⇒P)
(9.19) Trading for ∃: (∃ x R ● P) ≡ (∃ x ● R∧P)
(9.20) Trading for ∃: (∃ x Q∧R ● P) ≡ (∃ x Q ● R∧P)
(9.13) Instantiation: (∀ x ● P) ⇒ P[x ∶= E]
(9.28) ∃-Introduction: P[x ∶= E] ⇒ (∃ x ● P)
. . . and correctly handle substitution, Leibniz, renaming of bound
variables, and monotonicity/antitonicity . . .

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-19

Part 2: Practice with ∀ and ∃

Sentences: Predicate Logic Formulae without Free Variables

Definition: A sentence is a Boolean expression without free variables.
Expressions without free variables are also called “closed”:
A sentence is a closed Boolean expression.
The value of an expression (in a state) only depends on its free variables.
The value of a closed expression does not depend on the state.
A closed Boolean expression, or sentence,

either always evaluates to true
or always evaluates to false

A closed Boolean expression, or sentence,
is either valid
or a contradiction

For a closed Boolean expression, or sentence, φ
either φ is valid
or ¬φ is valid

For a closed Boolean expression, or sentence, φ,
only one of φ and ¬φ can have a proof!

2018 Midterm 2

Midterm 2 Question 1A: Using Minimum and Maximum of Natural Numbers (≈ 18%)

The definitions of the binary minimum ↓ and maximum ↑ operators on natural numbers as seen in A4.2 are
available here:

Axiom “Left-zero of ↓”: 0 ↓ n = 0
Axiom “Right-zero of ↓”: m ↓ 0 = 0
Axiom “Distributivity of `S` over ↓”: (S m) ↓ (S n) = S (m ↓ n)

Axiom “Left-identity of ↑”: 0 ↑ n = n
Axiom “Right-identity of ↑”: m ↑ 0 = m
Axiom “Distributivity of `S` over ↑”: (S m) ↑ (S n) = S (m ↑ n)

(No symmetry and associativity of these is available, and therefore also not active.)

Also available here are propositional logic, and “Zero is not successor” and “Cancellation of successor”.

Prove the following theorem (by induction) — only one item is allowed per hint.

Theorem “Golden rule for ↑ and ↓”: m ↑ n = m ↓ n ≡ m = n

Midterm 2 Question 2A: Universal and Existential Quantification in ℤ (≈ 45%)

Structured Proofs in Predicate Logic

The same setting is active here as in A6.2: Preloaded here is integer material including all order material,
with > (respectively ≥) automatically recognised as converse of < (respectively ≤), in the same way as ⇐ is
automatically recognised as converse of ⇒. (Therefore, theorems about < can, with arguments flipped as
appropriate, also be used about >, etc.)

Preloaded are also all propositional logic, and also universal and existential quantification.

Prove one of the following two theorem statements — only one is valid. (Should be easy in less than ten
steps.)

Theorem “M2-3A-1-yes”: (∃ x : ℤ • ∀ y : ℤ • (x - 2) · y + 1 = x - 1)

Theorem “M2-3A-1-no”: ¬ (∃ x : ℤ • ∀ y : ℤ • (x - 2) · y + 1 = x - 1)

Prove one of the following two theorem statements — only one is valid.

You may need a case analysis, and some integer order theorems may come in handy, possibly including (but
not limited to) some trichotomy, irreflexivity, transitivity theorems, and some of the following:

“<-Monotonicity of ·”: 0 < d ⇒ (a < b ≡ a · d < b · d)
“≤-Monotonicity of ·”: 0 < d ⇒ (a ≤ b ≡ a · d ≤ b · d)

“Least greater element”: a < b ≡ a + 1 ≤ b
“At least successor”: a > b ≡ a ≥ b + 1
“Less than successor”: a < b + 1 ≡ a ≤ b
“Successor greater”: a + 1 > b ≡ a ≥ b

Theorem “M2-3A-2-yes”: (∃ i : ℤ • 11 = 3 · i)

Theorem “M2-3A-2-no”: ¬ (∃ i : ℤ • 11 = 3 · i)

For a closed Boolean expression, or sentence, φ,
only one of φ and ¬φ can have a proof!

Starting “Practice with ∀ and ∃” in H11.1. . .

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-19

Part 3: Sequences

Sequences
We may write [33,22,11] (Haskell notation) for the sequence that has

“33” as its first element,
“22” as its second element,
“11” as its third element, and
no further elements.

(Notation “[. . .]” for sequences is not supported by CALCCHECK. LADM writes “⟨. . .⟩”.)
Sequence matters: [33,22,11] and [11,22,33] are different!
Multiplicity matters: [33,22,11] and [33,22,22,11] are different!
We consider the type Seq A of sequences with elements of type A
as generated inductively by the following two constructors:

>

∶ Seq A /eps empty sequence◃ ∶ A→ Seq A→ Seq A /cons “cons”◃ associates to the right.

Therefore: [33,22,11] = 33 ◃ [22,11]= 33 ◃ 22 ◃ [11]= 33 ◃ 22 ◃ 11 ◃
>

Sequences — “cons” and “snoc”
We consider the type Seq A of sequences with elements of type A
as generated inductively by the following two constructors:

>

∶ Seq A /eps empty sequence◃ ∶ A→ Seq A→ Seq A /cons “cons”◃ associates to the right.

Therefore: [33,22,11] = 33 ◃ [22,11]= 33 ◃ 22 ◃ [11]= 33 ◃ 22 ◃ 11 ◃
>

Appending single elements “at the end”:▹ ∶ Seq A→ A→ Seq A /snoc “snoc”▹ associates to the left.
(Con-)catenation:⌢ ∶ Seq A→ Seq A→ Seq A /catenate⌢ associates to the right.

Sequences — Induction Principle

The set of all sequences over type A is written Seq A.

The empty sequence “
>

” is a sequence over type A.

If x is an element of A and xs is a sequence over type A,
then “x ◃ xs” (pronounced: “x cons xs”) is a sequence over type A, too.

Two sequences are equal iff they are constructed the same way from
>

and ◃.

Induction principle for sequences:

if P(
>

) If P holds for
>

and if P(xs) implies P(x ◃ xs) for all x ∶ A,
and whenever P holds for xs, it also holds for any x ◃ xs,

then for all xs ∶ Seq A we have P(xs).
then P holds for all sequences over A.

Sequences — Induction Proofs

Induction principle for sequences:

if P(
>

) If P holds for
>

and if P(xs) implies P(x ◃ xs) for all x ∶ A,
and whenever P holds for xs, it also holds for any x ◃ xs,

then for all xs ∶ Seq A we have P(xs). then P holds for all sequences over A.

An induction proof using this looks as follows:
Theorem: P
Proof:

By induction on xs ∶ Seq A:
Base case:

Proof for P[xs ∶=
>

]
Induction step:

Proof for (∀x ∶ A ● P[xs ∶= x ◃ xs])
using Induction hypothesis P

Concatenation

$[LRP���������!/HIW�LGHQWLW\�RI��"�
��������������!'HILQLWLRQ�RI���IRU�>"��������������>���\V� �\V�
$[LRP���������!0XWXDO�DVVRFLDWLYLW\�RI���ZLWK��"�
��������������!'HILQLWLRQ�RI���IRU��"��������������[���[V����\V� �[����[V���\V�

Ô⇒ H11.2

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-21

Part 1: At least five zeroes. . .

Plan for Today

Typing (see also Textbook Section 8.1)

Textbook Chapter 11: Set Theory

Formalise!

The equation f x = 0 has at least five solutions.

Ô⇒ Experiment in the H11.1 notebook. . .

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-21

Part 2: Types

Types

A type denotes a set of values that
can be associated with a variable
an expression might evaluate to

Some basic types: B, Z, N, Q, R, C

Some constructed types: Seq N, N→ B, Seq (Seq N)→ Seq B, set Z

“E : t” means: “Expression E is declared to have type t”.

Examples:
constants: true ∶ B, π ∶ R, 2 ∶ Z, 2 ∶ N
variable declarations: p ∶ B, k ∶ N, d ∶ R
type annotations in expressions:(x + y) ⋅ x Ð→ (x ∶ N + y) ⋅ x

(x + y) ⋅ x Ð→ ((((x ∶ N) + (y ∶ N)) ∶ N) ⋅ (x ∶ N)) ∶ N
Function Types — Textbook Version

If the parameters of function f have types t1, . . . , tn

and the result has type r,
then f has type t1 ×⋯ × tn → r

We write: f ∶ t1 ×⋯ × tn → r

Examples: ¬ ∶ B→ B + ∶ Z ×Z→ Z < ∶ Z ×Z→ B

Forming expressions using < ∶ Z ×Z→ B:
if expression a1 has type Z, and a2 has type Z
then a1 < a2 is a (well-typed) expression
and has type B.

In general: For f ∶ t1 ×⋯ × tn → r,
if expression a1 has type t1, and . . ., and an has type tn

then function application f (a1, . . . , an) is an expression
and has type r.

Function Types — Mechanised Mathematics Version
If the parameters of function f have types t1, . . . , tn

and the result has type r,
then f has type t1 → ⋯→ tn → r

}⇒We write: f ∶ t1 → ⋯→ tn → r

(The function type constructor→ associates to the right!)

Examples: ¬ ∶ B→ B + ∶ Z→ Z→ Z < ∶ Z→ Z→ B

Forming expressions using < ∶ Z→ Z→ B:
a1 ∶ Z a2 ∶ Z(a1 < a2) ∶ B

In general: For f ∶ A→ B,
if expression x has type A,
then function application f x is an expression
and has type B.

f ∶ A→ B x ∶ A
f x ∶ B

Well-typed Expressions?
2 + k √ 42 − true × ¬(3 ⋅ x) × (1/(x ∶ R)) ∶ R √

Non-well-typed expressions make no sense!

Function Application — Textbook Version

Consider function g defined by: (1.6) g(z) = 3 ⋅ z + 6

Special function application syntax for argument that is identifier or constant:

g.z = 3 ⋅ z + 6

Function Application — Mechanised Mathematics Version

Consider function g defined by: (1.6) g z = 3 ⋅ z + 6

Function application is denoted by juxtaposition (“putting side by side”)

Lexical separation for argument that is identifier or constant: space required:
h z = g (g z)

Superfluous parentheses (e.g., “h(z) = g(g(z))”) are allowed, ugly, and bad style.

Function application still has higher precedence than other binary ooperators.

As non-associative binary infix operator, function application associates to the left:
If f ∶ Z→ (Z→ Z) , then f 2 3 = (f 2) 3 , and f 2 ∶ Z→ Z

Typing rule for function application:

f ∶ A→ B x ∶ A
f x ∶ B

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-21

Part 3: Sets

LADM Chapter 11: A Theory of Sets

“A set is simply a collection of distinct (different) elements.”

11.1 Set comprehension and membership

11.2 Operations on sets

11.3 Theorems concerning set operations (many! — mostly easy. . .)

11.4 Union and intersection of families of sets (quantification over ∪ and ∩)

. . .

The Language of Set Theory — Overview

The type set t of sets with elements of type t

Set membership: For e ∶ t and S ∶ set t: e ∈ S

Set comprehension: {x ∶ t R ● E} — following the pattern of quantification

Set enumeration: {6,7,9}
Set size: #{6,7,9} = 3

Set inclusion: ⊂, ⊆, ⊃, ⊇
Set union and intersection: ∪, ∩
Set difference: S − T

Set complement: ∼S

Power set (set of subsets): P S

Cartesian product (cross product, direct product) of sets: S × T (Section 14.1)

Set Membership versus Type Annotation

Let T be a type; let S be a set, that is, an expression of type set T,
and let e be an expression ot type T, then

e ∈ S is an expression
of type B

and denotes “e is in S”
or “e is an element of S”

Because: ∈ ∶ T → set T → B

Note:
e ∶ T is nothing but the expression e, with type annotation T.
If e has type T, then e ∶ T has the same value as e.

Cardinality of Finite Sets

(11.12) Axiom, Size: Provided ¬occurs(‘x’, ‘S’),

S = (Σ x x ∈ S ● 1)
This uses: # ∶ set t→ N

Note: (Σ x x ∈ S ● 1) is defined if and only if S is finite.

#{n ∶ N true ● n} is undefined!

“#N” is a type error! — because N ∶ Type

Types are not sets — like in Haskell:

Integer :: *
Data.Set.Set Integer :: *

The Axioms of Set Theory — Overview
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
(11.2f) Empty Set: v ∈ {} ≡ false

(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),

S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
(11.13T)Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),

S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)
(11.14) Axiom, Proper subset: S ⊂ T ≡ S ⊆ T ∧ S ≠ T
(11.20) Axiom, Union: v ∈ S∪T ≡ v ∈ S ∨ v ∈ T
(11.21) Axiom, Intersection: v ∈ S∩T ≡ v ∈ S ∧ v ∈ T
(11.22) Axiom, Set difference: v ∈ S − T ≡ v ∈ S ∧ v ∉ T
(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S

Set Comprehension
Set comprehension examples: {i ∶ N i < 4 ● 2 ⋅ i + 1} = {1,3,5,7}{x ∶ Z 1 ≤ x < 5 ● x ⋅ x} = {1,4,9,16}{i ∶ Z 5 ≤ i < 8 ● i ◃ i ◃

>

} = {(5 ◃ 5 ◃
>

), (6 ◃ 6 ◃
>

), (7 ◃ 7 ◃
>

)}
(11.1) Set comprehension general shape: {x ∶ t R ● E}

— This set comprehension binds variable x in R and E!

Evaluated in state s, this denotes the set containing the values of E evaluated in those
states resulting from s by changing the binding of x to those values from type t that
satisfy R.

Note: The braces “{. . .}” are only used for set notation!

Abbreviation for special case: {x R} = {x R ● x}
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
Note: This is covered by “Reflexivity of =” in CALCCHECK.

Formalise!

Jane called more people than Alex.

P ∶ Type — The type of persons

called ∶ P→ P→ B

#{ p ∶ P Jane called p } > #{ p ∶ P Alex called p }

Formalise!
The equation f x = 0 has at least five solutions.

Without sets: Use ≠ to assert “different”:

(∃ a, b, c,d, e
a ≠ b ≠ c ≠ d ≠ e ≠ c ≠ a ≠ d ≠ b ≠ e ≠ a● f a = f b = f c = f d = f e = 0) — does not scale!

With sets — first attempt:

#{x f x = 0} ≥ 5 — That does not work for, e.g., f = sin.

Taking into account possibly infinite sets of solutions:

(∃S ∶ set R # S ≥ 5 ● (∀x x ∈ S ● f x = 0))
This “works”, because:
Every infinite set contains at least one finite set of size at least 5.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-25

Part 1: Set Theory

Plan for Today

Textbook Chapter 11: Set Theory

Anything Wrong?

Let the set Q be defined by the following:

(R) Q = {S S ∉ S}
Then:

Q ∈ Q≡ ⟨ (R) ⟩
Q ∈ {S S ∉ S}≡ ⟨ (11.3) Membership in set comprehension ⟩(∃S S ∉ S ● Q = S}≡ ⟨ (9.19) Trading for ∃, (8.14) One-point rule ⟩
Q ∉ Q≡ ⟨ (11.0) Def. ∉ ⟩¬(Q ∈ Q)

With (3.15) p ≡ ¬p ≡ false, this proves:

(R′) false — “Russell’s paradox”

∈ , ∉ ∶ A→ set A→ B
“The mother of all type errors”

Ô⇒ birth of type theory. . .

Set Comprehension
Set comprehension examples: {i ∶ N i < 4 ● 2 ⋅ i + 1} = {1,3,5,7}{x ∶ Z 1 ≤ x < 5 ● x ⋅ x} = {1,4,9,16}{i ∶ Z 5 ≤ i < 8 ● i ◃ i ◃

>

} = {(5 ◃ 5 ◃
>

), (6 ◃ 6 ◃
>

), (7 ◃ 7 ◃
>

)}
(11.1) Set comprehension general shape: {x ∶ t R ● E}

— This set comprehension binds variable x in R and E!

Evaluated in state s, this denotes the set containing the values of E evaluated in those
states resulting from s by changing the binding of x to those values from type t that
satisfy R.

Note: The braces “{. . .}” are only used for set notation!

Abbreviation for special case: {x R} = {x R ● x}
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
Note: This is covered by “Reflexivity of =” in CALCCHECK.

Set Membership
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
F ∈ {x R}

= ⟨ Expanding abbreviation ⟩
F ∈ {x R ● x}

= ⟨ (11.3) Axiom, Set membership — provided ¬occurs(‘x’, ‘F’) ⟩(∃ x R ● x = F)
= ⟨ (9.19) Trading for ∃ ⟩(∃ x x = F ● R)
= ⟨ (8.14) One-point rule — provided ¬occurs(‘x’, ‘F’) ⟩

R[x ∶= F]
This proves: Simple set compr. membership: Prov. ¬occurs(‘x’, ‘F’),

F ∈ {x R} ≡ R[x ∶= F]

Set Membership and Set Enumerations

(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
(11.7b) Simple set compr. membership:

F ∈ {x R} ≡ R[x ∶= F]
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),

{e0, . . . , en−1} = { x x = e0 ∨ ⋯ ∨ x = en−1 ● x }
The empty set: { x false ● x } = {} = {}
Singleton sets: { x x = E ● x } = {E} — provided ¬occurs(‘x’, ‘E’)
One-point set comprehension: {x x = E ● F} = { F[x ∶= E] }

— provided ¬occurs(‘x’, ‘E’)

Simplified Set Comprehension Notation

(11.6) Provided ¬occurs(‘y’, ‘R,E’),

{x R ● E} = {y (∃x R ● y = E) ● y}

This means that each set comprehension of shape {x R ● E} can be rewritten to shape{y R′ ● y}.

Recall: Abbreviated Notation:

{y R} ∶= {y R ● y}

Set Comprehension versus Predicates

(11.5) S = {x x ∈ S} provided ¬occurs(‘x’, ‘S’)
(11.7) x ∈ {x R} ≡ R

(11.8) Principle of comprehension: To each predicate R there corresponds a set
comprehension {x ∶ T R} which contains the objects in T that satisfy R.

R is called a characteristic predicate of the set.

fR ∶ T → B with fR x = R is also called the characteristic function of the set.

Two alternatives for defining sets:

S = {x R} x ∈ S ≡ R

T = {x x = 3∨x = 5} x ∈ T ≡ x = 3∨x = 5

Set Equality and Inclusion
(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),

S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
(11.13T)Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),

S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)
(11.11b) Metatheorem Extensionality:

Let S and T be set expressions and v be a variable.
Then S = T is a theorem iff v ∈ S ≡ v ∈ T is a theorem. — Using “Set extensionality”

(11.13m) Metatheorem Subset:
Let S and T be set expressions and v be a variable.
Then S ⊆ T is a theorem iff v ∈ S ⇒ v ∈ T is a theorem.

— Using “Set inclusion”

Extensionality (11.11b) and Subset (11.13m) will, by LADM,
mostly be used as the following inference rules:

v ∈ S ≡ v ∈ T
S = T

v ∈ S ⇒ v ∈ T
S ⊆ T

LADM Set Equality via Equivalence

(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),

S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
(11.9) {x Q} = {x R} ≡ (∀ x ● Q ≡ R) — Leibniz for set compr. ranges

(11.10) Metatheorem set comprehension equality:

{x Q} = {x R} is valid iff Q ≡ R is valid.

(11.11) Methods for proving set equality S = T:
(a) Use Leibniz directly
(b) Use axiom Extensionality (11.4) and prove v ∈ S ≡ v ∈ T
(c) Prove Q ≡ R and conclude {x Q} = {x R} via (11.9)/(11.10)

Note:
In the informal setting, confusion about variable binding is easy!
Using “Set extensionality” or Using (11.9)

followed by For any . . . make variable binding clear.

Using Set Extensionality — LADM-Style

Extensionality (11.11b) inference rule: v ∈ S ≡ v ∈ T
S = T

Ex. 8.2(a) Prove: {E,E} = {E} for each expression E.

By extensionality (11.11b):

Proving v ∈ {E,E} ≡ v ∈ {E}:

v ∈ {E,E}
≡ ⟨ Set enumerations (11.2) ⟩

v ∈ {x x = E∨x = E}
≡ ⟨ Idempotency of ∨ (3.26) ⟩

v ∈ {x x = E}
≡ ⟨ Set enumerations (11.2) ⟩

v ∈ {E}
Using Set Extensionality — More CALCCHECK-Style

Axiom (11.4) “Set extensionality”: S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)
— provided ¬occurs(‘x’, ‘S,T’)

Example (8.2a): {E,E} = {E}
Proof:

Using “Set extensionality”:
Subproof for `∀ v ● v ∈ {E,E} ≡ v ∈ {E}`:

For any `v`:
v ∈ {E,E}

≡ ⟨ Set enumerations (11.2) ⟩
v ∈ {x x = E∨x = E}

≡ ⟨ Idempotency of ∨ (3.26) ⟩
v ∈ {x x = E}

≡ ⟨ Set enumerations (11.2) ⟩
v ∈ {E}

The Axioms of Set Theory — Overview
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
(11.2f) Empty Set: v ∈ {} ≡ false

(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),
S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)

(11.13T)Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),
S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)

(11.14) Axiom, Proper subset: S ⊂ T ≡ S ⊆ T ∧ S ≠ T
(11.20) Axiom, Union: v ∈ S∪T ≡ v ∈ S ∨ v ∈ T
(11.21) Axiom, Intersection: v ∈ S∩T ≡ v ∈ S ∧ v ∈ T
(11.22) Axiom, Set difference: v ∈ S − T ≡ v ∈ S ∧ v ∉ T
(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S
(14.3) Axiom, Cross product: S × T = {b, c b ∈ S∧ c ∈ T ● ⟨b, c⟩}

Calculate!

The size of a finite set S, that is, the number of its elements,
is written # S

#{1,2}
#{1,1}
#{1}
#{}
#{{}}
#{{{}}}
#{{},{{}}}
#{{},{}}

({1,2,3}∩{3,4})
({1,2,3}∪{3,4})
({1,2,3} × {3,4})
({1,2,3}∩{3,2})
({1,2,3}∪{3,2})
({1,2,3} × {3,2})
(P {1,2,3})
(P P {1,2,3})

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-26

Typed Set Theory

Plan for Today

Textbook Chapter 11: Set Theory

Coming up (interleaved):

Explicit Induction Principles

Induction (LADM Chapter 12)

Relations (LADM Chapter 14)

Sequences (LADM Chapter 13) may be further developed
in Exercises, Assignments, . . .

Recall: The Axioms of Set Theory — Overview
(11.2) Provided ¬occurs(‘x’, ‘e0, . . . , en−1’),{e0, . . . , en−1} = {x x = e0 ∨ ⋯ ∨ x = en−1 ● x}
(11.3) Axiom, Set membership: Provided ¬occurs(‘x’, ‘F’),

F ∈ {x R ● E} ≡ (∃ x R ● E = F)
(11.2f) Empty Set: v ∈ {} ≡ false

(11.4) Axiom, Extensionality: Provided ¬occurs(‘x’, ‘S,T’),
S = T ≡ (∀x ● x ∈ S ≡ x ∈ T)

(11.13T)Axiom, Subset: Provided ¬occurs(‘x’, ‘S,T’),
S ⊆ T ≡ (∀x ● x ∈ S ⇒ x ∈ T)

(11.14) Axiom, Proper subset: S ⊂ T ≡ S ⊆ T ∧ S ≠ T
(11.20) Axiom, Union: v ∈ S∪T ≡ v ∈ S ∨ v ∈ T
(11.21) Axiom, Intersection: v ∈ S∩T ≡ v ∈ S ∧ v ∈ T
(11.22) Axiom, Set difference: v ∈ S − T ≡ v ∈ S ∧ v ∉ T
(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S
(14.3) Axiom, Cross product: S × T = {b, c b ∈ S∧ c ∈ T ● ⟨b, c⟩}

“The Universe” in LADM

196 11. A THEORY OF SETS

We now give the general form of set comprehension. Let R be a pred
icate, E an expression, x a list of dummies, and t a type. Evaluation
of

(11.1) {x:t I R: E}

in a state yields the set of values that result from evaluating E[x := v] in
the state for each value v in t such that R[x := v] holds in that state. In
contexts where the type of the dummy is obvious, the type may be omitted.
If E has type t1, then the set comprehension has type set(tl).

The notation for set comprehension is similar to that for quantification
in (8.6). As in (8.6), boolean expression R is the range and expression
E is the body. The notions of scope, free variable, and bound variable
apply to set comprehension, without change. Finally, the dummies may
have different types, just as in a quantification.

We can define a set enumeration { e0 , ... , en-d to be an abbreviation
of a set comprehension:

(11.2) {eo, ... ,en-1} ={xI x=eo V ··· V x=en-1 :x}

In the following examples of set comprehension, the dummies range over
the integers.

{il0<i<4:i}
{ i I 0 < i < 50 1\ even.i : i}
{i I 0 < 2·i <50: 2·i}
{ x, y I 1 S:: x S:: 2 S:: y s; 3 : xY}
{xI 0 S:: x < 3: x·y}
{xI 0 S:: x < 0: x·y}

The set {1, 2, 3}
Even positive integers less than 50
Even positive integers less than 50
The set {12 13 22 23 }

' ' ' The set {O·y, 1·y, 2·y}
The empty set { }

The second and third examples denote the same set. The fourth example
shows two dummies in one set comprehension. The fifth illustrates the use
of a free variable in a set comprehension; the value of the expression depends
on the value of y in the state in which the expression is evaluated.

THE UNIVERSE

A theory of sets concerns sets constructed from some collection of elements.
There is a theory of sets of integers, a theory of sets of characters, a theory
of sets of sets of integers, and so forth. This collection of elements is called
the domain of discourse or the universe of values; it is denoted by U . The
universe can be thought of as the type of every set variable in the theory.
For example, if the universe is set(Z) , then v: set(Z) .

When several set theories are being used at the same time, there is a
different universe for each. The name U is then overloaded, and we have
to distinguish which universe is intended in each case. This overloading is

11.1. SET COMPREHENSION AND MEMBERSHIP 197

similar to using the constant 1 as a denotation of an integer, a real, the
identity matrix, and even (in some texts, alas) the boolean true.

SET MEMBERSHIP AND EQUALITY

For an expression e and a set-valued expression 1 S,

eE S

is an expression whose value is the value of the statement "e is a member
of S ", or "e is in S ". The expression •(e E S) may be abbreviated by
e rt S. For example, 2 E {1, 2, 4} is true and 3rt {1, 2, 4} is true. Symbol
E is treated as a conjunctional operator and has the same precedence as
the sign = for equality ~see the precedence table on the inside front cover.

Set comprehension is formalized by defining membership in the set it
denotes. For expression F:t and set {x I R: E:t} (for some type t), we
define:

(11.3) Axiom, Set membership: Provided •occurs('x', 'F'),

F E { x I R : E} = (3x I R : F = E) .

Two sets are equal if they contain the same elements. Thus, for sets S
and T we have the following axiom. 2

(11.4) Axiom, Extensionality: S = T = (\:lx 1: xES = x E T)

Several consequences follow from the definition of set comprehension, set
membership and the abbreviation {eo, ... , en-1} for {x I x = e0 V ... V
x=en-1:x}:

• { x I false : E} and { } denote the empty set, i.e. the set with no
elements. Exercise 11.4 asks you to prove formally that e E { x I false :
E} = false for all e and E . The empty set is also denoted by 0 .
Note that the set { { } } contains one element: the set { } .

• The expressions { x I x = e : x} (where x does not occur free in
e) and { e} yield a singleton set, which has one element, the value
of e . Note that e yields a value, while { e} yields a set containing
that value. The expression e E { e} is always true ; e = { e} is not
even an expression since the LHS and RHS have different types (t
and set(t) for some type t).

1 See Table 11.1 on page 200 for type restrictions on set-theory expressions.
2 An extensional definition of set equality depends only on the contents of

the sets. An intentional definition would concern how the sets are defined or
constructed. For example, was the element 0 added to the set before or after the
element 2?

Overloading via type polymorphism: {},U ∶ set t

({} ∶ set B) = {} (U ∶ set B) = {false, true}({} ∶ set N) = {} (U ∶ set N) = {k ∶ N true}

“The Universe” and Complement in LADM

196 11. A THEORY OF SETS

We now give the general form of set comprehension. Let R be a pred
icate, E an expression, x a list of dummies, and t a type. Evaluation
of

(11.1) {x:t I R: E}

in a state yields the set of values that result from evaluating E[x := v] in
the state for each value v in t such that R[x := v] holds in that state. In
contexts where the type of the dummy is obvious, the type may be omitted.
If E has type t1, then the set comprehension has type set(tl).

The notation for set comprehension is similar to that for quantification
in (8.6). As in (8.6), boolean expression R is the range and expression
E is the body. The notions of scope, free variable, and bound variable
apply to set comprehension, without change. Finally, the dummies may
have different types, just as in a quantification.

We can define a set enumeration { e0 , ... , en-d to be an abbreviation
of a set comprehension:

(11.2) {eo, ... ,en-1} ={xI x=eo V ··· V x=en-1 :x}

In the following examples of set comprehension, the dummies range over
the integers.

{il0<i<4:i}
{ i I 0 < i < 50 1\ even.i : i}
{i I 0 < 2·i <50: 2·i}
{ x, y I 1 S:: x S:: 2 S:: y s; 3 : xY}
{xI 0 S:: x < 3: x·y}
{xI 0 S:: x < 0: x·y}

The set {1, 2, 3}
Even positive integers less than 50
Even positive integers less than 50
The set {12 13 22 23 }

' ' ' The set {O·y, 1·y, 2·y}
The empty set { }

The second and third examples denote the same set. The fourth example
shows two dummies in one set comprehension. The fifth illustrates the use
of a free variable in a set comprehension; the value of the expression depends
on the value of y in the state in which the expression is evaluated.

THE UNIVERSE

A theory of sets concerns sets constructed from some collection of elements.
There is a theory of sets of integers, a theory of sets of characters, a theory
of sets of sets of integers, and so forth. This collection of elements is called
the domain of discourse or the universe of values; it is denoted by U . The
universe can be thought of as the type of every set variable in the theory.
For example, if the universe is set(Z) , then v: set(Z) .

When several set theories are being used at the same time, there is a
different universe for each. The name U is then overloaded, and we have
to distinguish which universe is intended in each case. This overloading is

202 11. A THEORY OF SETS

(11.15) Axiom, Superset: T ~ S = S ~ T

(11.16) Axiom, Proper superset: T :J S = S C T

Operators C , ~ , :J , and ~ are conjunctional and have the same prece
dence as = . As with all conjunctional operators, a superimposed slash
denotes negation. For example, S CJ,_ T means •(S ~ T).

COMPLEMENT

({S) The complement of S , written "'S , 4 is the set of elements that
_i:::J are not in S (but are in the universe). In the Venn diagram

in this paragraph, we have shown set S and universe U . The
non-filled area represents "'S.

(11.17) Axiom, Complement: v E rv s = v E u 1\ v f/. s

For example, for U = {0, 1, 2, 3, 4, 5}, we have

rv{3,5} = {0,1,2,4}

rvU=0 rv0=U

We can easily prove

(11.18) V E rv S =: V f/. S (for V in U).

(11.19) rv rv S = S

SET UNION, INTERSECTION, AND DIFFERENCE

The three operations union, intersection, and difference are used to con
struct a set from two other sets. The union of sets S and T , written

4 sc and S are also used to denote set complement.

FIGURE 11.1. VENN DIAGRAMS FOR UNION, INTERSECTION, AND DIFFER
ENCE

SUT SnT S-T

202 11. A THEORY OF SETS

(11.15) Axiom, Superset: T ~ S = S ~ T

(11.16) Axiom, Proper superset: T :J S = S C T

Operators C , ~ , :J , and ~ are conjunctional and have the same prece
dence as = . As with all conjunctional operators, a superimposed slash
denotes negation. For example, S CJ,_ T means •(S ~ T).

COMPLEMENT

({S) The complement of S , written "'S , 4 is the set of elements that
_i:::J are not in S (but are in the universe). In the Venn diagram

in this paragraph, we have shown set S and universe U . The
non-filled area represents "'S.

(11.17) Axiom, Complement: v E rv s = v E u 1\ v f/. s

For example, for U = {0, 1, 2, 3, 4, 5}, we have

rv{3,5} = {0,1,2,4}

rvU=0 rv0=U

We can easily prove

(11.18) V E rv S =: V f/. S (for V in U).

(11.19) rv rv S = S

SET UNION, INTERSECTION, AND DIFFERENCE

The three operations union, intersection, and difference are used to con
struct a set from two other sets. The union of sets S and T , written

4 sc and S are also used to denote set complement.

FIGURE 11.1. VENN DIAGRAMS FOR UNION, INTERSECTION, AND DIFFER
ENCE

SUT SnT S-T

“The” Universe

Frequently, a “domain of discourse” is assumed, that is, a set of “all objects under
consideration”.

This is often called a “universe”. Special notation: U — /universe
Declaration: U ∶ set t

Axiom: x ∈ U — remember: ∈ ∶ t→ set t→ B

Theorem: (U ∶ set t) = {x ∶ t ● x}
Types are not sets! — (U ∶ set t) is the set containing all values of type t.

We define a nicer notation: ⌞ t ⌟ = (U ∶ set t)
“Definition of ⌞ ⌟”: ∀ x ∶ t ● x ∈ ⌞ t ⌟
Example: ⌞ B ⌟ = {false, true}

Set Complement

(11.17) Axiom, Complement: v ∈ ∼S ≡ v ∈ U∧v ∉ S

Complement can be expressed via difference: ∼S = U − S

Complement ∼ always implicitly depends on the universe U!

Example: ∼{true} = ⌞ B ⌟ − {true} = {false, true} − {true} = {false}
LADM: “We can easily prove
(11.18) v ∈ ∼ S ≡ v ∉ S (for v in U).”

Consider Z+ ∶ set Z defined as Z+ = {x ∶ Z pos x}:
Let S be a subset of Z+. For example: S = {2,3,7}
Consider the complement ∼S
Is −5 ∈ ∼S true or false?

Power Set

(11.23) Axiom, Power set: v ∈ P S ≡ v ⊆ S

Declaration: P ∶ set t→ set (set t)
— remember: set ∶ Type→ Type

P {0,1} = {{},{0},{1},{0,1}}
For a type t, the type of subsets of t is set t

According to the textbook, type annotations v ∶ t, in particular in variable
declarations in quantifications and in set comprehensions, may only use types t.

(The specification notation Z allows the use of sets in variable
declarations — this makes ∀ and ∃ rules more complicated.)

If you find a place where I accidentally still follow Z in
writing “P t” also for “set t” or “P ⌞ t ⌟”, please point it out to
me.

What is the Type of Set Complement ∼ ?
Consider:

Z+ ∶ set Z
S1 = {1,3,8}
S1 ∈ P Z+
S1 ∶ set Z∼S1 ∶ set Z∼S1 ∉ P Z+

Which of the following makes most sense?∼ ∶ P S→ P S∼ ∶ P S→ P t — provided S ∶ set t∼ ∶ P S→ set t — provided S ∶ set t∼ ∶ set t→ set t
Note: In relation with types, sets are “just some kind of data”, like numbers...

set ∶ Type→ Type
P ∶ set t→ set (set t)
P S ∶ set (set t) — provided S ∶ set t→ ∶ Type→ Type→ Type

 — Sets are not types!

Calculate!

The size of a finite set S, that is, the number of its elements,
is written # S

⌞ B ⌟
#{S ∶ set B true ∈ S ● S}
#{T ∶ set set B {} ∉ T ● T}
#{S ∶ set N (∀x ∶ N x ∈ S ● x < n) ∧ # S = k ● S}
⌞ B ⌟ = {false, true}
S ∈ ⌞ set B ⌟ ≡ S ⊆ ⌞ B ⌟
⌞ set B ⌟ = {{},{false},{true},{false, true}}
T ∈ ⌞ set set B ⌟ ≡ T ⊆ P ⌞ B ⌟

Metatheorem (11.25): Sets⇐⇒ Propositions

Let
P,Q,R, . . . be set variables
p, q, r, . . . be propositional variables
E,F be expressions built from these set variables
and ∪, ∩, ∼ , U, {}.

Define the Boolean expressions Ep and Fp by replacing
P,Q,R, . . . with p, q, r, . . . ∼ with ¬∪ with ∨ U with true∩ with ∧ {} with false

Then:
E = F is valid iff Ep ≡ Fp is valid.
E ⊆ F is valid iff Ep⇒Fp is valid.
E = U is valid iff Ep is valid.

Metatheorem (11.25): Sets⇐⇒ Propositions — Examples

Let E,F be expressions built from set variables P, Q, R, . . .
and ∪, ∩, ∼ , U, {}.

Define the Boolean expressions Ep and Fp by replacing
P,Q,R, . . . with p, q, r, . . . ∼ with ¬∪ with ∨ U with true∩ with ∧ {} with false

Then:
E = F is valid iff Ep ≡ Fp is valid.
E ⊆ F is valid iff Ep⇒Fp is valid.
E = U is valid iff Ep is valid.

Free theorems!
P∩(P∪Q) = P
P∩(Q∪R) = (P∩Q)∪(P∩R)
P∪(Q∩R) ⊆ P∪Q⋮

Tuples and Tuple Types in CALCCHECK

Tuples can have arbitrary “arity” at least 2.

Example: A triple with type: ⟨2, true,”Hello”⟩ ∶ ⟨⟨⟨⟨⟨⟨⟨ Z,B,String ⟩⟩⟩⟩⟩⟩⟩
Example: A seven-tuple: ⟨3, true,5 ◃

>

, ⟨5, false⟩,”Hello”,{2,8},{42 ◃
>

}⟩
The type of this: ⟨⟨⟨⟨⟨⟨⟨ Z,B,Seq Z, ⟨⟨⟨⟨⟨⟨⟨ Z,B ⟩⟩⟩⟩⟩⟩⟩,String, set Z, set (Seq Z) ⟩⟩⟩⟩⟩⟩⟩

Tuples are enclosed in ⟨ . . . ⟩ as in LADM.
Tuple types are enclosed in ⟨⟨⟨⟨⟨⟨⟨ . . . ⟩⟩⟩⟩⟩⟩⟩.
Otherwise, tuples and tuple types “work” as in Haskell.
In particular, there is no implicit nesting:

⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨A,B⟩⟩⟩⟩⟩⟩⟩,C⟩⟩⟩⟩⟩⟩⟩ and ⟨⟨⟨⟨⟨⟨⟨A,B,C⟩⟩⟩⟩⟩⟩⟩ and ⟨⟨⟨⟨⟨⟨⟨A, ⟨⟨⟨⟨⟨⟨⟨B,C⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩ are three different types!

Pairs and Cartesian Products
If b and c are expressions,
then ⟨b, c⟩ is their 2-tuple or ordered pair

— “ordered” means that there is a first constituent (b) and a second constituent (c).

(14.2) Axiom, Pair equality: ⟨b, c⟩ = ⟨b′, c′⟩ ≡ b = b′ ∧ c = c′
(14.3) Axiom, Cross product: S × T = {b, c b ∈ S∧ c ∈ T ● ⟨b, c⟩}
(14.4) Membership: ⟨b, c⟩ ∈ S × T ≡ b ∈ S ∧ c ∈ T

Cartesian product of types: Two-tuple types: b ∶ t1 ; c ∶ t2 iff ⟨b, c⟩ ∶ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩
Axiom, Pair projections: fst ∶ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩→ t1 fst ⟨b, c⟩ = b

snd ∶ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩→ t2 snd ⟨b, c⟩ = c

Pair equality: For p, q ∶ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩,
p = q ≡ fst p = fst q ∧ snd p = snd q

Some Cross Product Theorems
(14.5) ⟨x,y⟩ ∈ S × T ≡ ⟨y,x⟩ ∈ T × S

(14.6) S = {} ⇒ S × T = T × S = {}
(14.7) S × T = T × S ≡ S = {}∨T = {}∨S = T

(14.8) Distributivity of × over ∪: S × (T∪U) = (S × T)∪(S ×U)(S∪T) ×U = (S ×U)∪(T ×U)
(14.9) Distributivity of × over ∩: S × (T∩U) = (S × T)∩(S ×U)(S∩T) ×U = (S ×U)∩(T ×U)
(14.10) Distributivity of × over −: S × (T −U) = (S × T) − (S ×U)(S − T) ×U = (S ×U) − (T ×U)
(14.12) Monotonicity: S ⊆ S′ ∧ T ⊆ T′ ⇒ S × T ⊆ S′ × T′

Pairs and Pair Projections
(14.2) Axiom, Pair equality: ⟨b, c⟩ = ⟨b′, c′⟩ ≡ b = b′ ∧ c = c′
(14.4p) Axiom, Pair projections:

fst ∶ t1 × t2 → t1 fst ⟨b, c⟩ = b
snd ∶ t1 × t2 → t2 snd ⟨b, c⟩ = c

(14.2p) Pair equality: For p, q ∶ t1 × t2,

p = q ≡ fst p = fst q ∧ snd p = snd q

Proving (14.2e) Pair extensionality: p = ⟨fst p, snd p⟩:
p = ⟨fst p, snd p⟩= ⟨ (14.2p) Pair equality ⟩
fst p = fst ⟨fst p, snd p⟩ ∧ snd p = snd ⟨fst p, snd p⟩= ⟨ (14.4p) Pair projections ⟩
fst p = fst p ∧ snd p = snd p= ⟨ (1.2) Reflexivity of equality, (3.38) Idempotency of ∧ ⟩
true

Some Spice. . .
Converting between “different ways to take two arguments”:

curry ∶ (⟨⟨⟨⟨⟨⟨⟨A,B⟩⟩⟩⟩⟩⟩⟩→ C)→ (A→ B→ C)
curry f x y = f ⟨x,y⟩
uncurry ∶ (A→ B→ C)→ (⟨⟨⟨⟨⟨⟨⟨A,B⟩⟩⟩⟩⟩⟩⟩→ C)
uncurry g ⟨x,y⟩ = g x y

These functions correspond to the “Shunting” law:

(3.65) Shunting: p∧ q ⇒ r ≡ p⇒(q⇒ r)
The “currying” concept is named for Haskell Brooks Curry (1900–1982),
but goes back to Moses Ilyich Schönfinkel (1889–1942)
and Gottlob Frege (1848–1925).

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-28

Part 1: Relative Pseudocomplement

Plan for Today

A Set Theory Exercise: Relative Pseudocomplement

Explicit Induction Principles

Relations (LADM Chapter 14)

Let c be defined by: x ≤ c ≡ x ≤ 5

What do you know about c? Why? (Prove it!)

Note: x is implicitly univerally quantified!

Proving 5 ≤ c:

5 ≤ c

≡ ⟨ The given equivalence, with x ∶= 5 ⟩
5 ≤ 5 — This is Reflexivity of ≤

Proving c ≤ 5:

c ≤ 5

≡ ⟨ Given equivalence, with x ∶= c ⟩
c ≤ c — This is Reflexivity of ≤

With antisymmetry of ≤ (that is, a ≤ b ∧ b ≤ a ⇒ a = b), we obtain c = 5 — An instance of:

(15.47) Indirect equality: a = b ≡ (∀ z ● z ≤ a ≡ z ≤ b)

Relative Pseudocomplement

Let A,B ∶ set t be two sets of the same type.

The relative pseudocomplement A _ B of A with respect to B is defined by:

X ⊆ (A _ B) ≡ X∩A ⊆ B

Calculate the relative pseudocomplement A _ B as a set expression
not using _! That is:

Calculate A _ B = ?

Using set extensionality, that is:

Calculate x ∈ A _ B ≡ x ∈ ?

Characterisation of relative pseudocomplement of sets: X ⊆ (A _ B) ≡ X∩A ⊆ B
x ∈ A _ B≡ ⟨ e ∈ S ≡ {e} ⊆ S — Exercise! ⟩{x} ⊆ A _ B≡ ⟨ Def. _, with X ∶= {x} ⟩{x}∩A ⊆ B≡ ⟨ (11.13) Subset ⟩(∀ y y ∈ {x}∩A ● y ∈ B)≡ ⟨ (11.21) Intersection ⟩(∀ y y ∈ {x}∧y ∈ A ● y ∈ B)≡ ⟨ y ∈ {x} ≡ y = x — Exercise! ⟩(∀ y y = x∧y ∈ A ● y ∈ B)≡ ⟨ (9.4b) Trading for ∀, Def. ∉ ⟩(∀ y y = x ● y ∉ A ∨ y ∈ B)≡ ⟨ (8.14) One-point rule ⟩
x ∉ A ∨ x ∈ B≡ ⟨ (11.17) Set complement, (11.20) Union ⟩
x ∈ ∼A ∪ B

Theorem: A _ B = ∼A ∪ B

Characterisation of relative pseudocomplement of sets: X ⊆ A _ B ≡ X∩A ⊆ B

Theorem “Pseudocomplement via ∪”: A _ B = ∼A ∪ B

Calculation:

x ∈ A _ B
≡ ⟨ Pseudocomplement via ∪ ⟩

x ∈ ∼A ∪ B
≡ ⟨ (11.17) Set complement, (11.20) Union ⟩¬(x ∈ A) ∨ x ∈ B
≡ ⟨ (3.59) Definition of⇒ ⟩

x ∈ A ⇒ x ∈ B

Corollary “Membership in pseudocomplement”:
x ∈ A _ B ≡ x ∈ A ⇒ x ∈ B

Easy to see: On sets, relative pseudocomplement wrt. {} is complement:
A _ {} = ∼ A

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-28

Part 2: Explicit Induction Principles

Natural Numbers — Induction Principle

The set of all natural numbers, written N, is imductively defined as generated from the
following constructors:

0 ∶ N
suc ∶ N→ N

Induction principle for the natural numbers:
if P(0) If P holds for 0

and if P(m) implies P(suc m),
and whenever P holds for m, it also holds for suc m ,

then for all m ∶ N we have P(m).
then P holds for all natural numbers.

Natural Numbers — Explicit Induction Principle
Recall: Induction principle for the natural numbers:

if P(0) If P holds for 0

and if P(m) implies P(suc m), and whenever P holds for m, it also holds for suc m ,

then for all m ∶ N we have P(m). then P holds for all natural numbers.

As inference rule:

Informally:

P(0)
⌜P(m)⌝....

P(suc m)
P(m)

Formally:

P[m ∶= 0]
⌜P⌝....

P[m ∶= suc m]
P

As axiom / theorem — corresponding to LADM (12.5):

Axiom “Induction over N ”∶
P[n ∶= 0]
⇒ (∀ n ∶ N P ● P[n ∶= suc n])
⇒ (∀ n ∶ N ● P)

Proving “Right-identity of +” Using the Induction Principle (v0)

$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

7KHRUHP�'5LJKW�LGHQWLW\�RI��(����P�����-�P����� �P�
3URRI��
��8VLQJ�',QGXFWLRQ�RYHU��(��
����6XESURRI�IRU�C�P����� �P�>P�`��@C��
������%\�VXEVWLWXWLRQ�DQG�''HILQLWLRQ�RI��(�
����6XESURRI�IRU�C��P�����:�P����� �P�-��P����� �P�>P�`�VXF�P@C��
������)RU�DQ\�CP����C�VDWLVI\LQJ�CP����� �PC��
�����������P����� �P�>P�`�VXF�P@�
�������� ��6XEVWLWXWLRQ��''HILQLWLRQ�RI��(���
����������VXF��P������ �VXF�P�
�������� ��$VVXPSWLRQ�CP����� �PC��'5HIOH[LYLW\�RI� (���
����������WUXH�

(I never use this pattern with substitutions in the subproof goals.)

Proving “Right-identity of +” Using the Induction Principle (v1)

$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

7KHRUHP�'5LJKW�LGHQWLW\�RI��(����P�����-�P����� �P�
3URRI��
��8VLQJ�',QGXFWLRQ�RYHU��(��
����6XESURRI�IRU�C������ ��C��
������%\�''HILQLWLRQ�RI��(�
����6XESURRI�IRU�C��P�����:�P����� �P�-�VXF�P����� �VXF�PC��
������)RU�DQ\�CP����C�VDWLVI\LQJ�CP����� �PC��
����������VXF�P�����
�������� ��''HILQLWLRQ�RI��(���
����������VXF��P������
�������� ��$VVXPSWLRQ�CP����� �PC���
����������VXF�P�

Proving “Right-identity of +” Using the Induction Principle (v2)

7KHRUHP�'5LJKW�LGHQWLW\�RI��(����P�����-�P����� �P�
3URRI��
��8VLQJ�',QGXFWLRQ�RYHU��(��
����6XESURRI��
��������������
������ ��''HILQLWLRQ�RI��(���
����������
����6XESURRI��
������)RU�DQ\�CP����C�VDWLVI\LQJ�',QG+\S(�CP����� �PC��
����������VXF�P�����
�������� ��''HILQLWLRQ�RI��(���
����������VXF��P������
�������� ��$VVXPSWLRQ�',QG+\S(���
����������VXF�P

$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

(Subproof goals can be omitted where they are clear from the
contained proof.)

You need to understand (v0) and (v1) to be able to do (v2)!

“By induction on . . . ” versus Using Induction Principles

Using induction principles directly is not much more verbose than “By
induction on . . . ”

“By induction on . . . ” only supports very few built-in induction principles

Induction principles can be derived as theorems, or provided as axioms, and
then can be used directly!

Sequences — Induction Principle
Induction principle for sequences:

if P(
>

) If P holds for
>

and if P(xs) implies P(x ◃ xs) for all x ∶ A,
and whenever P holds for xs, it also holds for any x ◃ xs ,

then for all xs ∶ Seq A we have P(xs). then P holds for all sequences over A.

P[xs ∶=
>

] ⇒ (∀ xs ∶ Seq A P ● (∀ x ∶ A ● P[xs ∶= x ◃ xs])⇒ (∀ xs ∶ Seq A ● P)
$[LRP�!,QGXFWLRQ�RYHU�VHTXHQFHV"�
����3>[V�X�>@
����æ����[V���6HT�$�2�3�'����[���$�'�3>[V�X�[���[V@��
����æ����[V���6HT�$�'�3�

P[m ∶= 0] ⇒ (∀ m ∶ N P ● P[m ∶= suc m]) ⇒ (∀ m ∶ N ● P)
$[LRP�',QGXFWLRQ�RYHU��(��

���3>Q�`��@�

���î����Q�����:�3�-�3>Q�`�VXF�Q@��

���î����Q�����-�3�

Proving “Tail is different” Using the Ind. Principle
$[LRP�!,QGXFWLRQ�RYHU�VHTXHQFHV"�
����3>[V�X�>@
����æ����[V���6HT�$�2�3�'����[���$�'�3>[V�X�[���[V@��
����æ����[V���6HT�$�'�3�

7KHRUHP��������!7DLO�LV�GLIIHUHQW"����[V���6HT�$�'���[���$�'�[���[V�d�[V
3URRI�
��8VLQJ�!,QGXFWLRQ�RYHU�VHTXHQFHV"�
����6XESURRI�IRU�C��[���$�'�[���>�d�>C�
������)RU�DQ\�C[���$C�
����������[���>�d�>

��������e{�!&RQV�LV�QRW�HPSW\"�|
����������WUXH
����6XESURRI�IRU�C��[V���6HT�$�2���������������[���$�'�[���[V�d�[V�
�������������������������������'����]���$�'����[���$�'�[���]���[V�d�]���[V��C�
������)RU�DQ\�C[V���6HT�$C�VDWLVI\LQJ�!,QG��+\S�"�C���[���$�'�[���[V�d�[V�C�
��������)RU�DQ\�C]���$C��C[���$C�
������������[���]���[V�d�]���[V
����������e{�!'HILQLWLRQ�RI�d"��!,QMHFWLYLW\�RI��"�|
������������n��[� �]�4�]���[V� �[V�
����������ä{�!&RQVHTXHQFH"��!'H�0RUJDQ"��!:HDNHQLQJ"��!'HILQLWLRQ�RI�d"�|
������������]���[V�d�[V
����������e{�$VVXPSWLRQ�!,QG��+\S�"�|
������������WUXH

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-10-28

Part 3: Relations

Predicates and Tuple Types — Relations are Tuple Sets

called ∶ P→ P→ B

(uncurry called) ∶ ⟨⟨⟨⟨⟨⟨⟨P,P⟩⟩⟩⟩⟩⟩⟩→ B is the characteristic function of the set

Rcalled ∶ set ⟨⟨⟨⟨⟨⟨⟨P,P⟩⟩⟩⟩⟩⟩⟩
Rcalled = {p, q ∶ P p called q ● ⟨p, q⟩}

Rcalled is a (binary) relation.

D ∶ P→ City→ City→ B

D p a b ≡ p drove from a to b

RD ∶ set ⟨⟨⟨⟨⟨⟨⟨P,City,City⟩⟩⟩⟩⟩⟩⟩
RD = {p ∶ P; a, b ∶ City D p a b ● ⟨p, a, b⟩}

RD is a (ternary) relation.

Relations are Everywhere in Specification and Reasoning in CS

Operations are easily defined and understood via set theory

These operations satisfy many algebraic properties

Formalisation using relation-algebraic operations needs no quantifiers

Similar to how matrix operations do away with quantifications and indexed
variables aij in linear algebra

Like linear algebra, relation algebra
raises the level of abstraction

makes reasoning easier by reducing necessity for quantification

Starting with lots of quantification over elements,
while proving properties via set theory.

Moving towards abstract relation algebra
(avoiding any mention of and quantification over elements)

Relations

LADM: A relation on B1 ×⋯ × Bn is a subset of B1 ×⋯ × Bn
— where B1, . . . ,Bn are sets

CALCCHECK: Normally: A relation on ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩ is a subset of ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩ ⌟,
that is, an item of type set ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩

— where t1, . . . , tn are types

A relation on the tuple (Cartesian product) type ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩ is an n-ary relation.

“Tables” in relational databases are n-ary relations.

A relation on the pair (Cartesian product) type ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is a binary relation.

The type of binary relations on ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is written t1 ↔ t2, with

t1 ↔ t2 = set ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ — /rel
The set of binary relations on B ×C is written B ○←→ C, with

B ○←→ C = P (B ×C) — /Rel

What is a Relation?

A relation
is a subset

of a Cartesian product.

What is a Binary Relation?

A binary relation
is a set of pairs.

Visualising Binary Relations
⌞ Person ⌟ = {Bob, Jill, Jane,Tom,Mary, Joe, Jack}
parentOf = {⟨Jill,Bob⟩, ⟨Jill, Jane⟩, ⟨Tom,Bob⟩, ⟨Tom, Jane⟩,⟨Bob,Mary⟩, ⟨Bob, Joe⟩, ⟨Jane, Jack⟩}

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n
e

Ji
ll

B
o

b

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

Ja
n
e

B
o

b

Bob

MaryJoe

Jill

Jane

Jack

Tom

parentOf ∶ Person↔ Person parentOf ∈ (parents ○←→ children)
parents = Dom parentOf = {Bob, Jill, Jane,Tom}
children = Ran parentOf = {Bob, Jane,Mary, Joe, Jack}

Expressing relationship: Jill parentOf Bob ≡ ⟨Jill,Bob⟩ ∈ parentOf

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-01

Part 1: Relation Operations

How can you simplify if you know P1⇒P2 ?
⋮

≡ ⟨ . . . ⟩
. . . ∨ P1 ∨ P2 ∨ . . .

≡ ⟨ ? ⟩
?

⋮
≡ ⟨ . . . ⟩

. . . ∧ P1 ∧ P2 ∧ . . .

≡ ⟨ ? ⟩
?

⋮
≡ ⟨ . . . ⟩

. . . ∨ P1 ∨ P2 ∨ . . .

≡ ⟨ “Reason for P1⇒P2”
with (3.57) ⟩

. . . ∨ P2 ∨ . . .

⋮
≡ ⟨ . . . ⟩

. . . ∧ P1 ∧ P2 ∧ . . .

≡ ⟨ “Reason for P1⇒P2”
with (3.60) ⟩

. . . ∧ P1 ∧ . . .

How can you simplify if you know S1 ⊆ S2 ?

⋮
= ⟨ . . . ⟩

. . . ∪ S1 ∪ S2 ∪ . . .

= ⟨ ? ⟩
?

⋮
= ⟨ . . . ⟩

. . . ∩ S1 ∩ S2 ∩ . . .

= ⟨ ? ⟩
?

Ð→ Reference Notebook 7.1: Set Theory
“Set inclusion via ∪”
“Set inclusion via ∩”

Plan for Today

Relations
Relationship notation and reasoning

Set operations as relation operations

Set-theoretic definition of relational operations: Converse, composition

Relations

LADM: A relation on B1 ×⋯ × Bn is a subset of B1 ×⋯ × Bn
— where B1, . . . ,Bn are sets

CALCCHECK: Normally: A relation on ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩ is a subset of ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩ ⌟,
that is, an item of type set ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩

— where t1, . . . , tn are types

A relation on the tuple (Cartesian product) type ⟨⟨⟨⟨⟨⟨⟨t1, . . . , tn⟩⟩⟩⟩⟩⟩⟩ is an n-ary relation.

“Tables” in relational databases are n-ary relations.

A relation on the pair (Cartesian product) type ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is a binary relation.

The type of binary relations on ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is written t1 ↔ t2, with

t1 ↔ t2 = set ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ — /rel
The set of binary relations on B ×C is written B ○←→ C, with

B ○←→ C = P (B ×C) — /Rel

What is a Relation?

A relation
is a subset

of a Cartesian product.

What is a Binary Relation?

A binary relation
is a set of pairs.

Visualising Binary Relations
⌞ Person ⌟ = {Bob, Jill, Jane,Tom,Mary, Joe, Jack}
parentOf = {⟨Jill,Bob⟩, ⟨Jill, Jane⟩, ⟨Tom,Bob⟩, ⟨Tom, Jane⟩,⟨Bob,Mary⟩, ⟨Bob, Joe⟩, ⟨Jane, Jack⟩}

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n
e

Ji
ll

B
o

b

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

Ja
n

e

B
o

b

Bob

MaryJoe

Jill

Jane

Jack

Tom

parentOf ∶ Person↔ Person parentOf ∈ (parents ○←→ children)
parents = Dom parentOf = {Bob, Jill, Jane,Tom}
children = Ran parentOf = {Bob, Jane,Mary, Joe, Jack}

Expressing relationship: Jill parentOf Bob ≡ ⟨Jill,Bob⟩ ∈ parentOf

(Graphs), Simple Graphs
A graph consists of:

a set of “nodes” or “vertices”
a set of “edges” or “arrows”
“incidence” information specifying how edges connect nodes

— more details another day.

A simple graph consists of:
a set of “nodes”, and
a set of “edges”, which are pairs of nodes.

(A simple graph has no “parallel edges”.)

Formally: A simple graph (N,E) is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N,
the element pairs of which are called “edges”.

Simple Graphs: Example

Formally: A simple graph (N,E) is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N, the element pairs of which are called “edges”.

Example: G1 = ({2,0,1,9},{⟨2,0⟩, ⟨9,0⟩, ⟨2,2⟩})
Graphs are normally visualised via graph drawings:

0

2

1

9

Simple graphs are exactly relations!

Reasoning with relations is reasoning about graphs!

Binary Relations, Relationship

Consider R ∶ t1 ↔ t2 and x ∶ t1 and y ∶ t2.

R ∈ ⌞ t1 ↔ t2 ⌟≡ ⟨ Def. ↔ ⟩
R ∈ ⌞ set ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟≡ ⟨ Membership in ⌞ set ⌟ ⟩
R ⊆ ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟≡ ⟨ Def. set , Def. ×, Def. ⌞ ⌟ ⟩
R ⊆ ⌞ t1 ⌟ × ⌞ t2 ⌟

Note that for a type t, the universal set

U ∶ set t

is the set of all members of t.

Or, (U ∶ set t) is “type t as a set”.

We abbreviate: ⌞ t ⌟ ∶= (U ∶ set t),
(/llcorner . . . /lrcorner) and have:

S ∈ ⌞ set t ⌟ ≡ S ⊆ ⌞ t ⌟
Notations for “x is in relation R with y”:

explicit membership notation: ⟨x,y⟩ ∈ R

ambiguous traditional infix notation: x R y

CALCCHECK: x R y ≡ ⟨x,y⟩ ∈ R

∶ t1 → (t1 ↔ t2)→ t2 → B — calculational!

Experimental Key Bindings

— US keyboard only! Firefox only?

Alt-= for ≡ in addition to /==
Alt-< for ⟨ in addition to /<
Alt-> for ⟩ in addition to />
Alt-(for in addition to /((
Alt-) for in addition to /))

Set Operations Used as Operations on Binary Relations

Relation union: ⟨u,v⟩ ∈ (R∪S) ≡ ⟨u,v⟩ ∈ R ∨ ⟨u,v⟩ ∈ S
u R∪S v ≡ u R v ∨ u S v

Relation intersection: u R∩S v ≡ u R v ∧ u S v

Relation difference: u R − S v ≡ u R v ∧ ¬(u S v)
Relation complement: u ∼R v ≡ ¬ (u R v)
Relation extensionality: R = S ≡ (∀x ● ∀y ● x R y ≡ x S y)

R = S ≡ (∀x, y ● x R y ≡ x S y)
Relation inclusion: R ⊆ S ≡ (∀ x ● ∀y ● x R y ⇒ x S y)

R ⊆ S ≡ (∀ x ● ∀y x R y ● x S y)
R ⊆ S ≡ (∀ x, y ● x R y ⇒ x S y)
R ⊆ S ≡ (∀ x, y x R y ● x S y)

Empty and Universal Binary Relations

The empty relation on ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is {} ∶ t1 ↔ t2 x {} y ≡ false

⟨x,y⟩ ∈ {} ≡ false

The universal relation on ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ is ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟ ∶ t1 ↔ t2 or U ∶ t1 ↔ t2

x ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟ y ≡ true x U y ≡ true

⟨x,y⟩ ∈ ⌞ ⟨⟨⟨⟨⟨⟨⟨t1, t2⟩⟩⟩⟩⟩⟩⟩ ⌟ ≡ true ⟨x,y⟩ ∈ U ≡ true

The universal relation on B ×C is B ×C

x B ×C y ≡ x ∈ B∧y ∈ C

(14.4) ⟨x,y⟩ ∈ B ×C ≡ x ∈ B∧y ∈ C

Sub-identity and Identity Relations

The (sub-)identity relation on B ∶ set t is id B ∶ t↔ t
id B = {x ∶ t x ∈ B ● ⟨x,x⟩}:

x id B y ≡ x = y ∈ B

⟨x,y⟩ ∈ id B ≡ x = y∧y ∈ Bid children =
Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

— LADM writes ιB
— Writing “id B” follows the Z notation

The identity relation on t ∶ Type is I ∶ t↔ t with I = id U

x I y ≡ x = y

⟨x,y⟩ ∈ I ≡ x = y(I ∶ Person↔ Person) =
Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

The “id” and “ I” notations are different from previous years!

Domain and Range of Binary Relations

For R ∶ t1 ↔ t2, we define Dom R ∶ set t1 and Ran R ∶ set t1 as follows:

(14.16) Dom R = {x ∶ t1 (∃y ∶ t2 ● x R y)} = {p p ∈ R ● fst p}= mapset fst R

(14.17) Ran R = {y ∶ t2 (∃x ∶ t1 ● x R y)} = {p p ∈ R ● snd p}= mapset snd R

“Membership in `Dom`”:
x ∈ Dom R ≡ (∃ y ∶ t2 ● x R y)

“Membership in `Ran`”:
y ∈ Ran R ≡ (∃ x ∶ t1 ● x R y)

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n
e

Ji
ll

B
o

b

Bob

MaryJoe

Jill

Jane

Jack

Tom

parents = Dom parentOf = {Bob, Jill, Jane,Tom}
children = Ran parentOf = {Bob, Jane,Mary, Joe, Jack}

Formalise Without Quantifiers!

P = type of persons
C ∶ P↔ P
p C q ≡ p called q

Remember: For R ∶ t1 ↔ t2:
“Membership in `Dom`”:

x ∈ Dom R ≡ (∃ y ∶ t2 ● x R y)
“Membership in `Ran`”:

y ∈ Ran R ≡ (∃ x ∶ t1 ● x R y)
1 Helen called somebody.

Helen ∈ Dom C

2 For everybody, there is somebody they haven’t called.

Dom (∼C) = ⌞ P ⌟
Dom (∼C) = U

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-01

Part 2: Relational Operations: Converse, Composition

Relation-Algebraic Operations: Operations on Relations

Set operations ∼ , ∪, ∩, −, _ are all available.

If R ∶ B↔ C, B R-C
then its converse R⌣ ∶ C↔ B
(in the textbook called “inverse” and written: R−1)
stands for “going R backwards”: c R⌣ b ≡ b R c

If R ∶ B↔ C and S ∶ C↔ D, B R-C S-D
then their composition R #S
(in the textbook written: R ○ S)
is a relation in B↔ D, and stands for
“going first a step via R, and then a step via S”:

b R #S d ≡ (∃c ∶ C ● b R c S d)
The resulting relation algebra

allows concise formalisations without quantifications,
enables simple calculational proofs.

Properties of Converse B R-C

If R ∶ B↔ C , then its converse R⌣ ∶ C↔ B is defined by:

(14.18) ⟨c, b⟩ ∈ R⌣ ≡ ⟨b, c⟩ ∈ R (for b ∶ B and c ∶ C)

(14.18) c R⌣ b ≡ b R c (for b ∶ B and c ∶ C)

(14.19) Properties of Converse: Let R,S ∶ B↔ C be relations.

(a) Dom (R⌣) = Ran R

(b) Ran (R⌣) = Dom R

(c) If R ∈ B↔ C , then R⌣ ∈ C↔ B

(d) (R⌣)⌣ = R

(e) R ⊆ S ≡ R⌣ ⊆ S⌣

Proving Self-inverse of Converse: (R⌣)⌣ = R

(R⌣)⌣ = R
≡ ⟨ Relation extensionality ⟩∀ x,y ● x (R⌣)⌣ y ≡ x R y
≡ ⟨ . . . ⟩

true

Using “Relation extensionality”:
Subproof for `∀ x,y ● x (R⌣)⌣ y ≡ x R y`:

For any x, y:

x (R⌣)⌣ y
≡ ⟨ Converse ⟩

y R⌣ x
≡ ⟨ Converse ⟩

x R y

Proving Isotonicity of Converse

Proving R ⊆ S ≡ R⌣ ⊆ S⌣:
R⌣ ⊆ S⌣

≡ ⟨ Relation inclusion ⟩∀ y,x y R⌣ x ● y S⌣ x
≡ ⟨ Converse, dummy permutation ⟩∀ x,y x R y ● x S y
≡ ⟨ Relation inclusion ⟩

R ⊆ S

Operations on Relations: Composition B R-C S-D

If R ∶ B↔ C and S ∶ C↔ D, then their composition R #S ∶ B↔ D is defined by:

(14.20) b R #S d ≡ (∃c ∶ C ● b R c S d) (for b ∶ B,d ∶ D)

(14.20) b R #S d ≡ (∃c ∶ C ● b R c ∧ c S d) (for b ∶ B,d ∶ D)

parentOf = {⟨Jill,Bob⟩, ⟨Jill, Jane⟩, ⟨Tom,Bob⟩, ⟨Tom, Jane⟩,⟨Bob,Mary⟩, ⟨Bob, Joe⟩, ⟨Jane, Jack⟩}
grandparentOf = parentOf #parentOf= {⟨Jill,Mary⟩, ⟨Jill, Joe⟩, ⟨Jill, Jack⟩⟨Tom,Mary⟩, ⟨Tom, Joe⟩, ⟨Tom, Jack⟩}

Bob

MaryJoe

Jill

Jane

Jack

Tom

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o
m

Ja
n
e

Ji
ll

B
o
b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o
m

Ja
n
e

Ji
ll

B
o
b

Bob Jill

Mary Joe Jack

JaneTom

Combining Several Operations

How to define siblings?
First attempt: childOf #parentOf , with childOf = parentOf ⌣ Bob

MaryJoe

Jill

Jane

Jack

Tom

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o
m

Ja
n

e

Ji
ll

B
o

b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Bob

Jane

Jill Tom Mary

Joe

Jack

Improved: sibling = childOf #parentOf − id ⌞ Person ⌟

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Bob

Jane

Jill Tom Mary

Joe

Jack

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-02

Part 1: Relation-Algebraic Formalisation Examples

Plan for Today

Relations
Some relation-algebraic formalisation examples

Some theorems about relation composition #
Classes of relations

General Induction

P = type of persons

C ∶ P↔ P — “called”

B ∶ P↔ P — “brother of”

Aos ∶ P

Jun ∶ P

Convert into English (via predicate logic):

Aos C Jun

Aos C #B Jun

Aos ∼ (C #∼B) Jun

Aos ∼ (∼C #B) Jun

Aos ∼ ((C∩∼ (B #C⌣)) #∼B) Jun

(B #({Jun} × ⌞ P ⌟))∩(C #C⌣) ⊆ id ⌞ P ⌟

Translating between Relation Algebra and Predicate Logic

R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u U v ≡ true

u A × B v ≡ u ∈ A ∧ v ∈ B
u ∼S v ≡ ¬(u S v)

u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S _ T v ≡ u S v ⇒ (u T v)

u I v ≡ u = v
u id A v ≡ u = v ∈ A
u R⌣ v ≡ v R u

u R #S v ≡ (∃ x ● u R x S v)
P = type of persons

C ∶ P↔ P — “called”

B ∶ P↔ P — “brother of”

Aos ∶ P

Jun ∶ P

Convert into English (via predicate logic):

Aos C #B Jun

= ⟨ (14.20) Relation composition ⟩(∃ b ● Aos C b B Jun)
“Aos called some brother of Jun.”

“Aos called a brother of Jun.”

Aos ∼ (C #∼B) Jun= ⟨ (11.17r) Relation complement ⟩¬(Aos C #∼B Jun)= ⟨ (14.20) Relation composition ⟩¬(∃ p ● Aos C p ∼B Jun)= ⟨ (11.17r) Relation complement ⟩¬(∃ p ● Aos C p ∧ ¬(p B Jun))= ⟨ (9.18b) Generalised De Morgan ⟩(∀ p ● ¬(Aos C p ∧ ¬(p B Jun)))= ⟨ (3.47) De Morgan, (3.12) Double negation ⟩(∀ p ● ¬(Aos C p) ∨ p B Jun)= ⟨ (9.3a) Trading for ∀ ⟩(∀ p Aos C p ● p B Jun)
“Everybody Aos called is a brother of Jun.”

“Aos called only brothers of Jun.”

Formalise Without Quantifiers! (2)

P ∶= type of persons
C ∶ P↔ P
p C q ∶≡ p called q

1 Helen called somebody who called her.

2 For arbitrary people x, z, if x called z, then there is sombody whom x called, and who was
called by somebody who also called z.

3 For arbitrary people x,y, z, if x called y, and y was called by somebody who also called z,
then x called z.

4 Obama called everybody directly, or indirectly via at most two intermediaries.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-02

Part 2: Some Properties of Relation Composition

First Simple Properties of Composition
If R ∶ B↔ C and S ∶ C↔ D, then their composition R #S ∶ B↔ D is defined by:

(14.20) b R #S d ≡ (∃c ∶ C ● b R c∧ c S d) (for b ∶ B,d ∶ D)

(14.22) Associativity of #: Q #(R #S) = (Q #R) #S

Left- and Right-identities of #: If R ∶ B↔ C, then:

id ⌞ B ⌟ # R = R = R # id ⌞ C ⌟
We defined: I = id U

Relationship via I: x I y ≡ x = y

I is “the” identity of composition:

Identity of #: I #R = R = R # I

Contravariance: (R #S)⌣ = S⌣ #R⌣

Distributivity of Relation Composition over Union
Composition distributes over union from both sides:
(14.23) Q # (R∪S) = Q #R∪Q #S(P∪Q) #R = P #R∪Q #R

In control flow diagrams (NFA) — boxed variables are free; others existentially
quantified; alternative paths correspond to disjunction:

b1

�
�
�
���

Q
@
@
@
@@R

R

a Q - b

� �
?

R

� 6
S

c ≡ a c
@
@
@
@@R

Q

�
�
�
���

S

b2(∃ b ● a Q b R∪S c) ≡(∃ b1, b2 ● a Q b1 R c ∨ a Q b2 S c)
Sub-Distributivity of Composition over Intersection

Composition sub-distributes over intersection from both sides:
(14.24) Q # (R∩S) ⊆ Q #R∩Q #S(P∩Q) #R ⊆ P #R∩Q #R

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction): b1

�
�
�
���

Q
@
@
@
@@R

R

a Q - b

� �
?

R

� 6
S

c ⇒ a c
@
@
@
@@R

Q

�
�
�
���

S

b2
(∃ b ● a Q b R∩S c) ⇒(∃ b1, b2 ● a Q b1 R c ∧ a Q b2 S c)

Counterexample for⇐:
Q ∶= neighbour of R ∶= brother of S ∶= parent of

Monotonicity of Relation Composition
Relation composition is monotonic in both arguments:

Q ⊆ R ⇒ Q #S ⊆ R #S
Q ⊆ R ⇒ P #Q ⊆ P #R

We could prove this via “Relation inclusion” and “For any”, but we don’t need to:

Assume Q ⊆ R, which by (11.45) is equivalent to Q∪R = R:

Proving Q #S ⊆ R #S:

R #S= ⟨ Assumption Q∪R = R ⟩(Q∪R) #S= ⟨ (14.23) Distributivity of # over ∪ ⟩
Q #S∪R #S⊇ ⟨ (11.31) Strengthening S ⊆ S∪T ⟩
Q #S

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-02

Part 3: Classes of Relations

Properties of Homogeneous Relations (Table 14.1)

A relation R ∶ B↔ C is called homogeneous iff B = C.

A (homogeneous) relation R ∶ B↔ B is called:

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b ⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c ⇒ ¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

Jack

Joe

Mary

Tom

Jane

Jill

Bob

Ja
ck

Jo
e

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

7

6

5

4

3

2

1

7654321

7

6

5

4

3

2

1

7654321

0

2

1

9

Properties of Homogeneous Relations (ctd.)

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c⇒¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c∧ c R d⇒ b R d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric.

R is a (partial) order on B iff it is reflexive, transitive, and antisymmetric.
(E.g., ≤, ≥, ⊆, ⊇, ∣)

R is a strict-order on B iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, ⊂, ⊃)

Divisibility Order with Hasse Diagram

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

987654321

1

23 5 7 11 13 17 19

46 10 149 15

812 2018

16

Hasse diagram for an order:
Edge direction is upwards — antisymmetric
Loops not drawn — reflexive
Transitive edges not drawn — transitive

Inclusion Order on Powerset of {1,2,3,4}

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Hasse diagram for an order:
Edge direction is upwards — antisymmetric
Loops not drawn — reflexive
Transitive edges not drawn — transitive

Properties of Heterogeneous Relations

A relation R ∶ B↔ C is called:

univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = ⌞ B ⌟

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = ⌞ C ⌟

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

a mapping iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Properties of Heterogeneous Relations — Examples 1

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = ⌞ B ⌟

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
a mapping iff it is univalent and total

c

b

1

a

f

7

e 4

B C

2

c

b

d

a

f

g

e

h

0

2

1

9

Properties of Heterogeneous Relations — Examples 2

injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = ⌞ C ⌟

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

bijective iff it is injective and surjective

c

b

1

a

f

7

e 4

B C

2

c

b

d

a

f

g

e

h

0

2

1

9

Properties of Heterogeneous Relations — Notes

univalent R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

surjective I ⊆ R⌣ #R ∀ c ∶ C ● (∃ b ∶ B ● b R c)
total I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

All these properties are defined for arbitrary relations! (Not only for functions!)

R is univalent and surjective
iff R⌣ #R = I
iff R⌣ is a left-inverse of R

R is total and injective
iff R #R⌣ = I
iff R⌣ is a right-inverse of R

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-04

Part 1: General Induction

Descending Chains in Numbers

Consider numbers with the usual strict-order <
and consider descending chains, like 17 > 12 > 9 > 8 > 3 > . . .
Are there infinite descending chains in

Z ? — 0 > −1 > −2 > −3 > . . .
N ? — No

R ? — 0 > −1 > −2 > −3 > . . .
R+ ? — π0 > π−1 > π−2 > π−3 > . . .
Q+ ? — 1 > 1/2 > 1/3 > 1/4 > . . .
C ? — no “default” order!

Relations; with no infinite (descending) <-chains are well-founded.

Loops terminate iff they are “going down” some well-founded relation.

Idea Behind Induction — How Does It Work? — Informally
Proving (∀ x ∶ t ● P) by induction, for an appropriate type t:

You are familiar with proving a base case and an induction step
The base cases establish P[x ∶= S], for each S that are “simplest t”
The induction steps work for x ∶ t for which we already know P[x ∶= x]
and from that establish P[x ∶= C x] for elements C x ∶ t that “are slightly more
complicated than x”.
Since the construction principle(s) (“C”) used in the induction step
is/are sufficiently powerful to construct all x ∶ t,
this justifies (∀ x ∶ t ● P).

Idea Behind Induction — How Does It Work? — Informally
Proving (∀ x ∶ t ● P) by induction, for an appropriate type t:

You are familiar with proving a base case and an induction step
The base cases establish P[x ∶= S], for each S that are “simplest t”
The induction steps work for x ∶ t for which we already know P[x ∶= x]
and from that establish P[x ∶= C x] for elements C x ∶ t that “are slightly more
complicated than x”.
Since the construction principle(s) (“C”) used in the induction step
is/are sufficiently powerful to construct all x ∶ t,
this justifies (∀ x ∶ t ● P).

Looking at this from the other side:
Each element x ∶ t is either a “simplest element” (“S”), or constructed via a
construction principle (“C”) from “slightly simpler elements” y,
that is, x = C y.
In the first case, the base case gives you the proof for P[x ∶= S].
In the second case, you obtain P[x ∶= Cy] via the induction step
from a proof for P[x ∶= y], if you can find that.
You can find that proof if repeated decomposition into S or C
always terminates.

Idea Behind Induction — Reduction via Well-founded Relations
Goal: prove (∀ x ∶ U ● P x) for some property P ∶ U → B (with ¬occurs(‘x’, ‘P’))

Situation: Elements of U are related via < ∶ U → U → B with “simpler” elements
(constituents, predecessors, parts, . . .)
“y; x” may read “y precedes x” or “y is an (immediate) constituent of x” or “y is
simpler than x” or “y is below x”. . .

If for every x ∶ U there is a proof that

if P y for all predecessors y of x, then P x,

then for every z ∶ U with ¬(P z):
there is a predecessor u of z with ¬(P u)
and so there is an infinite <-chain (of elements c with ¬(P c))
starting at z.

Theorem (12.19) Mathematical induction over (U,;):
If there are no infinite <-chains in U, that is, if; is well-founded, then:

(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)

Mathematical Induction in N
Consider ; ∶ N→ N→ B with (x ; y) = (y < x) = (y = suc x). ; = ⌜suc⌝
Mathematical induction over (N,;):(∀ x ∶ N ● P x)
= ⟨ (12.19) Math. induction; Def.; ⟩

(∀ x ∶ N ● (∀ y ∶ N suc y = x ● P y) ⇒ P x)
= ⟨ (8.18) Range split, with true ≡ x = 0∨x > 0 ⟩

(∀ x ∶ N x = 0 ● (∀ y ∶ N suc y = x ● P y)⇒P x)∧(∀ x ∶ N x > 0 ● (∀ y ∶ N suc y = x ● P y)⇒P x)
= ⟨ (8.14) One-point rule; (8.22) Change of dummy ⟩

((∀ y ∶ N suc y = 0 ● P y)⇒P 0)∧(∀ z ∶ N ● (∀ y ∶ N suc y = suc z ● P y) ⇒ P (suc z))
= ⟨ (8.13) Empty range, with suc y = 0 ≡ false;

Cancellation of suc , (8.14) One-point rule for ∀ ⟩
P 0 ∧ (∀ z ∶ N ● P z ⇒ P (suc z))

Mathematical Induction in N (ctd.)

Mathematical induction over (N, ⌜suc⌝):

(∀ x ∶ N ● P x) ≡ P 0 ∧ (∀ z ∶ N ● P z ⇒ P (suc z))
(∀ x ∶ N ● P x) ≡ P 0 ∧ (∀ z ∶ N ● P z ⇒ P (z + 1))

Absence of infinite descending ⌜suc⌝ chains is due to the inductive definition of N with
constructors 0 and suc : “. . . and nothing else is a natural number.”

Mathematical induction over (N,<) “Complete induction over N”:

(∀ x ∶ N ● P x) ≡ (∀ x ∶ N ● (∀ y ∶ N y < x ● P y) ⇒ P x)
Complete induction gives you a stronger induction hypothesis
for non-zero x — some proofs become easier.

Example for Complete Induction in N
Mathematical induction over (N,<) “Complete induction over N”:(∀ x ∶ N ● P x) ≡ (∀ x ∶ N ● (∀ y ∶ N y < x ● P y) ⇒ P x)
Theorem: Every natural number greater than 1 is a product of (one or more) prime numbers.
Formalisation: ∀ n ∶ N ● 1 < n⇒(∃B ∶ Bag N (∀p p � B ● isPrime p) ● bagProd B = n)
Proof:

Using “Complete induction”:
For any `n`:

Assuming `∀ m m < n ● 1 < m⇒(∃B ∶ Bag N (∀p p � B ● isPrime p) ● bagProd B = m)`:
Assuming `1 < n`:

By cases: `isPrime n`, `¬(isPrime n)`
Completeness: By “Excluded middle”
Case `isPrime n`:

. . . “∃-Introduction”: B ∶= }n~ . . .
Case `¬(isPrime n)`:

. . . then n = n1 ⋅ n2 with n1 < n > n2

. . . with witness: bagProd B1 = n1 and bagProd B2 = n2

. . . then bagProd (B1 ∪B2) = n

Mathematical Induction on Sequences

Cons induction: Mathematical induction over (Seq A,;) where

; ∶= {x ∶ A; xs,ys ∶ Seq A x ◃ xs = ys ● ⟨xs,ys⟩}
(∀ xs ∶ Seq A ● P xs) ≡ P

>

∧ (∀ xs ∶ Seq A P xs ● (∀ x ∶ A ● P(x ◃ xs)))
Snoc induction: Mathematical induction over (Seq A,;) where

; ∶= {x ∶ A; xs,ys ∶ Seq A xs ▹ x = ys ● ⟨xs,ys⟩}
(∀ xs ∶ Seq A ● P xs) ≡ P

>

∧ (∀ xs ∶ Seq A P xs ● (∀ x ∶ A ● P(xs ▹ x)))
Strict prefix induction: Mathematical induction over (Seq A,;) where

; ∶= {us,xs,ys ∶ Seq A us ≠
>

∧ xs ⌢ us = ys ● ⟨xs,ys⟩}
(∀ xs ∶ Seq A ● P xs) ≡(∀ xs ∶ Seq A ● (∀ ys ∶ Seq A ys; xs ● P ys) ⇒ P xs)
Different induction hypotheses make certain proofs easier.

Structural Induction

Structural induction is mathematical induction over, e.g.,

finite sequences with the strict suffix relation

expressions with the direct constituent relation

propositional formulae with the strict subformula relation

trees with the appropriate strict subtree relation

proofs with appropriate strict sub-proof relation

programs with appropriate strict sub-program relation

. . .

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-04

Part 2: The While Rule

The “While” Rule
The constituents of a while loop “while B do C od” are:

The loop condition B ∶ B
The (loop) body C ∶ Cmd

The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q ∶ B:

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

This rule reads:
If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant Q,
then you have proof that the whole loop also preserves the invariant
Q, and in addition establishes the negation of the loop condition.

The “While” Rule — Induction for Partial Correctness

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

The invariant will need to hold
immediately before the loop starts,
after each execution of the loop body,
and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by
the loop, and explain how they are related.

In general, you have to identify an appropriate invariant yourself!

Using the “While” Rule

Theorem “While-example ”∶
Pre⇒ INIT ;

while B
do

C
od ;

FINAL

Post

Proof:
Pre Precondition⇒ INIT ⟨ ? ⟩
Q Invariant⇒ while B do

C
od ⟨ “While ” with subproof:

B ∧ Q Loop condition and invariant⇒ C ⟨ ? ⟩
Q Invariant⟩¬ B ∧ Q Negated loop condition, and invariant⇒ FINAL ⟨ ? ⟩

Post Postcondition

“Quantification is Somewhat Like Loops”

7KHRUHP�'6XPPLQJ�XS(��
������WUXH�
����î?��V�� ���)�
��������L�� ���)�
��������ZKLOH�L�l�Q�
����������GR�
������������V�� �V���I�L�)�
������������L�� �L�����
����������RG�
������@�
������V� �-�M�����:�M���Q�-�I�M

Ð→ H15

Invariant: s = ∑ j ∶ N j < i ● f j

— Generalised postcondition using the negated loop condition

(This is a frequent pattern.)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-08

Part 1: Correctness of Reversing Singly-linked Lists

Correctness of Reversing Singly-linked Lists

Theorem “Reversing of singly-linked lists ”∶
xs = xs0⇒ ys ∶ = > ;

while xs ≠ >

do

ys ∶ = head xs ◃ ys ;

xs ∶ = tail xs

od

ys = reverse xs0

Proof:

?

Correctness of Reversing Singly-linked Lists

Theorem “Reversing of singly-linked lists ”∶
xs = xs0⇒ ys ∶ = > ; while xs ≠ > do ys ∶ = head xs ◃ ys ; xs ∶ = tail xs od
ys = reverse xs0

Proof:
xs = xs0 Precondition⇒ ys ∶ = > ⟨ ? ⟩
reverse xs ⌢ ys = reverse xs0 Invariant⇒ while xs ≠ > do

ys ∶ = head xs ◃ ys ;
xs ∶ = tail xs

od ⟨ “While ” with ? ⟩¬ (xs ≠ >) ∧ reverse xs ⌢ ys = reverse xs0 Negated loop condition, and invariant⇒ ⟨ ? ⟩
ys = reverse xs0 Postcondition

Correctness of Reversing Singly-linked Lists

Theorem “Reversing of singly-linked lists ”∶
xs = xs0⇒ ys ∶ = > ; while xs ≠ > do ys ∶ = head xs ◃ ys ; xs ∶ = tail xs od
ys = reverse xs0

Proof:
xs = xs0 Precondition⇒ ys ∶ = > ⟨ “Proper initialisation for `rev` ” ⟩
reverse xs ⌢ ys = reverse xs0 Invariant⇒ while xs ≠ > do

ys ∶ = head xs ◃ ys ;
xs ∶ = tail xs

od ⟨ “While ” with “Invariant for `rev` ” ⟩ A4.3¬ (xs ≠ >) ∧ reverse xs ⌢ ys = reverse xs0 Negated loop condition, and invariant⇒ ⟨ ? ⟩
ys = reverse xs0 Postcondition

Correctness of Initialisation for Reversing Singly-linked Lists

Theorem “Proper initialisation for `rev` ”∶
xs = xs0⇒ ys ∶ = >

reverse xs ⌢ ys = reverse xs0

Proof:

reverse xs ⌢ ys = reverse xs0

ys ∶ = > ⇐ ⟨ “Assignment ” with substitution ⟩
reverse xs ⌢ > = reverse xs0≡ ⟨ “Right-identity of ⌢ ” ⟩
reverse xs = reverse xs0≡ ⟨ Substitution ⟩
(reverse z)[z ∶= xs] = (reverse z)[z ∶= xs0]⇐ ⟨ “Leibniz ” ⟩
xs = xs0

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-08

Part 2: Midterm 1

M1.1A

Theorem (3.84a) “Replacement ”∶(e = f) ∧ E[z ∶= e]≡ (e = f) ∧ E[z ∶= f]
Theorem (3.84b) “Replacement ”∶(e = f) ⇒ E[z ∶= e]≡ (e = f) ⇒ E[z ∶= f]

Theorem (M1.1)∶ y = 2 ⇒ x ⋅ (y ⋅ y − 4) = 0
Proof:

y = 2 ⇒ x ⋅ (y ⋅ y − 4) = 0≡ ⟨ Substitution ⟩
y = 2 ⇒ (x ⋅ (u ⋅ u − 4) = 0)[u ∶= y]≡ ⟨ “Replacement ” (3.84b) ⟩
y = 2 ⇒ (x ⋅ (u ⋅ u − 4) = 0)[u ∶= 2]≡ ⟨ Substitution ⟩
y = 2 ⇒ (x ⋅ (2 ⋅ 2 − 4) = 0)≡ ⟨ Evaluation ⟩
y = 2 ⇒ (x ⋅ 0 = 0)≡ ⟨ “Zero of ⋅ ” ⟩
y = 2 ⇒ true≡ ⟨ “Right-zero of⇒ ” ⟩
true

M1.1B

Theorem (3.84a) “Replacement ”∶(e = f) ∧ E[z ∶= e]≡ (e = f) ∧ E[z ∶= f]
Theorem (3.84b) “Replacement ”∶(e = f) ⇒ E[z ∶= e]≡ (e = f) ⇒ E[z ∶= f]

Theorem (M1.1)∶ x = 3 ⇒ (9 − x ⋅ x) ⋅ y = 0
Proof:

x = 3 ⇒ (9 − x ⋅ x) ⋅ y = 0≡ ⟨ Substitution ⟩
x = 3 ⇒ ((9 − u ⋅ u) ⋅ y = 0)[u ∶= x]≡ ⟨ “Replacement ” (3.84b) ⟩
x = 3 ⇒ ((9 − u ⋅ u) ⋅ y = 0)[u ∶= 3]≡ ⟨ Substitution ⟩
x = 3 ⇒ ((9 − 3 ⋅ 3) ⋅ y = 0)≡ ⟨ Evaluation ⟩
x = 3 ⇒ (0 ⋅ y = 0)≡ ⟨ “Zero of ⋅ ” ⟩
x = 3 ⇒ true≡ ⟨ “Right-zero of⇒ ” ⟩
true

M1.2A — Even ProductTheorem “Even product ”∶ even a ⇒ even (a ⋅ b)
Proof:

By induction on `b ∶ N`∶
Base case∶

even a ⇒ even (a ⋅ 0)≡ ⟨ “Zero of ⋅ ” ⟩
even a ⇒ even 0≡ ⟨ “Zero is even ” ⟩
even a ⇒ true

— This is “Right-zero of⇒ ”
Induction step∶

even a ⇒ even (a ⋅ suc b)≡ ⟨ “Multiplying the successor ” ⟩
even a ⇒ even (a + a ⋅ b)≡ ⟨ “Even addition ” ⟩
even a ⇒ (even a ≡ even (a ⋅ b))≡ ⟨ “Distributivity of⇒ over ≡ ” ⟩(even a ⇒ even a) ≡ (even a ⇒ even (a ⋅ b))≡ ⟨ Induction hypothesis ⟩(even a ⇒ even a) ≡ true

— This is “Reflexivity of⇒ ”

M1.2A — Odd ProductTheorem “Odd product ”∶ odd (a ⋅ b) ≡ odd a ∧ odd b
Proof:

By induction on `a ∶ N`∶
Base case∶

odd (0 ⋅ b) ≡ odd 0 ∧ odd b≡ ⟨ “Zero of ⋅ ” ⟩
odd 0 ≡ odd 0 ∧ odd b≡ ⟨ “Definition of⇒ via ∧ ” ⟩
odd 0 ⇒ odd b≡ ⟨ “Double negation ” ⟩¬ ¬ odd 0 ⇒ odd b≡ ⟨ “Zero is not odd ” ⟩¬ true ⇒ odd b≡ ⟨ “Definition of `false` ” ⟩
false ⇒ odd b

— This is “ex falso quodlibet ”
Induction step∶

odd (suc a ⋅ b)≡ ⟨ “Definition of ⋅ for `suc` ” ⟩
odd (b + a ⋅ b)≡ ⟨ “Odd addition ” ⟩
even b ≡ odd (a ⋅ b)≡ ⟨ Induction hypothesis ⟩
even b ≡ odd a ∧ odd b≡ ⟨ “Even is not odd ” ⟩¬ odd b ≡ odd a ∧ odd b≡ ⟨ (3.48) ⟩¬ odd a ∧ odd b≡ ⟨ “Odd successor ” ⟩
odd (suc a) ∧ odd b

M1.2B — Odd ProductTheorem “Odd product ”∶ odd (a ⋅ b) ⇒ odd a
Proof:

By induction on `b ∶ N`∶
Base case∶

odd (a ⋅ 0) ⇒ odd a≡ ⟨ “Zero of ⋅ ” ⟩
odd 0 ⇒ odd a≡ ⟨ “Material implication ” ⟩¬ odd 0 ∨ odd a≡ ⟨ “Zero is not odd ” ⟩
true ∨ odd a≡ ⟨ “Zero of ∨ ” ⟩
true

Induction step∶
odd (a ⋅ suc b) ⇒ odd a≡ ⟨ “Multiplying the successor ” ⟩
odd (a + a ⋅ b) ⇒ odd a≡ ⟨ “Odd addition ” ⟩(even a ≡ odd (a ⋅ b)) ⇒ odd a≡ ⟨ “Material implication ” ⟩¬ (even a ≡ odd (a ⋅ b)) ∨ odd a≡ ⟨ “Commutativity of ¬ with ≡ ” ⟩(even a ≡ ¬ odd (a ⋅ b)) ∨ odd a≡ ⟨ “Distributivity of ∨ over ≡ ” ⟩(even a ∨ odd a) ≡ (¬ odd (a ⋅ b) ∨ odd a)≡ ⟨ “Material implication ” ⟩(even a ∨ odd a) ≡ (odd (a ⋅ b) ⇒ odd a)≡ ⟨ Induction hypothesis ⟩(even a ∨ odd a) ≡ true

— This is “Odd or even ”

M1.2B — Even ProductTheorem “Even product ”∶ even (a ⋅ b) ≡ even a ∨ even b
Proof:

By induction on `a ∶ N`∶
Base case∶

even (0 ⋅ b) ≡ even 0 ∨ even b≡ ⟨ “Zero of ⋅ ” ⟩
even 0 ≡ even 0 ∨ even b≡ ⟨ “Zero is even ” ⟩
true ≡ true ∨ even b

— This is “Zero of ∨ ”
Induction step∶

even (suc a ⋅ b)≡ ⟨ “Definition of ⋅ for `suc` ” ⟩
even (b + a ⋅ b)≡ ⟨ “Even addition ” ⟩
even b ≡ even (a ⋅ b)≡ ⟨ Induction hypothesis ⟩
even b ≡ even a ∨ even b≡ ⟨ (3.32) ⟩¬ even a ∨ even b≡ ⟨ “Even successor ” ⟩
even (suc a) ∨ even b

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-08

Part 3: Quantifier Reasoning Examples: H14

H14 — Domain of Union — Step 1

Theorem “Domain of union ”∶ Dom (R ∪ S) = Dom R ∪ Dom S
Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (R ∪ S)

≡ ⟨ ? ⟩

x ∈ Dom R ∪ Dom S

H14 — Domain of Union — Step 2

Theorem “Domain of union ”∶ Dom (R ∪ S) = Dom R ∪ Dom S
Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (R ∪ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∪ S y≡ ⟨ “Relation union ” ⟩∃ y ● x R y ∨ x S y

≡ ⟨ ? ⟩
(∃ y ● x R y) ∨ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∨ x ∈ Dom S≡ ⟨ “Union ” ⟩
x ∈ Dom R ∪ Dom S

H14 — Domain of Union — Step 3

Theorem “Domain of union ”∶ Dom (R ∪ S) = Dom R ∪ Dom S

Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (R ∪ S)
≡ ⟨ “Membership in `Dom` ” ⟩

∃ y ● x R ∪ S y

≡ ⟨ “Relation union ” ⟩
∃ y ● x R y ∨ x S y

≡ ⟨ “Distributivity of ∃ over ∨ ” ⟩
(∃ y ● x R y) ∨ (∃ y ● x S y)

≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∨ x ∈ Dom S

≡ ⟨ “Union ” ⟩
x ∈ Dom R ∪ Dom S

H14 — Domain of ∩ — Step 1

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y

⇒ ⟨ ? ⟩
(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H14 — Domain of ∩ — Step 2

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ “Idempotency of ∧ ” ⟩(∃ y ● x R y ∧ x S y) ∧ (∃ y ● x R y ∧ x S y)
⇒ ⟨ ? with “Weakening ” ⟩

(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H14 — Domain of ∩ — Step 3

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ “Idempotency of ∧ ” ⟩(∃ y ● x R y ∧ x S y) ∧(∃ y ● x R y ∧ x S y)⇒ ⟨ “Monotonicity of ∧ ” with
“Body monotonicity of ∃ ” with “Weakening ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩

x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H14 — Domain of ∩ (B) — Step 1

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y

⇒ ⟨ ? ⟩
(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

Theorem (9.21) “Distributivity of ∧ over ∃ ”∶
P ∧ (∃ x R ● Q) ≡ (∃ x R ● P ∧ Q)

provided ¬occurs(‘x’, ‘P’)

H14 — Domain of ∩ (B) — Step 2

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y

⇒ ⟨ ? ⟩
∃ y ● x R y ∧ (∃ y ● x S y)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

Theorem (9.21) “Distributivity of ∧ over ∃ ”∶
P ∧ (∃ x R ● Q) ≡ (∃ x R ● P ∧ Q)

provided ¬occurs(‘x’, ‘P’)

H14 — Domain of ∩ (B) — Step 3

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ Substitution ⟩∃ y ● x R y ∧ (x S y)[y ∶= y]⇒ ⟨ ? with “∃-Introduction ” ⟩∃ y ● x R y ∧ (∃ y ● x S y)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

H14 — Domain of ∩ (B) — Step 4

Theorem “Domain of intersection ”∶ Dom (R ∩ S) ⊆ Dom R ∩ Dom S
Proof:

Using “Set inclusion ”∶
For any `x`∶

x ∈ Dom (R ∩ S)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x R ∩ S y≡ ⟨ “Relation intersection ” ⟩∃ y ● x R y ∧ x S y≡ ⟨ Substitution ⟩∃ y ● x R y ∧ (x S y)[y ∶= y]⇒ ⟨ “Body monotonicity of ∃ ” with “Monotonicity of ∧ ” with “∃-Introduction ” ⟩∃ y ● x R y ∧ (∃ y ● x S y)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ y ● x R y) ∧ (∃ y ● x S y)≡ ⟨ “Membership in `Dom` ” ⟩
x ∈ Dom R ∧ x ∈ Dom S≡ ⟨ “Intersection ” ⟩
x ∈ Dom R ∩ Dom S

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-08

Part 4: Witnesses

Witnesses
(9.30v) Metatheorem Witness: If ¬occurs(‘x’, ‘Q’), then:

(∃ x R ● P)⇒Q is a theorem iff (R∧P)⇒Q is a theorem

Theorem “Witness”: (∃ x R ● P)⇒Q ≡ (∀ x ● R∧P⇒Q) prov. ¬occurs(‘x’, ‘Q’)
Proof: (∃ x R ● P)⇒Q

= ⟨ (9.19) Trading for ∃ ⟩(∃ x ● R∧P)⇒Q
= ⟨ (3.59) p⇒ q ≡ ¬p∨ q, (9.18b) Gen. De Morgan ⟩(∀ x ● ¬(R∧P))∨Q
= ⟨ (9.5) Distributivity of ∨ over ∀ — ¬occurs(‘x’, ‘Q’) ⟩(∀ x ● ¬(R∧P)∨Q)
= ⟨ (3.59) p⇒ q ≡ ¬p∨ q ⟩(∀ x ● R∧P⇒Q)

The last line is, by Metatheorem (9.16), a theorem iff (R∧P)⇒Q is.

LADM Theory of Integers — Axioms
(15.1) Axiom, Associativity: (a + b) + c = a + (b + c)(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)
(15.2) Axiom, Symmetry: a + b = b + a

a ⋅ b = b ⋅ a
(15.3) Axiom, Additive identity: 0 + a = a

(15.4) Axiom, Multiplicative identity: 1 ⋅ a = a

(15.5) Axiom, Distributivity: a ⋅ (b + c) = a ⋅ b + a ⋅ c
(15.6) Axiom, Additive Inverse: (∃x ● x + a = 0)
(15.7) Axiom, Cancellation of ⋅: c ≠ 0 ⇒ (c ⋅ a = c ⋅ b ≡ a = b)
(15.8) Cancellation of +: a + b = a + c ≡ b = c

(15.10b) Unique mult. identity: a ≠ 0 ⇒ (a ⋅ z = a ≡ z = 1)
(15.12) Unique additive inverse: x + a = 0 ∧ y + a = 0 ⇒ x = y

(15.6) Additive Inverse:(∃ x ● x + a = 0)
(15.8) Cancellation of +:

a + b = a + c ≡ b = c

7KHRUHP��������'&DQFHOODWLRQ�RI��(��D���E� �D���F��m��E� �F�
3URRI��
��8VLQJ�'0XWXDO�LPSOLFDWLRQ(��
����6XESURRI�IRU�CE� �F��î��D���E� �D���FC��
������$VVXPLQJ�CE� �FC��
����������D���E�
�������� ��$VVXPSWLRQ�CE� �FC���
����������D���F�
����6XESURRI�IRU�CD���E� �D���F��î��E� �FC��
����������D���E� �D���F��î��E� �F�
��������m��'/HIW�LGHQWLW\�RI�î(��'$GGLWLYH�LQYHUVH(�ZLWK�CD�`�DC���
�������������[�����-�[���D� �����î��D���E� �D���F��î��E� �F�
��������m��':LWQHVV(���
������������[�����-�[���D� ����î��D���E� �D���F��î��E� �F�
������3URRI�IRU�WKLV��
��������)RU�DQ\�C[����C��
����������$VVXPLQJ�C[���D� ��C��CD���E� �D���FC��
��������������E�
������������ ��',GHQWLW\�RI��(���
������������������E�
������������ ��$VVXPSWLRQ�C[���D� ��C���
��������������[���D���E�
������������ ��$VVXPSWLRQ�CD���E� �D���FC���
��������������[���D���F�
������������ ��$VVXPSWLRQ�C[���D� ��C���
������������������F�
������������ ��',GHQWLW\�RI��(���
��������������F�

(15.6) Additive Inverse:(∃ x ● x + a = 0)
(15.8) Cancellation of +:

a + b = a + c ≡ b = c

7KHRUHP��������'&DQFHOODWLRQ�RI��(��D���E� �D���F��m��E� �F�
3URRI��
��8VLQJ�'0XWXDO�LPSOLFDWLRQ(��
����6XESURRI�IRU�CE� �F��î��D���E� �D���FC��
������$VVXPLQJ�CE� �FC��
����������D���E�
�������� ��$VVXPSWLRQ�CE� �FC���
����������D���F�
����6XESURRI�IRU�CD���E� �D���F��î��E� �FC��
����������D���E� �D���F��î��E� �F�
��������m��'/HIW�LGHQWLW\�RI�î(��'$GGLWLYH�LQYHUVH(�ZLWK�CD�`�DC���
�������������[�����-�[���D� �����î��D���E� �D���F��î��E� �F�
��������m��':LWQHVV(��'7UDGLQJ�IRU��(���
������������[�����:�[���D� ����-��D���E� �D���F��î��E� �F�
������3URRI�IRU�WKLV��
��������)RU�DQ\�C[����C�VDWLVI\LQJ�C[���D� ��C��
����������$VVXPLQJ�CD���E� �D���FC��
��������������E�
������������ ��',GHQWLW\�RI��(���
������������������E�
������������ ��$VVXPSWLRQ�C[���D� ��C���
��������������[���D���E�
������������ ��$VVXPSWLRQ�CD���E� �D���FC���
��������������[���D���F�
������������ ��$VVXPSWLRQ�C[���D� ��C���
������������������F�
������������ ��',GHQWLW\�RI��(���
��������������F

Witnesses (ctd.)
(9.30v) Metatheorem Witness: If ¬occurs(‘x’, ‘Q’), then:

(∃ x R ● P)⇒Q is a theorem iff (R∧P)⇒Q is a theorem

(9.30) Metatheorem Witness: If ¬occurs(‘x̂’, ‘P,Q,R’), then:

(∃ x R ● P)⇒Q is a theorem iff(R∧P)[x ∶= x̂]⇒Q is a theorem.

Corresponding to inference rule ∃-elimination:

(∃x ● P)
⌜P⌝....
Q

Q
∃-Elim
(prov. x not free in Q,
assumptions)

Witnesses: Using Existential Assumptions/Theorems following LADM

(9.30) Metatheorem Witness: If ¬occurs(‘x̂’, ‘P,Q,R’), then:(∃ x R ● P)⇒Q is a theorem iff(R∧P)[x ∶= x̂]⇒Q is a theorem.

Prove: a + b = a + c⇒ b = c, using:
(9.31) (∃ x ∶ Z ● x + a = 0)

(9.30) turns this into (x + a = 0)[x ∶= α], so we use α + a = 0.

a + b = a + c⇒ ⟨ Leibniz, with Deduction Theorem (4.4) ⟩
α + a + b = α + a + c= ⟨ Assumption α + a = 0 ⟩
0 + b = 0 + c= ⟨ Additive identity (15.3) ⟩
b = c

(15.6) Additive Inverse:(∃ x ● x + a = 0)
(15.8) Cancellation of +:

a + b = a + c ≡ b = c

7KHRUHP��������'&DQFHOODWLRQ�RI��(��D���E� �D���F��m��E� �F�
3URRI��
��8VLQJ�'0XWXDO�LPSOLFDWLRQ(��
����6XESURRI�IRU�CE� �F��î��D���E� �D���FC��
������$VVXPLQJ�CE� �FC��
����������D���E�
�������� ��$VVXPSWLRQ�CE� �FC���
����������D���F�
����6XESURRI�IRU�CD���E� �D���F��î��E� �FC��
����������D���E� �D���F��î��E� �F�
��������m��'/HIW�LGHQWLW\�RI�î(��'$GGLWLYH�LQYHUVH(���
�������������[�����-�[���D� �����î��D���E� �D���F��î��E� �F�
������3URRI�IRU�WKLV��
��������$VVXPLQJ�ZLWQHVV�C[����C�VDWLVI\LQJ�C[���D� ��C��
����������$VVXPLQJ�CD���E� �D���FC��
��������������E�
������������ ��',GHQWLW\�RI��(���
������������������E�
������������ ��$VVXPSWLRQ�C[���D� ��C���
��������������[���D���E�
������������ ��$VVXPSWLRQ�CD���E� �D���FC���
��������������[���D���F�
������������ ��$VVXPSWLRQ�C[���D� ��C���
������������������F�
������������ ��',GHQWLW\�RI��(���
��������������F

7KHRUHP��������'&DQFHOODWLRQ�RI��(��D���E� �D���F��m��E� �F�
3URRI��
��8VLQJ�'0XWXDO�LPSOLFDWLRQ(��
����6XESURRI�IRU�CE� �F��î��D���E� �D���FC��
������$VVXPLQJ�CE� �FC��
����������D���E�
�������� ��$VVXPSWLRQ�CE� �FC���
����������D���F�
����6XESURRI�IRU�CD���E� �D���F��î��E� �FC��
������$VVXPLQJ�ZLWQHVV�C[����C�VDWLVI\LQJ�C[���D� ��C�
����������E\�'$GGLWLYH�LQYHUVH(��
��������$VVXPLQJ�CD���E� �D���FC��
������������E�
���������� ��',GHQWLW\�RI��(���
����������������E�
���������� ��$VVXPSWLRQ�C[���D� ��C���
������������[���D���E�
���������� ��$VVXPSWLRQ�CD���E� �D���FC���
������������[���D���F�
���������� ��$VVXPSWLRQ�C[���D� ��C���
����������������F�
���������� ��',GHQWLW\�RI��(���
������������F

(15.6) Additive Inverse(∃ x ● x + a = 0)

(∃x ● P)
⌜P⌝....
R

R
∃-Elim
(prov. x not
free in R,
assumptions)

New Proof Strutures: Assuming witness

Assuming witness `x{ ∶ type}?` satisfying `P` ∶
introduces the bound variable ‘x‘
makes P available as assumption to the contained proof.
This proves (∃ x ∶ type ● P)⇒R
if the contained proof proves R,

Assuming witness `x{∶ type}?` satisfying `P` by hint ∶
introduces the bound variable ‘x‘
makes P available as assumption to the contained proof.
hint needs to prove (∃ x ∶ type ● P)
This then proves R
if the contained proof proves R
(with the additional assumnption P)
This can be understood as providing ∃-elimination:
It uses hint to discharge the antecedent (∃ x ∶ type ● P)
and then has inferred proof goal R.

(∃x ● P)
⌜P⌝....
R

R
∃-Elim
(prov. x not
free in R,
assumptions)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-09

Part 1: Residuals

Given: x ≤ z ≡ x ≤ 5

What do you know about z? Why? (Prove it!)

Given: X ⊆ A _ B ≡ X∩A ⊆ B

Calculate the relative pseudocomplement A _ B !

Given, for R ∶ A↔ B and S ∶ A↔ C: X ⊆ RzS ≡ R #X ⊆ S

RzS is the largest solution X ∶ B↔ C for R #X ⊆ S .

Calculate the right residual (“left division”) RzS !

A S - C
@
@
@@R

R
�
�
���
RzS

B

Same idea as for “_”:
Using extensionality, calculate b RzS c ≡ b ? c

Given, for R ∶ A↔ B and S ∶ A↔ C: X ⊆ RzS ≡ R #X ⊆ S

Calculate the right residual (“left division”) RzS !

A S - C
@
@
@@R

R
�
�
���
RzS

B
b RzS c

= ⟨ Similar to the calculation for relative pseudocomplement ⟩
(∀ a a R b ● a S c)

= ⟨ Generalised De Morgan, Relation conversions ⟩
b ∼ (R ⌣ #∼S) c

Therefore: RzS = ∼ (R⌣ #∼S)
— monotonic in second argument; antitonic in first argument

Proving b RzS c ≡ (∀ a a R b ● a S c):

b(RzS)c= ⟨ e ∈ S ≡ {e} ⊆ S — Exercise! ⟩{⟨b, c⟩} ⊆ (RzS)= ⟨ Def. z: X ⊆ RzS ≡ R # X ⊆ S ⟩
R #{⟨b, c⟩} ⊆ S= ⟨ (11.13r) Relation inclusion ⟩(∀ a, c′ a R #{⟨b, c⟩} c′ ● a S c′)= ⟨ (14.20) Relation composition ⟩(∀ a, c′ (∃ b′ ● a R b′ ∧ b′ {⟨b, c⟩} c′) ● a S c′)= ⟨ y ∈ {x} ≡ y = x — Exercise! ⟩(∀ a, c′ (∃ b′ ● a R b′ ∧ b′ = b∧ c = c′) ● a S c′)= ⟨ (9.19) Trading for ∃ ⟩(∀ a, c′ (∃ b′ b′ = b ● a R b′ ∧ c = c′) ● a S c′)= ⟨ (8.14) One-point rule ⟩(∀ a, c′ a R b∧ c = c′ ● a S c′)= ⟨ (8.20) Quantifier nesting ⟩(∀ a a R b ● (∀ c′ c = c′ ● a S c′))= ⟨ (1.3) Symmetry of =, (8.14) One-point rule ⟩(∀a a R b ● a S c)

Right Residual: X ⊆ RzS ≡ R #X ⊆ S
Proving RzS = ∼ (R⌣ #∼S):

b RzS c
= ⟨ previous slide ⟩(∀ a a R b ● a S c)
= ⟨ (9.18a) Generalised De Morgan ⟩¬(∃ a a R b ● ¬(a S c))
= ⟨ (11.17r) Relation complement ⟩¬(∃ a a R b ● a ∼S c)
= ⟨ (9.19) Trading for ∃, (14.18) Converse ⟩¬(∃ a ● b R⌣ a∧ a ∼S c)
= ⟨ (14.20) Relation composition ⟩¬(b R⌣ #∼S c)
= ⟨ (11.17r) Relation complement ⟩

b ∼ (R⌣ #∼S) c

Given, for R ∶ A↔ B and S ∶ A↔ C: X ⊆ RzS ≡ R #X ⊆ S

Calculate the right residual (“left division”) RzS ! (“R under S”)

A S - C
@
@
@@R

R
�
�
���
RzS

B
b RzS c

= ⟨ Similar to the calculation for relative pseudocomplement ⟩
(∀ a a R b ● a S c)

= ⟨ Generalised De Morgan, Relation conversions ⟩
b ∼ (R⌣ #∼S) c

Therefore: RzS = ∼ (R⌣ #∼S)
— monotonic in second argument; antitonic in first argument

Formalisations Using Residuals

Relationship via z:

b RzS c≡ (∀ a a R b ● a S c)

“Aos called only brothers of Jun.”
“Everybody called by Aos is a brother of Jun.”

(∀ p Aos C p ● p B Jun)≡ ⟨ (14.18) Relation converse ⟩(∀ p p C⌣ Aos ● p B Jun)≡ ⟨ Right residual ⟩
Aos C⌣zB Jun

“Aos called every brother of Jun.”
“Every brother of Jun has been called by Aos.”

(∀ p p B Jun ● Aos C p)≡ ⟨ (14.18) Relation converse ⟩(∀ p p B Jun ● p C⌣ Aos)≡ ⟨ Right residual ⟩
Jun BzC⌣ Aos

Some Properties of Right Residuals

Characterisation of right residual: ∀ R ∶ A↔ B; S ∶ A↔ C ● X ⊆ RzS ≡ R #X ⊆ S

Two sub-cancellation properties follow easily: R #(RzS) ⊆ S(QzR) #(RzS) ⊆ (QzS)
Theorem “ I z”∶ I z R = R
Proof:

Using “Mutual inclusion ”∶
Subproof:

I z R= ⟨ “Identity of # ” ⟩
I # (I z R)⊆ ⟨ “Cancellation of z” ⟩
R

Subproof:
R ⊆ I z R≡ ⟨ “Characterisation of z” ⟩
I # R ⊆ R≡ ⟨ “Identity of # ”, “Reflexivity of ⊆ ” ⟩
true

Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y ⇒ x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S _ T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x ● u R x S v)
u RzS v ≡ (∀ x x R u ● x S v)
u SMR v ≡ (∀ x v R x ● u S x)

Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S _ T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x u R x ● x S v)
u RzS v ≡ (∀ x x R u ● x S v)
u SMR v ≡ (∀ x v R x ● u S x)

Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S _ T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x ● u R x ∧ x S v)
u RzS v ≡ (∀ x ● x R u ⇒ x S v)
u SMR v ≡ (∀ x ● v R x ⇒ u S x)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-09

Part 2: More on Sets and Relations

Modal Rules— Converse as Over-Approximation of Inverse

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Useful to “make information available locally” (Q is replaced with Q∩S #R⌣)
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

b c′ R� b

�
�
���Q

@
@
@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@
@@R

R

a S - c a c

(∃b ● a Q b R c∧ a S c) ⇒(∃b, c′ ● a Q b R c∧ b R c′ ∧ a S c′)
Proving a Modal Rule — Straight-forward Calculation

Theorem “Modal rule ”∶ (Q # R) ∩ S ⊆ (Q ∩ S # R ⌣) # R
Proof:

Using “Relation inclusion ”∶
Subproof for `∀ a ● ∀ c ● a (Q # R) ∩ S c ⇒ a (Q ∩ S # R ⌣) # R c`∶

For any `a`, `c`∶
a (Q ∩ S # R ⌣) # R c≡ ⟨ “Relation composition ” ⟩∃ b ● a Q ∩ S # R ⌣ b ∧ b R c≡ ⟨ “Relation intersection ”, “Relation composition ”, “Relation converse ” ⟩∃ b ● a Q b ∧ (∃ c2 ● a S c2 ∧ b R c2) ∧ b R c≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ b ● ∃ c2 ● a Q b ∧ a S c2 ∧ b R c2 ∧ b R c

⇐ ⟨ ? ⟩ This is the implication from the previous slide

∃ b2 ● a Q b2 ∧ b2 R c ∧ a S c≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ b2 ● a Q b2 ∧ b2 R c) ∧ a S c≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩
a (Q # R) ∩ S c

Proving a Modal Rule — Straight-forward Calculation (filled)
Theorem “Modal rule ”∶ (Q # R) ∩ S ⊆ (Q ∩ S # R ⌣) # R
Proof:

Using “Relation inclusion ”∶
Subproof for `∀ a ● ∀ c ● a (Q # R) ∩ S c ⇒ a (Q ∩ S # R ⌣) # R c`∶

For any `a`, `c`∶
a (Q ∩ S # R ⌣) # R c≡ ⟨ “Relation composition ” ⟩∃ b ● a Q ∩ S # R ⌣ b ∧ b R c≡ ⟨ “Relation intersection ”, “Relation composition ”, “Relation converse ” ⟩∃ b ● a Q b ∧ (∃ c2 ● a S c2 ∧ b R c2) ∧ b R c≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ b ● ∃ c2 ● a Q b ∧ a S c2 ∧ b R c2 ∧ b R c⇐ ⟨ “Body monotonicity of ∃ ” with “∃-Introduction ” ⟩∃ b ● (a Q b ∧ a S c2 ∧ b R c2 ∧ b R c)[c2 ∶= c]≡ ⟨ Substitution, “Idempotency of ∧ ” ⟩∃ b2 ● a Q b2 ∧ b2 R c ∧ a S c≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩(∃ b2 ● a Q b2 ∧ b2 R c) ∧ a S c≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩
a (Q # R) ∩ S c

Proving a Modal Rule — Artificial `Assuming witness` Variant
Theorem “Modal rule ”∶ (Q # R) ∩ S ⊆ (Q ∩ S # R ⌣) # R
Proof:

Using “Relation inclusion ”∶
Subproof for `∀ a ● ∀ c ● a (Q # R) ∩ S c ⇒ a (Q ∩ S # R ⌣) # R c`∶

For any `a`, `c`∶
Assuming (1) `a (Q # R) ∩ S c`∶

Side proof for (2) `∃ b2 ● a Q b2 ∧ b2 R c ∧ a S c`∶
a (Q # R) ∩ S c — This is assumption (1)≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ b2 ● a Q b2 ∧ b2 R c) ∧ a S c≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ b2 ● a Q b2 ∧ b2 R c ∧ a S c

Continuing:
Assuming witness `b2` satisfying(3) `a Q b2 ∧ b2 R c ∧ a S c` by local property (2)∶

a (Q ∩ S # R ⌣) # R c≡ ⟨ “Relation composition ” ⟩∃ b ● a Q ∩ S # R ⌣ b ∧ b R c⇐ ⟨ “∃-Introduction ” ⟩(a Q ∩ S # R ⌣ b ∧ b R c)[b ∶= b2]≡ ⟨ Substitution, assumption (3), “Identity of ∧ ” ⟩
a Q ∩ S # R ⌣ b2≡ ⟨ “Relation intersection ”, “Relation composition ”, “Relation converse ” ⟩
a Q b2 ∧ ∃ c2 ● a S c2 ∧ b2 R c2≡ ⟨ Assumption (3), “Identity of ∧ ” ⟩∃ c2 ● a S c2 ∧ b2 R c2⇐ ⟨ “∃-Introduction ” ⟩(a S c2 ∧ b2 R c2)[c2 ∶= c]≡ ⟨ Substitution, assumption (3), “Identity of ∧ ” ⟩
true

Theorem “Modal rule ”∶ (Q # R) ∩ S ⊆ (Q ∩ S # R ⌣) # R
Proof:

Using “Relation inclusion ”∶
Subproof for `∀ a ● ∀ c ● a (Q # R) ∩ S c ⇒ a (Q ∩ S # R ⌣) # R c`∶

For any `a`, `c`∶
Assuming (1) `a (Q # R) ∩ S c`∶

Assuming witness `b2` satisfying (3) `a Q b2 ∧ b2 R c ∧ a S c`
by “Distributivity of ∧ over ∃ ” and “Relation intersection ”

and “Relation composition ” and assumption (1)∶
a (Q ∩ S # R ⌣) # R c≡ ⟨ “Relation composition ” ⟩∃ b ● a Q ∩ S # R ⌣ b ∧ b R c⇐ ⟨ “∃-Introduction ” ⟩(a Q ∩ S # R ⌣ b ∧ b R c)[b ∶= b2]≡ ⟨ Substitution, assumption (3), “Identity of ∧ ” ⟩
a Q ∩ S # R ⌣ b2≡ ⟨ “Relation intersection ”, “Relation composition ”, “Relation converse ” ⟩
a Q b2 ∧ ∃ c2 ● a S c2 ∧ b2 R c2≡ ⟨ Assumption (3), “Identity of ∧ ” ⟩∃ c2 ● a S c2 ∧ b2 R c2⇐ ⟨ “∃-Introduction ” ⟩(a S c2 ∧ b2 R c2)[c2 ∶= c]≡ ⟨ Substitution, assumption (3), “Identity of ∧ ” ⟩
true

Domain- and Range-Restriction and -Antirestriction

Given types t1, t2 ∶ Type, sets A ∶ set t1 and B ∶ set t2, and relation R ∶ t1 ↔ t2:
Domain restriction: A◁R = R ∩ (A ×U)
Domain antirestriction: A −◁R = R − (A ×U) = R ∩ (∼A ×U)
Range restriction: R▷ B = R ∩ (U × B)
Range antirestriction: R −▷ B = R − (U × B) = R ∩ (U × ∼B)

B # ({Jun} × ⌞ P ⌟) ∩ (C #C⌣) ⊆ I

≡ ⟨ Domain- and range restriction properties ⟩
Dom(B▷ {Jun})◁ (C #C⌣) ⊆ I

Still no quantifiers, and no x,y of element type
— but not only relations, also sets!

(The abstract version of this is called Peirce algebra,
after Chales Sanders Peirce.)

Relational Image and Relation Overriding

Given types t1, t2 ∶ Type, sets A ∶ set t1 and B ∶ set t2, and relations R,S ∶ t1 ↔ t2:
Relational image: R (∣A ∣) = Ran(A◁R)
“Relational image of set A under relation R

Notation as “generalised function application”. . .

B # ({Jun} × ⌞ P ⌟) ∩ (C #C⌣) ⊆ I

≡ ⟨ Domain- and range restriction properties ⟩
Dom(B▷ {Jun})◁ (C #C⌣) ⊆ I

≡ ⟨ Relational image ⟩
(B⌣ (∣ {Jun} ∣))◁ (C #C⌣) ⊆ I

Relation overriding: R⊕ S = (Dom S −◁R)∪S

“Updating R exactly where S relates with anything”

In C⊕ {⟨Aos, Jun⟩} , Aos called only Jun.

Recall: Equivalence Relations

Recall: A (homogeneous) relation R ∶ B↔ B is called:

reflexive I ⊆ R (∀ b ∶ B ● b R b)
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R
equivalence I ⊆ R = R #R = R⌣ reflexive, transitive, symmetric

7

6

5

4

3

2

1

7654321

Equivalence Classes, Partitions
Definition (14.34): Let Ξ be an equivalence relation on B. Then [b]Ξ. the equivalence
class of b, is the subset of elements of B that are equivalent (under Ξ) to b:

x ∈ [b]Ξ ≡ x Ξ b Equivalently: [b]Ξ = Ξ (∣ {b} ∣)
Theorem: For an equivalence relation Ξ on B, the set { b ∶ B ● Ξ (∣ {b} ∣) } of equivalence
classes of Ξ is a partition of ⌞ B ⌟.

{ {1}, {2,3}, {4,5,6,7} }
7

6

5

4

3

2

1

7654321

Definition (11.76): If T ∶ set t and S ∶ set (set t), then:

S is a partition of T≡ (∀u,v u ∈ S∧v ∈ S∧u ≠ v ● u∩v = {})∧ (⋃u u ∈ S ● u) = T

Theorem: There is a bijective mapping
between equivalence relations on B and partitions of B.

The partition view can be useful for implementing equivalence relations.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-11

Part 1: Relational Formalisation of Graph Properties 1

Plan for Today

Relational Formalisation of Simple Graph Properties

Starting relation-algebraic calculational proofs

Relation-algebraic proof
Will be an important topic of Exercises 10.*
Will not be on Midterm 2

Midterm 2: Up to H14, H15, A5, Ex9.*

Recall: Simple Graphs

A simple graph (N,E) is a pair consisting of
a set N, the elements of which are called “nodes”, and
a relation E with E ∈ N ○←→ N, the element pairs of which are called “edges”.

Example: G1 = ({2,0,1,9},{⟨2,0⟩, ⟨9,0⟩, ⟨2,2⟩})
Graphs are normally visualised via graph drawings:

0

2

1

9

Simple graphs are exactly relations!

Reasoning with relations is reasoning about graphs!

Simple Reachability Statements in Graph G = (V,E)

QB

CF

RP

HS

DU

AD

NPKO

VUEZ SW

HL

XJSQ

PB

No edge ends at node s
s ∉ Ran E or s ∈ ∼ (Ran E) — s is called a source of G
No edge starts at node s
s ∉ Dom E or s ∈ ∼ (Dom E) — s is called a sink of G
Node n2 is reachable from node n1 via a three-edge path
n1 E #E #E n2

Simple Reachability Statements in Graph GN = (⌞ N ⌟, ⌜suc⌝)

0 Ð→ 1 Ð→ 2 Ð→ 3 Ð→ 4 Ð→ 5 Ð→ 6 Ð→ 7 Ð→ . . .

No edge ends at node 0
0 ∉ Ran ⌜suc⌝ or 0 ∈ ∼ (Ran ⌜suc⌝) — 0 is a source of GN

0 is the only source of GN: ∼ (Ran ⌜suc⌝) = {0}
s is a sink iff no edge starts at node s
s ∉ Dom ⌜suc⌝ or s ∈ ∼ (Dom ⌜suc⌝)
GN has no sinks: Dom ⌜suc⌝ = ⌞ N ⌟ or ∼ (Dom ⌜suc⌝) = {}
Node 5 is reachable from node 2 via a three-edge path:

2 ⌜suc⌝ #⌜suc⌝ #⌜suc⌝ 5

Directed versus Undirected Graphs

a

b

c

d

x

y

z

u

Edges in undirected graphs can be considered as “unordered pairs”
(two-element sets, or one-to-two-element sets)
The associated relation of an undirected graph relates two
nodes if there is an edge between them
The associated relation of an undirected graph is always
symmetric

In a simple graph, no two edges have the same source and the
same target. (No “parallel edges”.)
Relations directly represent simple graphs.

Symmetric Closure

Relation Q ∶ B↔ B is the symmetric closure of R ∶ B↔ B
iff Q is the smallest symmetric relation containing R,

or, equivalently, iff R ⊆ Q
Q = Q ⌣
(∀ P ∶ B↔ B R ⊆ P = P ⌣ ● Q ⊆ P)

Theorem: The symmetric closure of R ∶ B↔ B is R ∪ R ⌣.
Fact: If R represents a simple directed graph, then the symmetric
closure of R is the associated relation of the corresponding simple
undirected graph.

x

y

z

u

x

y

z

u

x

y

z

u

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-11

Part 2: Starting Relation-Algebraic
Calculational Proofs

Translating between Relation Algebra and Predicate Logic
R = S ≡ (∀ x,y ● x R y ≡ x S y)
R ⊆ S ≡ (∀ x,y ● x R y⇒x S y)

u {} v ≡ false
u A × B v ≡ u ∈ A ∧ v ∈ B

u ∼S v ≡ ¬(u S v)
u S∪T v ≡ u S v ∨ u T v
u S∩T v ≡ u S v ∧ u T v
u S − T v ≡ u S v ∧ ¬(u T v)
u S _ T v ≡ u S v ⇒ u T v
u id A v ≡ u = v ∈ A

u I v ≡ u = v
u R ⌣ v ≡ v R u
u R #S v ≡ (∃ x ● u R x ∧ x S v)
u RzS v ≡ (∀ x ● x R u ⇒ x S v)
u SMR v ≡ (∀ x ● v R x ⇒ u S x)

Using Extensionality/Inclusion and the Translation Table, you Proved:
Theorem “Self-inverse of ⌣ ”∶ R ⌣ ⌣ = R
Theorem “Converse of ∩ ”∶ (R ∩ S) ⌣ = R ⌣ ∩ S ⌣
Theorem “Converse of # ”∶ (R # S) ⌣ = S ⌣ # R ⌣
Theorem “Converse of I ”∶ I ⌣ = I
Theorem “Isotonicity of ⌣ ”∶ R ⊆ S ≡ R ⌣ ⊆ S ⌣
Theorem “Converse of ∪ ”∶ (R ∪ S) ⌣ = R ⌣ ∪ S ⌣
Theorem “Distributivity of # over ∪ ”∶ Q # (R ∪ S) = Q # R ∪ Q # S
Theorem “Sub-distributivity of # over ∩ ”∶ Q # (R ∩ S) ⊆ Q # R ∩ Q # S
Theorem “Left-identity of # ” “Identity of # ”∶ I # R = R
Theorem “Right-identity of # ” “Identity of # ”∶ R # I = R
Theorem “Composition of reflexive relations ”∶ reflexive R ⇒ reflexive S ⇒ reflexive (R # S)
Theorem “Converse of reflexive relations ”∶ reflexive R ⇒ reflexive (R ⌣)
Theorem “Converse reflects reflectivity ”∶ reflexive (R ⌣) ⇒ reflexive R
Theorem “Converse of transitive relations ”∶ transitive R ⇒ transitive (R ⌣)
Theorem “Associativity of # ”∶ (Q # R) # S = Q # (R # S)
Theorem “Distributivity of # over ∪ ”∶ (Q ∪ R) # S = Q # S ∪ R # S
Theorem “Sub-distributivity of # over ∩ ”∶ (Q ∩ R) # S ⊆ Q # S ∩ R # S
Theorem “Monotonicity of # ”∶ Q ⊆ R ⇒ Q # S ⊆ R # S
Theorem “Converse of {} ”∶ {} ⌣ = {}
Theorem “Co-difunctionality ” “Hesitation ”∶ R ⊆ R # R ⌣ # R
Theorem “Modal rule ”∶ (Q # R) ∩ S ⊆ Q # (R ∩ Q ⌣ # S)
Theorem “Dedekind rule ”∶ (Q # R) ∩ S ⊆ (Q ∩ S # R ⌣) # (R ∩ Q ⌣ # S)
Theorem “Schröder ”∶ Q # R ⊆ S ≡ ∼ S # R ⌣ ⊆ ∼ Q

All subexpressions have B or ↔
types!
Equations of relational expressions:

Relation algebra

Relation Algebra
For any two types B and C, on the type B↔ C of relations between B and C we have
the ordering ⊆ with:

binary minima ∩ and maxima ∪ (which are monotonic)
least relation {} and largest (“universal”) relation U (= ⌞ B ⌟ × ⌞ C ⌟)
complement operation ∼ such that R∩∼R = {} and R∪∼R = U
relative pseudo-complement R _ S = ∼R∪S

The composition operation #
is defined on any two relations R ∶ B↔ C1 and S ∶ C2 ↔ D iff C1 = C2
is associative, monotonic, and has identities I
distributes over union: Q #(R∪S) = Q #R∪Q #S

The converse operation ⌣
maps relation R ∶ B↔ C to R⌣ ∶ C↔ B
is self-inverse (R⌣⌣ = R) and monotonic
is contravariant wrt. composition: (R #S)⌣ = S⌣ #R⌣

The Dedekind rule holds: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
The Schröder equivalences hold:

Q #R ⊆ S ≡ Q⌣ #∼S ⊆ ∼R and Q #R ⊆ S ≡ ∼S #R⌣ ⊆ ∼Q
has left-residuals SMR = ∼ (∼S #R⌣) and right-residuals QzS = ∼ (Q⌣ #∼S)

Monotonicity of Relation Composition
Relation composition is monotonic in both arguments:

Q ⊆ R ⇒ Q #S ⊆ R #S
Q ⊆ R ⇒ P #Q ⊆ P #R

We could prove this via “Relation inclusion” and “For any”, but we don’t need to:

Assume Q ⊆ R, which by (11.45) is equivalent to Q∪R = R:

Proving Q #S ⊆ R #S:

R #S= ⟨ Assumption Q∪R = R ⟩(Q∪R) #S= ⟨ (14.23) Distributivity of # over ∪ ⟩
Q #S∪R #S⊇ ⟨ (11.31) Strengthening S ⊆ S∪T ⟩
Q #S

Relation-Algebraic Proof of Sub-Distributivity

Use set-algebraic properties and Monotonicity of #: Q ⊆ R ⇒ P #Q ⊆ P #R

to prove: Subdistributivity of # over ∩: Q #(R∩S) ⊆ (Q #R)∩(Q #S)
Q #(R∩S)

= ⟨ Idempotence of ∩ (11.35) ⟩
(Q #(R∩S))∩(Q #(R∩S))

⊆ ⟨ Mon. of ∩ with Mon. of # with Weakening X∩Y ⊆ X ⟩
(Q #(R∩S))∩(Q #S)

⊆ ⟨ Mon. of ∩ with Mon. of # with Weakening X∩Y ⊆ X
— separate ⊆-steps normally needed in CALCCHECK! ⟩

(Q #R)∩(Q #S)
(Previously we proved monotonicity from subdistributivity.)

Homogeneous Relation Properties are Preserved by Converse
reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b ⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c ⇒ ¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: If R ∶ B↔ B is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/
transitive/idempotent, then R⌣ has that property, too.
Proof: Reflexivity:

I

= ⟨ Symmetry of I ⟩
I ⌣

⊆ ⟨ Mon. ⌣ with Reflexivity of R ⟩
R⌣

Transitivity:
R⌣ #R⌣

= ⟨ Converse of # ⟩
(R #R)⌣

⊆ ⟨ Mon. ⌣ with Trans. of R ⟩
R⌣

Reflexive and Transitive Implies Idempotent

reflexive I ⊆ R (∀ b ∶ B ● b R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: If R ∶ B↔ B is reflexive and transitive, then it is also idempotent.

Reflexive and Transitive Implies Idempotent — Direct Approach

reflexive I ⊆ R
transitive R #R ⊆ R
idempotent R #R = R

Theorem “Idempotency from reflexive and transitive ”∶
reflexive R ⇒ transitive R ⇒ idempotent R

Proof:
Assuming `reflexive R`, `transitive R`∶

idempotent R≡ ⟨ “Definition of idempotency ” ⟩
R # R = R≡ ⟨ “Mutual inclusion ” ⟩
R # R ⊆ R ∧ R ⊆ R # R≡ ⟨ “Definition of transitivity ”, assumption `transitive R`, “Identity of ∧ ” ⟩
R ⊆ R # R≡ ⟨ “Identity of # ” ⟩
R # I ⊆ R # R⇐ ⟨ “Monotonicity of # ” ⟩
I ⊆ R≡ ⟨ Assumption `reflexive R` with “Definition of reflexivity ” ⟩
true

Reflexive and Transitive Implies Idempotent — “and using with”

reflexive I ⊆ R
transitive R #R ⊆ R
idempotent R #R = R

Theorem “Idempotency from reflexive and transitive ”∶
reflexive R ⇒ transitive R ⇒ idempotent R

Proof:
Assuming `reflexive R` and using with “Definition of reflexivity ”,

`transitive R` and using with “Definition of transitivity ”∶
idempotent R≡ ⟨ “Definition of idempotency ” ⟩
R # R = R≡ ⟨ “Mutual inclusion ” ⟩
R # R ⊆ R ∧ R ⊆ R # R≡ ⟨ Assumption `transitive R`, “Identity of ∧ ” ⟩
R ⊆ R # R≡ ⟨ “Identity of # ” ⟩
R # I ⊆ R # R⇐ ⟨ “Monotonicity of # ” ⟩
I ⊆ R≡ ⟨ Assumption `reflexive R` ⟩
true

Reflexive and Transitive Implies Idempotent — Semi-formal

reflexive I ⊆ R (∀ b ∶ B ● b R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: If R ∶ B↔ B is reflexive and transitive, then it is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R

= ⟨ Identity of # ⟩
R # I

⊆ ⟨ Mon. # with Reflexivity of R ⟩
R # R

Reflexive and Transitive Implies Idempotent — Cyclic ⊆-chain Proving ` = `

reflexive I ⊆ R
transitive R #R ⊆ R
idempotent R #R = R

Theorem “Idempotency from reflexive and transitive ”∶
reflexive R ⇒ transitive R ⇒ idempotent R

Proof:
Assuming `reflexive R` and using with “Definition of reflexivity ”,

`transitive R` and using with “Definition of transitivity ”∶
Using “Definition of idempotency ”∶

Subproof for `R # R = R`∶
R # R⊆ ⟨ Assumption `transitive R` ⟩
R= ⟨ “Identity of # ” ⟩
R # I⊆ ⟨ “Monotonicity of # ” with assumption `reflexive R` ⟩
R # R

Symmetric and Transitive Implies Idempotent
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: A symmetric and transitive R ∶ B↔ B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R= ⟨ Idempotence of ∩, Identity of # ⟩
R # I ∩ R⊆ ⟨ Modal rule Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩
R #(I ∩ R⌣ #R)⊆ ⟨ Mon. # with Weakening X∩Y ⊆ X ⟩
R #R⌣ #R= ⟨ Symmetry of R ⟩
R #R #R⊆ ⟨ Mon. # with Transitivity of R ⟩
R #R

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-15

Part 1: Relational Formalisation of Graph Properties 2

Plan for Today

Relational Formalisation of Simple Graph Properties 2
Reachability: (Reflexive) transitive closures

Relation-algebraic calculational proofs 2

Relation-algebraic proof
Will be an important topic of Exercises 10.*
Will not be on Midterm 2

Midterm 2: Up to H14, H15, A5, Ex9.*

Properties of Homogeneous Relations

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c⇒¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c∧ c R d⇒ b R d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric. (E.g., =, ≡)

R is a (partial) order on B
iff it is reflexive, transitive, and antisymmetric.
(E.g., ≤, ≥, ⊆, ⊇, ∣)

R is a strict-order on B
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, ⊂, ⊃)

Recall: Symmetric Closure

Relation Q ∶ B↔ B is the symmetric closure of R ∶ B↔ B
iff Q is the smallest symmetric relation containing R,

or, equivalently, iff R ⊆ Q
Q = Q ⌣
(∀ P ∶ B↔ B R ⊆ P = P ⌣ ● Q ⊆ P)

Theorem: The symmetric closure of R ∶ B↔ B is R ∪ R ⌣.
Fact: If R represents a simple directed graph, then the symmetric
closure of R is the associated relation of the corresponding simple
undirected graph.

x

y

z

u

x

y

z

u

x

y

z

u

Reflexive Closure

Relation Q ∶ B↔ B is the reflexive closure of R ∶ B↔ B
iff Q is the smallest reflexive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ● Q ⊆ P)

Theorem: The reflexive closure of R ∶ B↔ B is R∪ I.

Fact: If R represents a graph, then the reflexive closure of R
“ensures that each node has a loop edge”.

x

y

z

u

x

y

z

u

x

y

z

u

x

y

z

u

Transitive Closure

Relation Q ∶ B↔ B is the transitive closure of R ∶ B↔ B
iff Q is the smallest transitive relation containing R,

or, equivalently, iff
R ⊆ Q
Q #Q ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ P #P ⊆ P ● Q ⊆ P)

Definition: The transitive closure of R ∶ B↔ B is written R+.

Theorem: R+ = (⋂ P R ⊆ P ∧ P #P ⊆ P ● P).

Theorem: R+ = (⋃ i ∶ N i > 0 ● Ri)
Powers of a homogeneous relation R ∶ B↔ B:

R0 = I
R1 = R
Rn+1 = Rn #R

Transitive Closure via Powers
Powers of a homogeneous relation R ∶ B↔ B:

R0 = I
R1 = R
Rn+1 = Rn #R

R2 = R #R
R3 = R #R #R
R4 = R #R #R #R

Ri is reachability via exactly i many R-steps

x

y

z

u

x

y

z

u

x

y

z

u

x

y

z

u

x

y

z

u

R0 R1 R2 R3 R+
R+ = (⋃ i ∶ N i > 0 ● Ri)
R+ = R∪R2 ∪R3 ∪R4 ∪ . . .
Transitive closure R+ is reachability via at least one R-step

Reflexive Transitive Closure

Q ∶ B↔ B is the reflexive transitive closure of R ∶ B↔ B
iff Q is the smallest reflexive transitive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q ∧ Q #Q ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ∧ P #P ⊆ P ● Q ⊆ P)

Definition: The reflexive transitive closure of R is written R∗.

Theorem: R∗ = (⋂ P R ⊆ P ∧ I ⊆ P ∧ P #P ⊆ P ● P).

Theorem: R∗ = (⋃ i ∶ N ● Ri)

Transitive and Reflexive Transitive Closure via Powers

Ri is reachability via exactly i many R-steps

x

y

z

u

x

y

z

u

x

y

z

u

x

y

z

u

x

y

z

u

R0 R1 R2 R3 R∗
R+ = (⋃ i ∶ N i > 0 ● Ri)
R+ = R∪R2 ∪R3 ∪R4 ∪ . . .
Transitive closure R+ is reachability via at least one R-step

R∗ = (⋃ i ∶ N ● Ri)
R∗ = I∪R∪R2 ∪R3 ∪R4 ∪ . . .
Reflexive transitive closure R∗
is reachability via any number of R-steps

Variants of the Warshall algorithm
calculate these closures in cubic time.

Reachability in graph G = (V,E) — 1 (ctd.)

QB

CF

RP

HS

DU

AD

NPKO

VUEZ SW

HL

XJSQ

PB

No edge ends at node s
s ∉ Ran E or s ∈ ∼ (Ran E) — s is called a source of G
No edge starts at node s
s ∉ Dom E or s ∈ ∼ (Dom E) — s is called a sink of G
Node n2 is reachable from node n1 via a three-edge path
n1 E3 n2 or n1 E #E #E n2

Node y is reachable from node x
x E∗ y — reachability

Reachability in graph G = (V,E) — 2

QB

CF

RP

HS

DU

AD

NPKO

VUEZ SW

HL

XJSQ

PB

Node y is reachable from node x
x E∗ y — reachability
Every node is reachable from node r{r} ×V ⊆ E∗ or E∗ (∣ {r} ∣) = V — r is called a root of G
Node y is reachable via a non-empty path from node x: x E+ y
Nodes x lies on a cycle: x E+ x or x E+ ∩ I x or x ∈ Dom(E+ ∩ I)

Reachability in graph G = (V,E) — 3

QB

CF

RP

HS

DU

AD

NPKO

VUEZ SW

HL

XJSQ

PB

From every node, each node is reachable
V ×V ⊆ E∗ — G is strongly connected
From every node, each node is reachable by traversing edges in either direction
V ×V ⊆ (E∪E⌣)∗ — G is connected
Nodes n1 and n2 reachable from each other both ways
n1 E∗ ∩(E∗)⌣ n2 — n1 and n2 are strongly connected
S is an equivalence class of strong connectedness between nodes

S × S ⊆ E∗ ∧ (E∗ ∩(E∗)⌣) (∣S ∣) = S — S is a strongly connected component (SCC) of G

Reachability in graph G = (V,E) — 4

QB

CF

RP

HS

DU

AD

NPKO

VUEZ SW

HL

XJSQ

PB

A node n is said to “lie on a cycle” if there is a non-empty path from n to n

cycleNodes ∶= Dom(E+ ∩ I)
No node lies on a cycle
Dom(E+ ∩ I) = {}
E+ ∩ I = {}
E+ is irreflexive — G is called acyclic or cycle-free or a DAG

Reachability in graph G = (V,E) — 5 — DAGs

CH

HLFW

NK

ODNL

JH

ER

WO CZ

TB

GE VB

AM

GJAQ

SKNY OH

103

7

15 119

4 2

6

No node lies on a cycle: E+ ∩ I = {} — G is a directed acyclic graph, or DAG
Each node has at most one predecessor: E #E⌣ ⊆ I or E is injective

— if G is also acyclic, then G is called a (directed) forest
Every node is reachable from node r{r} ×V ⊆ E∗ — if G is also a forest, then G is called a (directed) tree, and r is its root
For undirected graphs: A tree is a graph where for each pair of nodes there is exactly
one path connecting them.

— graph-theoretic tree concept

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-15

Part 2: Continuing Relation-Algebraic
Calculational Proofs

Recall: Relation Algebra
For any two types B and C, on the type B↔ C of relations between B and C we have
the ordering ⊆ with:

binary minima ∩ and maxima ∪ (which are monotonic)
least relation {} and largest (“universal”) relation U (= ⌞ B ⌟ × ⌞ C ⌟)
complement operation ∼ such that R∩∼R = {} and R∪∼R = U
relative pseudo-complement R _ S = ∼R∪S

The composition operation #
is defined on any two relations R ∶ B↔ C1 and S ∶ C2 ↔ D iff C1 = C2
is associative, monotonic, and has identities I
distributes over union: Q #(R∪S) = Q #R∪Q #S

The converse operation ⌣
maps relation R ∶ B↔ C to R⌣ ∶ C↔ B
is self-inverse (R⌣⌣ = R) and monotonic
is contravariant wrt. composition: (R #S)⌣ = S⌣ #R⌣

The Dedekind rule holds: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
The Schröder equivalences hold:

Q #R ⊆ S ≡ Q⌣ #∼S ⊆ ∼R and Q #R ⊆ S ≡ ∼S #R⌣ ⊆ ∼Q
has left-residuals SMR = ∼ (∼S #R⌣) and right-residuals QzS = ∼ (Q⌣ #∼S)

Recall: Properties of Homogeneous Relations

reflexive I ⊆ R (∀ b ∶ B ● b R b)
irreflexive I∩R = {} (∀ b ∶ B ● ¬(b R b))
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
antisymmetric R∩R⌣ ⊆ I (∀ b, c ● b R c∧ c R b⇒ b = c)
asymmetric R∩R⌣ = {} (∀ b, c ∶ B ● b R c⇒¬(c R b))
transitive R #R ⊆ R (∀b, c,d ● b R c∧ c R d⇒ b R d)

R is an equivalence (relation) on B iff it is reflexive, transitive, and symmetric. (E.g., =, ≡)

R is a (partial) order on B
iff it is reflexive, transitive, and antisymmetric.
(E.g., ≤, ≥, ⊆, ⊇, ∣)

R is a strict-order on B
iff it is irreflexive, transitive, and asymmetric.
(E.g., <, >, ⊂, ⊃)

Most Homogeneous Relation Properties are Preserved by Intersection
reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric/antisym-
metric/asymmetric/transitive, then R∩S has that property, too.

Proof: Reflexivity:
I

= ⟨ Idempotence of ∩ ⟩
I∩ I

⊆ ⟨ Mon. of ∩ with Refl. R ⟩
R∩ I

⊆ ⟨ Mon. of ∩ with Refl. S ⟩
R∩S

Transitivity:(R∩S) #(R∩S)
⊆ ⟨ Sub-distributivity of # over ∩ ⟩(R #R)∩(R #S)∩(S #R)∩(S #S)
⊆ ⟨ Weakening X∩Y ⊆ X ⟩(R #R)∩(S #S)
⊆ ⟨ Mon. ∩ with transitivity of R and S ⟩

R∩S

Most Homogeneous Relaton Properties are Preserved by Intersection
reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric/antisym-
metric/asymmetric/transitive, then R∩S has that property, too.

Counter-example for preservation of idempotence:

c e

R

c e

S

c e

R S

Some Homogeneous Relation Properties are Preserved by Union

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric, then R∪S has that
property, too.

Proof:

Reflexivity:
I

⊆ ⟨ Reflexivity of R ⟩
R

⊆ ⟨ Weakening X ⊆ X∪Y ⟩
R∪S

Irreflexivity:
I∩(R∪S)

= ⟨ Distributivity of ∩ over ∪ ⟩
(I∩R)∪(I∩S)

= ⟨ Irreflexivity of R and S ⟩
{}∪{}

= ⟨ Idempotence of ∪ ⟩
{}

Some Homogeneous Relation Properties are Preserved by Union

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

Theorem: If R,S ∶ B↔ B are reflexive/irreflexive/symmetric, then R∪S has that
property, too.

Counter-example for preservation of transitivity:

c e

R

c e

S

c e

R Sq

q

q

Weaker Formulation of Symmetry

reflexive I ⊆ R
irreflexive I∩R = {}
transitive R #R ⊆ R
idempotent R #R = R

symmetric R⌣ = R
antisymmetric R∩R⌣ ⊆ I
asymmetric R∩R⌣ = {}

For proving symmetry of R,S ∶ B↔ B, it is sufficient to prove R⌣ ⊆ R.

In other words:

Theorem: If R⌣ ⊆ R, then R⌣ = R.

Proof: By mutual inclusion, we only need to show R ⊆ R⌣:
R

= ⟨ Self-inverse of converse ⟩
(R⌣)⌣

⊆ ⟨ Mon. of ⌣ with Assumption R⌣ ⊆ R ⟩
R⌣

Symmetric and Transitive Implies Idempotent
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: A symmetric and transitive R ∶ B↔ B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R= ⟨ Idempotence of ∩, Identity of # ⟩
R # I ∩ R⊆ ⟨ Modal rule Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩
R #(I ∩ R⌣ #R)⊆ ⟨ Mon. # with Weakening X∩Y ⊆ X ⟩
R #R⌣ #R= ⟨ Symmetry of R ⟩
R #R #R⊆ ⟨ Mon. # with Transitivity of R ⟩
R #R

Modal Rules— Converse as Over-Approximation of Inverse

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Useful to “make information available locally” (Q is replaced with Q∩S #R⌣)
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

b c′ R� b

�
�
���Q

@
@
@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@
@@R

R

a S - c a c

(∃b ● a Q b R c∧ a S c) ⇒(∃b, c′ ● a Q b R c∧ b R c′ ∧ a S c′)
Modal Rules modulo Inclusion via Intersection

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalently, using M ⊆ N ≡ M = M∩N etc.: Q #R∩S = Q #(R∩Q⌣ #S)∩S

Q #R∩S = (Q∩S #R⌣) #R∩S

In constraint diagrams:

b c′ R� b

�
�
���Q

@
@
@@R

R ≡
@

@
@@I S

�
�
���Q

@
@
@@R

R

a S - c a S - c

(∃b ● a Q b R c∧ a S c) ≡≡ (∃b, c′ ● a Q b R c′ ∧ a S c′ ∧ b R c∧ a S c)

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-18

Part 1: Inductive Datastructures: Trees

Plan for Today

Tree Datastructures; Structural Induction

Relation-Algebraic Proof: Modal Rules, Dedekind Rule

Inductively-defined Tree Data Structures

Binary (search) trees

data BTree = EmptyB∣ Branch BTree Int BTree

103

7

5 112

bt1left = Branch
(Branch EmptyB 2 EmptyB)
3
(Branch EmptyB 5 EmptyB)

bt1right = Branch
EmptyB
10
(Branch EmptyB 11 EmptyB)

Huffman trees

data HTree = Leaf Char∣ HBranch HTree HTree

h

t r

e

0 1

1

10

0

hTree1 = HBranch (Leaf ’e’)
(HBranch

(HBranch (Leaf ’t’) (Leaf ’r’))
(Leaf ’h’))

decode hTree1 ”100110” = ”the”

Arbitrarily branching

data Tree
= Branch Int [Tree]

103

7

5

112

t1left = Branch 7
[Branch 3 [Branch 2 []]
,Branch 5 [Branch 11 []]
,Branch 10 []
]

Binary Trees (Exercise 10.4)

Binary (search) trees

data BTree = EmptyB∣ Branch BTree Int BTree

103

7

5 112

bt1left = Branch
(Branch EmptyB 2 EmptyB)
3
(Branch EmptyB 5 EmptyB)

bt1right = Branch
EmptyB
10
(Branch EmptyB 11 EmptyB)

'HFODUDWLRQ�����������C�����7UHH�$�
'HFODUDWLRQ���������BVBQB���7UHH�$�®�$�®�7UHH�$�®�7UHH�$

'HFODUDWLRQ��W����7UHH���
$[LRP�''HILQLWLRQ�RI�CW�C(��
��W�� ���C�V���Q�C��V���Q��C�V���Q�C���
�������V���Q�
��������C�V����Q��C�V����Q�C��

)DFW�'$OWHUQDWLYH�GHILQLWLRQ�RI�CW�C(��

��W�� ��î���ï�V���Q�î���ï��

�������V���Q�

��������C�V����Q�î����ï�

Binary Trees (Exercise 10.4)
'HFODUDWLRQ�����������C�����7UHH�$�
'HFODUDWLRQ���������BVBQB���7UHH�$�®�$�®�7UHH�$�®�7UHH�$

'HFODUDWLRQ��W����7UHH���
$[LRP�''HILQLWLRQ�RI�CW�C(��
��W�� ���C�V���Q�C��V���Q��C�V���Q�C���
�������V���Q�
��������C�V����Q��C�V����Q�C��

103

7

5 112
)DFW�'$OWHUQDWLYH�GHILQLWLRQ�RI�CW�C(��

��W�� ��î���ï�V���Q�î���ï��

�������V���Q�

��������C�V����Q�î����ï�

$[LRP�'7UHH�LQGXFWLRQ(��

�����3>W�`�C@�

��<������O��U���7UHH�$��[���$�

�������-�3>W�`�O@�<�3>W�`�U@��î��3>W�`�O�V�[�Q�U@

�������

��î�����W���7UHH�$�-�3�

Using the Induction Principle for Binary Trees
7KHRUHP�'6HOI�LQYHUVH�RI�WUHH�PLUURU(����W���7UHH�$�-��W�u��u� �W�
3URRI��
��8VLQJ�'7UHH�LQGXFWLRQ(��
����6XESURRI�IRU�CC�u�u� �CC��%\�'0LUURU(�
����6XESURRI�IRU�C��O��U���7UHH�$��[���$�
���������-��O�u��u� �O�<��U�u��u� �U�
���������î��O�V�[�Q�U�u�u� ��O�V�[�Q�U�C��
�������)RU�DQ\�CO��U��[C��
���������$VVXPLQJ�',+/(�C�O�u��u� �OC��
������������������',+5(�C�U�u��u� �UC��
��������������O�V�[�Q�U��u�u�
����������� ��'0LUURU(���
��������������O�u�u��V�[�Q��U�u�u��
����������� ��$VVXPSWLRQV�',+/(�DQG�',+5(���
�������������O�V�[�Q�U

$[LRP�'7UHH�LQGXFWLRQ(��

�����3>W�`�C@�

��<������O��U���7UHH�$��[���$�

�������-�3>W�`�O@�<�3>W�`�U@��î��3>W�`�O�V�[�Q�U@

�������

��î�����W���7UHH�$�-�3�

Recall: Induction — Reduction via Well-founded Relations
Goal: prove (∀ x ∶ U ● P x) for some property P ∶ U → B (with ¬occurs(‘x’, ‘P’))

Situation: Elements of U are related via < ∶ U → U → B with “simpler” elements
(constituents, predecessors, parts, . . .)
“y; x” may read “y precedes x” or “y is an (immediate) constituent of x” or “y is
simpler than x” or “y is below x”. . .

If for every x ∶ U there is a proof that

if P y for all predecessors y of x, then P x,

then for every z ∶ U with ¬(P z):
there is a predecessor u of z with ¬(P u)
and so there is an infinite <-chain (of elements c with ¬(P c))
starting at z.

Theorem (12.19) Mathematical induction over (U,;):
If there are no infinite <-chains in U, that is, if; is well-founded, then:

(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)
Induction Principle for Binary Trees

'HFODUDWLRQ�����������C�����7UHH�$�
'HFODUDWLRQ���������BVBQB���7UHH�$�®�$�®�7UHH�$�®�7UHH�$

)DFW�'$OWHUQDWLYH�GHILQLWLRQ�RI�CW�C(��

��W�� ��î���ï�V���Q�î���ï��

�������V���Q�

��������C�V����Q�î����ï�

103

7

5 112

'HFODUDWLRQ��B;B���7UHH�$�®�7UHH�$�®�x�
$[LRP�'+7UHH�;(��
�����W�;�C������������m��IDOVH��
�<���W�;��O�V�[�Q�U���m��W� �O��=��W� �U�

Theorem (12.19) Mathematical induction over (U,;), if; is well-founded(∀ x ● P x) ≡ (∀ x ● (∀ y y; x ● P y) ⇒ P x)
Equivalently:
$[LRP�'7UHH�LQGXFWLRQ(��

�����3>W�`�C@�

��<������O��U���7UHH�$��[���$�

�������-�3>W�`�O@�<�3>W�`�U@��î��3>W�`�O�V�[�Q�U@

�������

��î�����W���7UHH�$�-�3�

Trees are Everywhere!

Search trees, dictionary datastructures — BinTree, balanced trees

Huffman trees — used for compression encoding e.g. in JPEG

Abstract Syntax Trees (ASTs) — central datastructures in compilers

. . .

Every “data” in Haskell defines a (possibly degenerated) tree datastructure

In programming:
Trees are easy to deal with.

Graphs, even DAGs, can be tricky

— even with good APIs.

Choosing “the right” API is already hard!

The same holds for relations!

— Because relations are graphs. . .

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-18

Part 2: Continuing Relation-Algebraic
Calculational Proofs

Recall: Relation Algebra
For any two types B and C, on the type B↔ C of relations between B and C we have
the ordering ⊆ with:

binary minima ∩ and maxima ∪ (which are monotonic)
least relation {} and largest (“universal”) relation U (= ⌞ B ⌟ × ⌞ C ⌟)
complement operation ∼ such that R∩∼R = {} and R∪∼R = U
relative pseudo-complement R _ S = ∼R∪S

The composition operation #
is defined on any two relations R ∶ B↔ C1 and S ∶ C2 ↔ D iff C1 = C2
is associative, monotonic, and has identities I
distributes over union: Q #(R∪S) = Q #R∪Q #S

The converse operation ⌣
maps relation R ∶ B↔ C to R⌣ ∶ C↔ B
is self-inverse (R⌣⌣ = R) and monotonic
is contravariant wrt. composition: (R #S)⌣ = S⌣ #R⌣

The Dedekind rule holds: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
The Schröder equivalences hold:

Q #R ⊆ S ≡ Q⌣ #∼S ⊆ ∼R and Q #R ⊆ S ≡ ∼S #R⌣ ⊆ ∼Q
has left-residuals SMR = ∼ (∼S #R⌣) and right-residuals QzS = ∼ (Q⌣ #∼S)

Modal Rules— Converse as Over-Approximation of Inverse

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Useful to “make information available locally” (Q is replaced with Q∩S #R⌣)
for use in further proof steps.

In constraint diagrams (boxed variables are free; others existentially quantified;
alternative paths are conjunction):

b c′ R� b

�
�
���Q

@
@
@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@
@@R

R

a S - c a c

(∃b ● a Q b R c∧ a S c) ⇒(∃b, c′ ● a Q b R c∧ b R c′ ∧ a S c′)

Modal Rules modulo Inclusion via Intersection
Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)

Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalently, using M ⊆ N ≡ M = M∩N etc.: Q #R∩S = Q #(R∩Q⌣ #S)∩S

Q #R∩S = (Q∩S #R⌣) #R∩S

In constraint diagrams:

b c′ R� b

�
�
���Q

@
@
@@R

R ≡
@

@
@@I S

�
�
���Q

@
@
@@R

R

a S - c a S - c

(∃b ● a Q b R c∧ a S c) ≡≡ (∃b, c′ ● a Q b R c′ ∧ a S c′ ∧ b R c∧ a S c)

Modal Rules and Dedekind Rule

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalent: Dedekind Rule: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
b c′ R� b Q� a′

�
�
���Q

@
@
@@R

R ⇒
@

@
@@I S

�
�
���Q

@
@
@@R

R �
�
��	

S

a S - c a c

Dedekind Rule modulo Inclusion via Intersection

Modal rules: For Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Equivalent: Dedekind Rule: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
Equivalently, via M ⊆ N ≡ M = M∩N:

Q #R∩S = (Q∩S #R⌣) #(R∩Q⌣ #S)∩(S∩Q #R)
b c′ R� b Q� a′

�
�
���Q

@
@
@@R

R ≡
@

@
@@I S

�
�
���Q

@
@
@@R

R �
�
��	

S

a S - c a S - c
@
@
@@R

Q

�
�
���R

b′

Modal Rules and Dedekind Rule: Summary with Sharp Versions

For all Q ∶ A↔ B, R ∶ B↔ C, and S ∶ A↔ C:

Modal rules: Q #R∩S ⊆ Q #(R∩Q⌣ #S)
Q #R∩S ⊆ (Q∩S #R⌣) #R

Modal rules (sharp versions): Q #R∩S = Q #(R∩Q⌣ #S) ∩ S
Q #R∩S = (Q∩S #R⌣) #R ∩ S

Dedekind: Q #R∩S ⊆ (Q∩S #R⌣) #(R∩Q⌣ #S)
Dedekind (sharp version): Q #R∩S = (Q∩S #R⌣) #(R∩Q⌣ #S) ∩ S

Proofs: Exercise!

Symmetric and Transitive Implies Idempotent
symmetric R⌣ = R (∀ b, c ∶ B ● b R c ≡ c R b)
transitive R #R ⊆ R (∀b, c,d ● b R c R d ⇒ b R d)
idempotent R #R = R

Theorem: A symmetric and transitive R ∶ B↔ B is also idempotent.
Proof: By mutual inclusion and transitivity of R, we only need to show R ⊆ R #R:

R= ⟨ Idempotence of ∩, Identity of # ⟩
R # I ∩ R⊆ ⟨ Modal rule Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩
R #(I ∩ R⌣ #R)⊆ ⟨ Mon. # with Weakening X∩Y ⊆ X ⟩
R #R⌣ #R= ⟨ Symmetry of R ⟩
R #R #R⊆ ⟨ Mon. # with Transitivity of R ⟩
R #R

Recall: Properties of Heterogeneous Relations

A relation R ∶ B↔ C is called:

univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = B

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = C

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

a mapping iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

For Univalent Relations, Sub-distributivity turns into Distributivity

If F ∶ A↔ B is univalent, then F #(R∩S) = (F #R)∩(F #S)
Proof: From sub-distributivity we have ⊆; because of antisymmetry of ⊆ (11.57) we only
need to show ⊇:

Assume that F is univalent, that is, F⌣ #F ⊆ I

(F #R)∩(F #S)
⊆ ⟨ “Modal rule” Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩

F #(R∩(F⌣ #F #S))
⊆ ⟨ “Mon. of #” with “Mon. of ∩” with “Mon. of #” with assumption `F⌣ #F ⊆ I` ⟩

F #(R∩(I #S))
= ⟨ “Identity of #” ⟩

F #(R∩S)
Ex10.* will practice such relation-algebraic proofs.

New Keywords: Monotonicity and Antitonicity

If F ∶ A↔ B is univalent, then F #(R∩S) = (F #R)∩(F #S)
Proof: From sub-distributivity we have ⊆; because of antisymmetry of ⊆ (11.57) we only
need to show ⊇:

Assume that F is univalent, that is, F⌣ #F ⊆ I

(F #R)∩(F #S)
⊆ ⟨ “Modal rule” Q #R ∩ S ⊆ Q #(R ∩ Q⌣ #S) ⟩

F #(R∩(F⌣ #F #S))
⊆ ⟨ Monotonicity with assumption `F⌣ #F ⊆ I` ⟩

F #(R∩(I #S))
= ⟨ “Identity of #” ⟩

F #(R∩S)
Ex10.* will practice such relation-algebraic proofs.

For Univalent Relations . . . — LADM Hint, for M2-like Context

Theorem: If F ∶ A↔ B is univalent, then F #(R∩S) = (F #R)∩(F #S)
Hint: Assume determinacy; then show the equation using relation extensionality, and
start from the RHS ⟨b,d⟩ ∈ (F #R)∩(F #S). In the expansions of the two relation
compositions here, introduce different bound variables.

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z

≡ ⟨ ? ⟩

x F # (R ∩ S) z

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ y1 ● x F y1 R z) ∧ (∃ y2 ● x F y2 S z)
≡ ⟨ ? ⟩

∃ y ● x F y R z ∧ y S z≡ ⟨ “Relation intersection ” ⟩∃ y ● x F y R ∩ S z≡ ⟨ “Relation composition ” ⟩
x F # (R ∩ S) z

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ y1 ● x F y1 R z) ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● x F y1 R z ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● ∃ y2 ● x F y1 R z ∧ x F y2 S z≡ ⟨ ? ⟩∃ y ● x F y R z ∧ y S z≡ ⟨ “Relation intersection ” ⟩∃ y ● x F y R ∩ S z≡ ⟨ “Relation composition ” ⟩
x F # (R ∩ S) z

Axiom “Univalence ”∶
univalent R≡ ∀ b1 ● ∀ b2 ● ∀ a ●

a R b1 ∧ a R b2⇒ b1 = b2

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ y1 ● x F y1 R z) ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● x F y1 R z ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● ∃ y2 ● x F y1 R z ∧ x F y2 S z≡ ⟨ ? ⟩∃ y1 ● ∃ y2 ● y2 = y1 ∧ x F y1 R z ∧ x F y2 S z≡ ⟨ ? ⟩∃ y ● x F y R z ∧ y S z≡ ⟨ “Relation intersection ” ⟩∃ y ● x F y R ∩ S z≡ ⟨ “Relation composition ” ⟩
x F # (R ∩ S) z

Axiom “Univalence ”∶
univalent R≡ ∀ b1 ● ∀ b2 ● ∀ a ●

a R b1 ∧ a R b2⇒ b1 = b2

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ y1 ● x F y1 R z) ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● x F y1 R z ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● ∃ y2 ● x F y1 R z ∧ x F y2 S z≡ ⟨ ? ⟩∃ y1 ● ∃ y2 ● y2 = y1 ∧ x F y1 R z ∧ x F y2 S z≡ ⟨ “Trading for ∃ ”, “One-point rule for ∃ ”,
substitution, “Idempotency of ∧ ” ⟩∃ y ● x F y R z ∧ y S z≡ ⟨ “Relation intersection ” ⟩∃ y ● x F y R ∩ S z≡ ⟨ “Relation composition ” ⟩

x F # (R ∩ S) z

Axiom “Univalence ”∶
univalent R≡ ∀ b1 ● ∀ b2 ● ∀ a ●

a R b1 ∧ a R b2⇒ b1 = b2

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ y1 ● x F y1 R z) ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● x F y1 R z ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● ∃ y2 ● x F y1 R z ∧ x F y2 S z≡ ⟨ ? ⟩∃ y1 ● ∃ y2 ● (x F y1 ∧ x F y2 ⇒ y2 = y1)∧ x F y1 R z ∧ x F y2 S z≡ ⟨ “Strong modus ponens ” ⟩∃ y1 ● ∃ y2 ● y2 = y1 ∧ x F y1 R z ∧ x F y2 S z≡ ⟨ “Trading for ∃ ”, “One-point rule for ∃ ”,
substitution, “Idempotency of ∧ ” ⟩∃ y ● x F y R z ∧ y S z≡ ⟨ “Relation intersection ” ⟩∃ y ● x F y R ∩ S z≡ ⟨ “Relation composition ” ⟩

x F # (R ∩ S) z

Axiom “Univalence ”∶
univalent R≡ ∀ b1 ● ∀ b2 ● ∀ a ●

a R b1 ∧ a R b2⇒ b1 = b2

Theorem “Distributivity of composition with univalent over ∩ ”∶
univalent F ⇒ F # (R ∩ S) = F # R ∩ F # S

Proof:
Assuming `univalent F` and using with “Univalence ”∶

Using “Relation extensionality ”∶
For any `x`, `z`∶

x F # R ∩ F # S z≡ ⟨ “Relation intersection ”, “Relation composition ” ⟩(∃ y1 ● x F y1 R z) ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● x F y1 R z ∧ (∃ y2 ● x F y2 S z)≡ ⟨ “Distributivity of ∧ over ∃ ” ⟩∃ y1 ● ∃ y2 ● x F y1 R z ∧ x F y2 S z≡ ⟨ Assumption `univalent F`, “Identity of ∧ ” ⟩∃ y1 ● ∃ y2 ● (x F y1 ∧ x F y2 ⇒ y2 = y1)∧ x F y1 R z ∧ x F y2 S z≡ ⟨ “Strong modus ponens ” ⟩∃ y1 ● ∃ y2 ● y2 = y1 ∧ x F y1 R z ∧ x F y2 S z≡ ⟨ “Trading for ∃ ”, “One-point rule for ∃ ”,
substitution, “Idempotency of ∧ ” ⟩∃ y ● x F y R z ∧ y S z≡ ⟨ “Relation intersection ” ⟩∃ y ● x F y R ∩ S z≡ ⟨ “Relation composition ” ⟩

x F # (R ∩ S) z

Axiom “Univalence ”∶
univalent R≡ ∀ b1 ● ∀ b2 ● ∀ a ●

a R b1 ∧ a R b2⇒ b1 = b2

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-22

Part 1: M2

Plan for Today

Midterm 2

Relation-Algebraic Reasoning
Limitations of with2
General relation closures as introduced in Ref11.2
Inverses

Topological Sort: Introduction (see LADM section 14.4)

M2: “Domain/Range of `id` ”
Theorem “Domain of `id` ”∶ Dom (id A) = A
Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (id A)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x id A y

x ∈ A

Theorem “Range of `id` ”∶ Ran (id A) = A
Proof:

Using “Set extensionality ”∶
For any `y`∶

y ∈ Ran (id A)≡ ⟨ “Membership in `Ran` ” ⟩∃ x ● x id A y

y ∈ A

Provided:

Declaration∶ Dom ∶ (A ↔ B) → set A
Declaration∶ Ran ∶ (A ↔ B) → set B
Axiom “Membership in `Dom` ”∶ x ∈ Dom R ≡ ∃ y ● x R y
Axiom “Membership in `Ran` ”∶ y ∈ Ran R ≡ ∃ x ● x R y

M2: “Domain/Range of `id` ”
Theorem “Domain of `id` ”∶ Dom (id A) = A
Proof:

Using “Set extensionality ”∶
For any `x`∶

x ∈ Dom (id A)≡ ⟨ “Membership in `Dom` ” ⟩∃ y ● x id A y≡ ⟨ “Relationship via `id` ” ⟩∃ y ● x = y ∈ A≡ ⟨ “Trading for ∃ ” ⟩∃ y y = x ● y ∈ A≡ ⟨ “One-point rule for ∃ ”, substitution ⟩
x ∈ A

Theorem “Range of `id` ”∶ Ran (id A) = A
Proof:

Using “Set extensionality ”∶
For any `y`∶

y ∈ Ran (id A)≡ ⟨ “Membership in `Ran` ” ⟩∃ x ● x id A y≡ ⟨ “Relationship via `id` ” ⟩∃ x ● x = y ∈ A≡ ⟨ “Trading for ∃ ” ⟩∃ x x = y ● y ∈ A≡ ⟨ “One-point rule for ∃ ”, substitution ⟩
y ∈ A

Provided:

Declaration∶ Dom ∶ (A ↔ B) → set A
Declaration∶ Ran ∶ (A ↔ B) → set B
Axiom “Membership in `Dom` ”∶ x ∈ Dom R ≡ ∃ y ● x R y
Axiom “Membership in `Ran` ”∶ y ∈ Ran R ≡ ∃ x ● x R y

M2: Antitonicity / Monotonicity

Theorem “Antitonicity of −◁ ”∶
A ⊆ B ⇒ B −◁ R ⊆ A −◁ R

Proof:

Theorem “Monotonicity of ▷ ”∶
A ⊆ B ⇒ R ▷ A ⊆ R ▷ B

Proof:

Declaration∶ ◁ , −◁ ∶ set t1 → (t1 ↔ t2) → (t1 ↔ t2)
Declaration∶ ▷ , −▷ ∶ (t1 ↔ t2) → set t2 → (t1 ↔ t2)
Axiom “Relationship via ◁ ” “Domain restriction ”∶

x A ◁ R y ≡ x ∈ A ∧ x R y
Axiom “Relationship via ▷ ” “Range restriction ”∶

x R ▷ B y ≡ x R y ∈ B
Axiom “Relationship via −◁ ” “Domain antirestriction ”∶

x A −◁ R y ≡ ¬ (x ∈ A) ∧ x R y
Axiom “Relationship via −▷ ” “Range antirestriction ”∶

x R −▷ B y ≡ x R y ∧ ¬ (y ∈ B)
Declaration∶ (∣ ∣) ∶ (t1 ↔ t2) → set t1 → set t2
Axiom “Definition of (∣ ∣) ”∶ R (∣ A ∣) = Ran (A ◁ R)

M2: Antitonicity / Monotonicity

Theorem “Antitonicity of −◁ ”∶
A ⊆ B ⇒ B −◁ R ⊆ A −◁ R

Proof:
Assuming `A ⊆ B`∶

Using “Relation inclusion ”∶
For any `x`, `y`∶

x B −◁ R y≡ ⟨ “Domain antirestriction ” ⟩¬ (x ∈ B) ∧ x R y

⇒ ⟨ ? ⟩
¬ (x ∈ A) ∧ x R y≡ ⟨ “Domain antirestriction ” ⟩
x A −◁ R y

Theorem “Monotonicity of ▷ ”∶
A ⊆ B ⇒ R ▷ A ⊆ R ▷ B

Proof:
Assuming `A ⊆ B` and using with “Set inclusion ”∶

Using “Relation inclusion ”∶
For any `x`, `y`∶

x R ▷ A y≡ ⟨ “Range restriction ” ⟩
y ∈ A ∧ x R y

⇒ ⟨ ? ⟩
y ∈ B ∧ x R y≡ ⟨ “Range restriction ” ⟩
x R ▷ B y

M2: Antitonicity / Monotonicity

Theorem “Antitonicity of −◁ ”∶
A ⊆ B ⇒ B −◁ R ⊆ A −◁ R

Proof:
Assuming `A ⊆ B`∶

Using “Relation inclusion ”∶
For any `x`, `y`∶

x B −◁ R y≡ ⟨ “Domain antirestriction ” ⟩¬ (x ∈ B) ∧ x R y⇒ ⟨ “Monotonicity of ∧ ” with “Contrapositive ” with
“Casting ” with assumption `A ⊆ B` ⟩¬ (x ∈ A) ∧ x R y≡ ⟨ “Domain antirestriction ” ⟩

x A −◁ R y

Theorem “Monotonicity of ▷ ”∶
A ⊆ B ⇒ R ▷ A ⊆ R ▷ B

Proof:
Assuming `A ⊆ B` and using with “Set inclusion ”∶

Using “Relation inclusion ”∶
For any `x`, `y`∶

x R ▷ A y≡ ⟨ “Range restriction ” ⟩
y ∈ A ∧ x R y⇒ ⟨ “Monotonicity of ∧ ” with assumption `A ⊆ B` ⟩
y ∈ B ∧ x R y≡ ⟨ “Range restriction ” ⟩
x R ▷ B y

M2 Notes

The first proof “Domain/Range of `id` ” was intended as free points for all

The second proof “Antitonicity / Monotonicity” was intended as free points for all
who paid some attention

The third proof works like the one shown at the end of last Thursday’s lecture (Nov. 18).

“Closed book” means that looking things up is wasting your time.

Copying somewhat-related proofs from all kinds of sources generally did not work
out very well. (Last year’s “ I” is different from this year’s “ I”. . .)

You have to be pretty strong to be able to adapt
a somewhat-related proof that you didn’t write. . .

The way to succeed:
— Read the current notebook — only! — in detail!
— Have the skills to construct your proofs yourself!
— Do construct your proofs yourself when you need them!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-22

Part 2: Abstract Relational-Algebraic Reasoning

Limitations of Conditional Rewriting Implementation of with2

ThmA with ThmB and ThmB2 . . .

If ThmA gives rise to an implication A1⇒A2⇒ . . .(L = R):
Find substitution σ such that Lσ matches goal
Resolve A1σ, A2σ, . . . using ThmB and ThmB2 . . .
Rewrite goal applying Lσ ↦ Rσ rigidly.

E.g.: “Transitivity of ⊆” with Assumptions `Q∩S ⊆ Q` and `Q ⊆ R`
when trying to prove `Q∩S ⊆ R`

“Transitivity of ⊆” is: Q ⊆ R⇒R ⊆ S⇒Q ⊆ S
For application, a fresh renaming is used: q ⊆ r⇒ r ⊆ s⇒ q ⊆ s
We try to use: q ⊆ s↦ true, so L is: q ⊆ s
Matching L against goal produces σ = [q, s ∶= Q∩S,R](q ⊆ r)σ is (Q∩S ⊆ r), and (r ⊆ s)σ is r ⊆ R

— which cannot be proven by “Assumption ‘Q∩S ⊆ Q‘”
resp. by “Assumption ‘Q ⊆ R‘”

Narrowing or unification would be needed for such cases
— not yet implemented

Adding an explicit substitution should help:
“Transitivity of ⊆” with `R ∶= Q` and assumption `Q∩S ⊆ Q` and assumption `Q ⊆ R`

Recall: Reflexive Closure

Relation Q ∶ B↔ B is the reflexive closure of R ∶ B↔ B
iff Q is the smallest reflexive relation containing R,

or, equivalently, iff
R ⊆ Q
I ⊆ Q(∀P ∶ B↔ B R ⊆ P ∧ I ⊆ P ● Q ⊆ P)

Theorem: The reflexive closure of R ∶ B↔ B is R∪ I.

Fact: If R represents a graph, then the reflexive closure of R
“ensures that each node has a loop edge”.

x

y

z

u

x

y

z

u

x

y

z

u

x

y

z

u

Reflexive Closure Operator `reflClos` (in Ref11.2)

Axiom “Definition of `reflClos` ”∶ reflClos R = R ∪ I

Theorem “Closure properties of `reflClos`∶ Expanding ”∶
R ⊆ reflClos R

Proof:

?

Theorem “Closure properties of `reflClos`∶ Reflexivity ”∶
reflexive (reflClos R)

Proof:

?

Theorem “Closure properties of `reflClos`∶ Minimality ”∶
R ⊆ S ∧ reflexive S ⇒ reflClos R ⊆ S

Proof:

?

Closures

Let pred (for “predicate”) be a property on relations, i.e.:

pred ∶ (B↔ C)→ B

Relation Q ∶ B↔ C is the pred-closure of R ∶ B↔ C iff
Q is the smallest relation
that contains R
and has property pred

or, equivalently, iff
R ⊆ Q
pred Q(∀P ∶ B↔ C R ⊆ P ∧ pred P ● Q ⊆ P)

(For some properties, closures are not defined, or not always defined.)

Closures
Let pred (for “predicate”) be a property on relations, i.e.: pred ∶ (B↔ C)→ B

Relation Q ∶ B↔ C is the pred-closure of R ∶ B↔ C iff
Q is the smallest relation that contains R and has property pred,

or, equivalently, iff
R ⊆ Q and pred Q and (∀P ∶ B↔ C R ⊆ P ∧ pred P ● Q ⊆ P)

General Relation Closures in Ref11.2:

Precedence 50 for: is closure − of
Conjunctional∶ is closure − of
Declaration∶ is closure − of ∶(A ↔ B) → ((A ↔ B) → B) → (A ↔ B) → B

Axiom “Relation closure ”∶
Q is pred closure-of R≡ R ⊆ Q ∧ pred Q ∧ (∀ P ● R ⊆ P ∧ pred P ⇒ Q ⊆ P)

Theorem “Well-definedness of `reflClos` ”∶
Theorem “Well-definedness of `reflClos` ”∶

reflClos R is reflexive closure-of R
Proof:

By “Relation closure ”
with “Closure properties of `reflClos`∶ Expanding ”
and “Closure properties of `reflClos`∶ Reflexivity ”
and “Closure properties of `reflClos`∶ Minimality ”

Theorem “Well-definedness of `reflClos` ”∶
Theorem “Well-definedness of `reflClos` ”∶

reflClos R is reflexive closure-of R
Proof:

Using “Relation closure ”∶
Subproof for `R ⊆ reflClos R`∶

?
Subproof for `reflexive (reflClos R)`∶

?
Subproof for `∀ P ● R ⊆ P ∧ reflexive P ⇒ reflClos R ⊆ P`∶

For any `P`∶
Assuming `R ⊆ P`, `reflexive P`∶

?

Recall: Properties of Heterogeneous Relations

A relation R ∶ B↔ C is called:

univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total
Dom R = ⌞ B ⌟

I ⊆ R #R⌣ ∀ b ∶ B ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective
Ran R = ⌞ C ⌟

I ⊆ R⌣ #R
∀ c ∶ C ● (∃ b ∶ B ● b R c)

a mapping iff it is univalent and total
bijective iff it is injective and surjective

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Properties of Heterogeneous Relations “between Sets”
Let R ∶ B↔ C be a relation and X ∶ set B and Y ∶ set C be sets. Then R is called:

univalent
determinate

R⌣ #R ⊆ I ∀ b, c1, c2 ● b R c1 ∧ b R c2 ⇒ c1 = c2

total on X
Dom R ⊇ X

id X ⊆ R #R⌣ ∀ b ∶ B b ∈ X ● (∃ c ∶ C ● b R c)
injective R #R⌣ ⊆ I ∀ b1, b2, c ● b1 R c∧ b2 R c ⇒ b1 = b2

surjective onto Y
Ran R ⊇ Y
id Y ⊆ R⌣ #R

∀ c ∶ C c ∈ Y ● (∃ b ∶ B ● b R c)
a mapping from X to Y R⌣ #R ⊆ id Y ∧ Dom R = X

We define X ○Ð→ Y to be the set of all mappings from X to Y.

We therefore write “f ∈ X ○Ð→ Y” for “f is a mapping from X to Y”.

(We continue to write T1 → T2 for the function type of
functions (“operators”) from type T1 to type T2.
Such functions do not have any relation type.)

Inverses of Total Functions — Between Sets
We write “f ∈ S1 ○Ð→ S2” for “f is a mapping fron S1 to S2”.

(14.43) Definition: Let f with f ∈ S1 ○Ð→ S2 be a mapping from S1 to S2.
An inverse of f is a mapping g from S2 to S1 such that f #g = id S1 and g # f = id S2.

f has an inverse iff f is a bijective mapping.

The inverse of a bijective mapping f is its converse f ⌣.
A homogeneous bijective mapping is also called a permutation.

5

4

3

2

1

0

Ja
ck

M
ar

y

T
o

m

Ja
n

e

Ji
ll

B
o

b

5

4

3

2

1

0

543210

0

3

1

2

5

4

5

4

3

2

1

0

543210

0

3

1

2

4

5

Inverses of Total Functions — Between Types
(14.43t) Definition: Let f ∶ B↔ C be a mapping between types B and C.

An inverse of f is a mapping g ∶ C↔ B such that f #g = I = id ⌞ B ⌟ and g # f = I = id ⌞ C ⌟.
Theorem: If g is an inverse of a mapping f ∶ B→ C, then g = f ⌣.
Proof: (Using antisymmetry of ⊆)

f ⌣= ⟨ Identity of # ⟩
f ⌣ # I= ⟨ g is an inverse of f ⟩
f ⌣ # f #g⊆ ⟨ Mon. of # with f is univalent, that is, f ⌣ # f ⊆ I ⟩
I #g= ⟨ Identity of # ⟩
g⊆ ⟨ Identity of #, Mon. of # with f is total, that is, I ⊆ f # f ⌣ ⟩
g # f # f ⌣= ⟨ g is an inverse of f ; Identity of # ⟩
f ⌣

M
or

e
co

m
plic

at
ed

in

th
e se

t-b
as

ed
vi

ew
!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-22

Part 3: Topological Sort: Intro

Topological Sort — Introduction

10

375

11 8

92

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, that is, E∩E⌣ ⊆ I ⊆ E ⊇ E #E and
E∪E⌣ = V ×V and B ⊆ E.

Since (V,B) is a DAG, B∗ is an order: B∗ ∩B∗⌣ ⊆ I ⊆ B∗ ⊇ B∗ #B∗
E is normally presented as a sequence in Seq V that is sorted with
repect to E and contains all elements of V.

Example: The DAG above has, among others, the following topological sorts:
[5, 7, 3, 11, 8, 2, 9, 10] — visual left-to-right, top-to-bottom
[3, 5, 7, 8, 11, 2, 9, 10] — smallest-numbered available vertex first
[5, 7, 3, 8, 11, 10, 9, 2] — fewest edges first
[7, 5, 11, 3, 10, 8, 9, 2] — largest-numbered available vertex first
[5, 7, 11, 2, 3, 8, 9, 10] — attempting top-to-bottom, left-to-right
[3, 7, 8, 5, 11, 10, 2, 9] — (arbitrary)

B = {⟨3,8⟩, ⟨3,10⟩, ⟨5,11⟩, ⟨7,8⟩, ⟨7,11⟩, ⟨8,11⟩, ⟨11,2⟩, ⟨11,9⟩, ⟨11,10⟩}

Topological Sort — Code Scheduling — SSA

_*__+ 2

*

_- 2

_ *_

+ 1*_v5

v11

v2 v9

v8

v7 v3

v1v4

v10

-

v10 := v11 * v3

v8 := v7 - v3

v2 := v11 + 2

v11 := v5 * v7

v5 := v4 - 2

v9 := v11 * v8

v3 := v1 + 1v7 := v4 * v1

Static single assignment form: Each variable is assigned once, and assigned before use.
v5 := v4 - 2
v7 := v4 * v1
v3 := v1 + 1
v11 := v5 * v7
v8 := v7 - v3
v2 := v11 + 2
v9 := v11 * v8
v10 := v11 * v3

We can consider SSA as encoding data-flow graphs.

Each admissible re-ordering of an SSA sequence is a
different topological sort of that graph.

It is frequently easier to think in terms of that graph
than in terms of re-orderings!

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-23

Topological Sort

Topological Sort — Introduction

10

375

11 8

92

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, that is, E∩E⌣ ⊆ I ⊆ E ⊇ E #E and
E∪E⌣ = V ×V and B ⊆ E.

Since (V,B) is a DAG, B∗ is an order: B∗ ∩B∗⌣ ⊆ I ⊆ B∗ ⊇ B∗ #B∗
E is normally presented as a sequence in Seq V that is sorted with
repect to E and contains all elements of V.

Example: The DAG above has, among others, the following topological sorts:
[5, 7, 3, 11, 8, 2, 9, 10] — visual left-to-right, top-to-bottom
[3, 5, 7, 8, 11, 2, 9, 10] — smallest-numbered available vertex first
[5, 7, 3, 8, 11, 10, 9, 2] — fewest edges first
[7, 5, 11, 3, 10, 8, 9, 2] — largest-numbered available vertex first
[5, 7, 11, 2, 3, 8, 9, 10] — attempting top-to-bottom, left-to-right
[3, 7, 8, 5, 11, 10, 2, 9] — (arbitrary)

B = {⟨3,8⟩, ⟨3,10⟩, ⟨5,11⟩, ⟨7,8⟩, ⟨7,11⟩, ⟨8,11⟩, ⟨11,2⟩, ⟨11,9⟩, ⟨11,10⟩}

Topological Sort — Code Scheduling — SSA

_*__+ 2

*

_- 2

_ *_

+ 1*_v5

v11

v2 v9

v8

v7 v3

v1v4

v10

-

v10 := v11 * v3

v8 := v7 - v3

v2 := v11 + 2

v11 := v5 * v7

v5 := v4 - 2

v9 := v11 * v8

v3 := v1 + 1v7 := v4 * v1

Static single assignment form: Each variable is assigned once, and assigned before use.
v5 := v4 - 2
v7 := v4 * v1
v3 := v1 + 1
v11 := v5 * v7
v8 := v7 - v3
v2 := v11 + 2
v9 := v11 * v8
v10 := v11 * v3

We can consider SSA as encoding data-flow graphs.

Each admissible re-ordering of an SSA sequence is a
different topological sort of that graph.

It is frequently easier to think in terms of that graph
than in terms of re-orderings!

Topological Sort — Code Scheduling — SSA — Pipeline Stalls

_*__+ 2

*

_- 2

_ *_

+ 1*_v5

v11

v2 v9

v8

v7 v3

v1v4

v10

-

10

375

11 8

92
v10 := v11 * v3

v8 := v7 - v3

v2 := v11 + 2

v11 := v5 * v7

v5 := v4 - 2

v9 := v11 * v8

v3 := v1 + 1v7 := v4 * v1

Static single assignment form: Each variable is assigned once, and assigned before use.

v7 := v4 * v1
v5 := v4 - 2
v11 := v5 * v7
v3 := v1 + 1
v10 := v11 * v3
v8 := v7 - v3
v9 := v11 * v8
v2 := v11 + 2

[7, 5, 11, 3, 10, 8, 9, 2]
Let E be the topological sort of (V,B);
let C = E − I be the associated strict-order.
Depth-2 pipelining requires B ⊆ C #C.
Depth-3 pipelining requires B ⊆ C #C #C.

The “next-step” relation: S = C −C #C+
Depth-2 pipelining requires B∩S = {}.
Depth-3 pipelining requires B∩(S∪S #S) = {}.

Topological Sort — Code Scheduling — Different Schedules

_*__+ 2

*

_- 2

_ *_

+ 1*_v5

v11

v2 v9

v8

v7 v3

v1v4

v10

-

10

375

11 8

92
v10 := v11 * v3

v8 := v7 - v3

v2 := v11 + 2

v11 := v5 * v7

v5 := v4 - 2

v9 := v11 * v8

v3 := v1 + 1v7 := v4 * v1

Example: Most of the original example topological sorts induce pipeline stalls:

[5, 7, 3, 11, 8, 2, 9, 10] — visual left-to-right, top-to-bottom
[3, 5, 7, 8, 11, 2, 9, 10] — smallest-numbered available vertex first
[5, 7, 3, 8, 11, 10, 9, 2] — fewest edges first
[7, 5, 11, 3, 10, 8, 9, 2] — largest-numbered available vertex first
[5, 7, 11, 2, 3, 8, 9, 10] — attempting top-to-bottom, left-to-right
[3, 7, 8, 5, 11, 10, 2, 9] — (arbitrary)

B = {⟨3,8⟩, ⟨3,10⟩, ⟨5,11⟩, ⟨7,8⟩, ⟨7,11⟩, ⟨8,11⟩, ⟨11,2⟩, ⟨11,9⟩, ⟨11,10⟩}
Topological Sort — Simple Algorithm

Given a DAG (V,B) (with V ∶ set T),
calculate sequence s encoding a topological sort E.

10

375

11 8

92

var vs ∶ set T
var s ∶ Seq T
vs : = V ; — not-yet-used vertices{ vs = V } — Precondition
s : =

>

; — accumulator for result sequence{ (vs and {v v ∈ s} partition V) ∧(∀v v ∈ s ● ∀ u u B v ● u precedes v in s) } — Invariant
while vs ≠ {} do

Choose a source u of the subgraph (vs,B∩(vs × vs)) induced by vs ;
vs, s : = vs − {u}, s ▹ u

od{ (∀u,v ∶ V u B v ● u precedes v in s) } — Postcondition

How to “Choose a source u of the subgraph induced by vs” efficiently?

Data Refinement

Abstract states:

Implementation states:

Initialisation Operations Finalisation

X -
f1 X -

f2 X -
f3 X

�
�
���i

@
@
@@R

p

I R

pppppppppppppppppppppppp?
R

pppppppppppppppppppppppp?
R

pppppppppppppppppppppppp?
R

pppppppppppppppppppppppp?
T

@
@
@@R

j

�
�
���q

Y
g1- Y

g2- Y
g3- Y

Representation relation: R ∶ X↔ Y
relates abstract states X with concrete implementation states Y:

Compatible initialisation: j ⊆ i #R
Operation simulation: R #gk ⊆ fk #R
Compatible results: R # q ⊆ p

Topological Sort — Making Choosing Minimal Elements Easier
To store mappings V ○Ð→ X in “array . . . of X”, “assume” V = 0 . . k = {i ∶ N 0 ≤ i ≤ k}.

var sources ∶ Seq (0 . . k) — three new variables make vs superfluous
var preCount : array 0 . . k of ⌞ N ⌟
var postSet : array 0 . . k of P (0 . . k) — read-only version of B ∶ V ○←→ V as V ○Ð→ PV

Coupling invariant:{u u ∈ sources} = vs − (Ran B′) ∧ — sources contains sources of B′ = B∩(vs × vs)(∀ v v ∈ vs ● preCount[v] = # (B′ ⌣ (∣ {v} ∣))) ∧(∀ u u ∈ vs ● postSet[u] = B′ (∣ {u} ∣)))
Initialisation:
for v ∈ 0 . . k do preCount[v] : = # (B ⌣ (∣ {v} ∣)) od ;
for u ∈ 0 . . k do postSet[u] : = B (∣ {u} ∣) od ;
sources : =

>

;
for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od

Topological Sort — Complete “Translated” LADM Algorithm

for v ∈ 0 . . k do preCount[v] : = # (B ⌣ (∣ {v} ∣)) od ;
for u ∈ 0 . . k do postSet[u] : = B (∣ {u} ∣) od ;
sources : =

>

;
for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od
ghost vs : = 0 . . k ;
s : =

>

while sources ≠
>

do
u : = head sources ;
s : = s ▹ u ;
sources : = tail sources ; — remove u from sources
ghost vs : = vs − {u} ;
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-25

Topological Sort

Topological Sort — Specification

10

375

11 8

92

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, that is, E∩E⌣ ⊆ I ⊆ E ⊇ E #E and
E∪E⌣ = V ×V and B ⊆ E.

Since (V,B) is a DAG, B∗ is an order: B∗ ∩B∗⌣ ⊆ I ⊆ B∗ ⊇ B∗ #B∗
E is normally presented as a sequence in Seq V that is sorted with
repect to E and contains all elements of V.

Interface types: var vs ∶ set T input V
var s ∶ Seq T output representing E

Next week: Procedure declaration, e.g.: Seq T topSort(set T vs)

Precondition: vs = V

Postcondition: (∀u,v u B v ● u precedes v in s)

One Formalisation of precedes in

Precedence 50 for: precedes in
Conjunctional∶ precedes in
Declaration∶ precedes in ∶ A → A → Seq A → B

Axiom “Def. ` precedes in ` ”∶ x precedes y in > ≡ false
Axiom “Def. ` precedes in ` ”∶ x precedes y in (x ◃ zs) ≡ y ∈ zs
Axiom “Def. ` precedes in ` ”∶ x ≠ z ⇒ (x precedes y in (z ◃ zs) ≡ x precedes y in zs)

1 precedes 3 in [1,2] ≡ ?

1 precedes 3 in [3] ≡ ?

1 precedes 3 in [3,1,3] ≡ ?

Topological Sort — Specification (ctd.)

10

375

11 8

92

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, that is, E∩E⌣ ⊆ I ⊆ E ⊇ E #E and
E∪E⌣ = V ×V and B ⊆ E.

Since (V,B) is a DAG, B∗ is an order: B∗ ∩B∗⌣ ⊆ I ⊆ B∗ ⊇ B∗ #B∗
E is normally presented as a sequence in Seq V that is sorted with
repect to E and contains all elements of V.

Interface types: var vs ∶ set T input V
var s ∶ Seq T output representing E

Next week: Procedure declaration, e.g.: Seq T topSort(set T vs)

Precondition: vs = V

Postcondition: (∀u,v u B v ● u precedes v in s)∧ {v v ∈ s} = V∧ length s = # V

Topological Sort — Simple Algorithm
Given a DAG (V,B) (with V ∶ set T),
calculate sequence s encoding a topological sort E.

10

375

11 8

92

var vs ∶ set T; s ∶ Seq T
vs : = V ; — not-yet-used vertices{ vs = V } — Precondition
s : =

>

; — Initialising accumulator for result sequence{ (vs and {v v ∈ s} partition V) ∧ length s +# vs = # V ∧(∀u,v v ∈ s ∧ u B v ● u precedes v in s) } — Invariant
while vs ≠ {} do

Choose a source u of the subgraph (vs,B∩(vs × vs)) induced by vs ;
vs, s : = vs − {u}, s ▹ u

od{ (∀u,v u B v ● u precedes v in s)∧ {v v ∈ s} = V ∧ length s = # V } — Postcondition

The “While” Rule
The constituents of a while loop “while B do C od” are:

The loop condition B ∶ B
The (loop) body C ∶ Cmd

The conventional while rule allows to infer only correctness statements for while loops
that are in the shape of the conclusion of this inference rule, involving an invariant
condition Q ∶ B:

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

This rule reads:
If you can prove that execution of the loop body C starting in states
satisfying the loop condition B preserves the invariant Q,
then you have proof that the whole loop also preserves the invariant
Q, and in addition establishes the negation of the loop condition.

The “While” Rule — Induction for Partial Correctness

�����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

The invariant will need to hold
immediately before the loop starts,
after each execution of the loop body,
and therefore also after the loop ends.

The invariant will typically mention all variables that are changed by
the loop, and explain how they are related.

Frequent pattern: Generalised postcondition using the negated loop
condition

Using the “While” Rule

Theorem “While-example ”∶
Pre⇒ INIT ;

while B
do

C
od ;

FINAL

Post

Proof:
Pre Precondition⇒ INIT ⟨ ? ⟩
Q Invariant⇒ while B do

C
od ⟨ “While ” with subproof:

B ∧ Q Loop condition and invariant⇒ C ⟨ ? ⟩
Q Invariant⟩¬ B ∧ Q Negated loop condition, and invariant⇒ FINAL ⟨ ? ⟩

Post Postcondition

Topological Sort — Simple Algorithm
Given a DAG (V,B) (with V ∶ set T),
calculate sequence s encoding a topological sort E.

10

375

11 8

92

var vs ∶ set T; s ∶ Seq T
vs : = V ; — not-yet-used vertices{ vs = V } — Precondition
s : =

>

; — Initialising accumulator for result sequence{ (vs and {v v ∈ s} partition V) ∧ length s +# vs = # V ∧(∀u,v v ∈ s ∧ u B v ● u precedes v in s) } — Invariant
while vs ≠ {} do

Choose a source u of the subgraph (vs,B∩(vs × vs)) induced by vs ;
vs, s : = vs − {u}, s ▹ u

od{ (∀u,v u B v ● u precedes v in s)∧ {v v ∈ s} = V ∧ length s = # V } — Postcondition

How to “Choose a source u of the subgraph induced by vs” efficiently?

Data Refinement

Abstract states:

Implementation states:

Initialisation Operations Finalisation

X -
f1 X -

f2 X -
f3 X

�
�
���i

@
@
@@R

p

I R

pppppppppppppppppppppppp?
R

pppppppppppppppppppppppp?
R

pppppppppppppppppppppppp?
R

pppppppppppppppppppppppp?
T

@
@
@@R

j

�
�
���q

Y
g1- Y

g2- Y
g3- Y

Representation relation: R ∶ X↔ Y
relates abstract states X with concrete implementation states Y:

Compatible initialisation: j ⊆ i #R
Operation simulation: R #gk ⊆ fk #R
Compatible results: R # q ⊆ p

Topological Sort — Making Choosing Minimal Elements Easier
To store mappings V ○Ð→ X in “array . . . of X”, “assume” V = 0 . . k = {i ∶ N 0 ≤ i ≤ k}.

var sources ∶ Seq (0 . . k) — three new variables make vs superfluous
var preCount : array 0 . . k of ⌞ N ⌟
var postSet : array 0 . . k of P (0 . . k) — read-only version of B ∶ V ○←→ V as V ○Ð→ PV

Coupling invariant:{u u ∈ sources} = vs − (Ran B′) ∧ — sources contains sources of B′ = B∩(vs × vs)(∀ v v ∈ vs ● preCount[v] = # (B′ ⌣ (∣ {v} ∣))) ∧(∀ u u ∈ vs ● postSet[u] = B′ (∣ {u} ∣)))
Initialisation:
for v ∈ 0 . . k do preCount[v] : = # (B ⌣ (∣ {v} ∣)) od ;
for u ∈ 0 . . k do postSet[u] : = B (∣ {u} ∣) od ;
sources : =

>

;
for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od

Topological Sort — Complete “Translated” LADM Algorithm

for v ∈ 0 . . k do preCount[v] : = # (B ⌣ (∣ {v} ∣)) od ;
for u ∈ 0 . . k do postSet[u] : = B (∣ {u} ∣) od ;
sources : =

>

;
for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od
ghost vs : = 0 . . k ;
s : =

>

while sources ≠
>

do
u : = head sources ;
s : = s ▹ u ;
sources : = tail sources ; — remove u from sources
ghost vs : = vs − {u} ;
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od

Topological Sort — Complete O(# B +# V) Algorithm
for p ∈ B do

preCount[snd p] : = preCount[snd p] + 1
postSet[fst p] : = postSet[fst p]∪{v}

od ;
sources : =

>

; for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od
ghost vs : = 0 . . k ;
s : =

>

while sources ≠
>

do
u : = head sources ;
s : = s ▹ u ;
sources : = tail sources ; — remove u from sources
ghost vs : = vs − {u} ;
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-29

Part 1: Topological Sort

Recall: Topological Sort — Specification

10

375

11 8

92

A topological sort of a acyclic simple directed graph (V,B) is a
linear order E containing B, that is, E∩E⌣ ⊆ I ⊆ E ⊇ E #E and
E∪E⌣ = V ×V and B ⊆ E.

Since (V,B) is a DAG, B∗ is an order: B∗ ∩B∗⌣ ⊆ I ⊆ B∗ ⊇ B∗ #B∗
E is normally presented as a sequence in Seq V that is sorted with
repect to E and contains all elements of V.

Interface types: var vs ∶ set T input V
var s ∶ Seq T output representing E

Next week: Procedure declaration, e.g.: Seq T topSort(set T vs)

Precondition: vs = V

Postcondition: (∀u,v u B v ● u precedes v in s)∧ {v v ∈ s} = V∧ length s = # V

Recall: Topological Sort — Simple Algorithm
Given a DAG (V,B) (with V ∶ set T),
calculate sequence s encoding a topological sort E.

10

375

11 8

92

var vs ∶ set T; s ∶ Seq T
vs : = V ; — not-yet-used vertices{ vs = V } — Precondition
s : =

>

; — Initialising accumulator for result sequence{ (vs and {v v ∈ s} partition V) ∧ length s +# vs = # V ∧(∀u,v v ∈ s ∧ u B v ● u precedes v in s) } — Invariant
while vs ≠ {} do

Choose a source u of the subgraph (vs,B∩(vs × vs)) induced by vs ;
vs, s : = vs − {u}, s ▹ u

od{ (∀u,v u B v ● u precedes v in s)∧ {v v ∈ s} = V ∧ length s = # V } — Postcondition

How to “Choose a source u of the subgraph induced by vs” efficiently?

Topological Sort — Making Choosing Minimal Elements Easier
To store mappings V ○Ð→ X in “array . . . of X”, “assume” V = 0 . . k = {i ∶ N 0 ≤ i ≤ k}.

var sources ∶ Seq (0 . . k) — three new variables make vs superfluous
var preCount : array 0 . . k of ⌞ N ⌟
var postSet : array 0 . . k of P (0 . . k) — read-only version of B ∶ V ○←→ V as V ○Ð→ PV

Coupling invariant:{u u ∈ sources} = vs − (Ran B′) ∧ — sources contains sources of B′ = B∩(vs × vs)(∀ v v ∈ vs ● preCount[v] = # (B′ ⌣ (∣ {v} ∣))) ∧(∀ u u ∈ vs ● postSet[u] = B′ (∣ {u} ∣)))
Initialisation:
for v ∈ 0 . . k do preCount[v] : = # (B ⌣ (∣ {v} ∣)) od ;
for u ∈ 0 . . k do postSet[u] : = B (∣ {u} ∣) od ;
sources : =

>

;
for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od

Topological Sort — Complete “Translated” LADM Algorithm

for v ∈ 0 . . k do preCount[v] : = # (B ⌣ (∣ {v} ∣)) od ;
for u ∈ 0 . . k do postSet[u] : = B (∣ {u} ∣) od ;
sources : =

>

;
for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od
ghost vs : = 0 . . k ;
s : =

>

while sources ≠
>

do
u : = head sources ;
s : = s ▹ u ;
sources : = tail sources ; — remove u from sources
ghost vs : = vs − {u} ;
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od

Topological Sort — Complete O(# B +# V) Algorithm
for p ∈ B do

preCount[snd p] : = preCount[snd p] + 1
postSet[fst p] : = postSet[fst p]∪{snd p}

od ;
sources : =

>

; for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od
ghost vs : = 0 . . k ;
s : =

>

while sources ≠
>

do
u : = head sources ;
s : = s ▹ u ;
sources : = tail sources ; — remove u from sources
ghost vs : = vs − {u} ;
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od

Modelling Arrays as Partial Functions

Precedence 97 for: ○Ð→
Associating to the right: ○Ð→
Declaration∶ ○Ð→ ∶ set A → set B → set (A ↔ B)
Axiom “Definition of ○Ð→ ”∶

X ○Ð→ Y = { f f ⌣ # f ⊆ id Y ∧ Dom f = X }

Array access: a[i] Ô⇒ a @ i

Array update: a[i] := E Ô⇒ a : = a⊕ { ⟨ i, E ⟩ }

Swapping Two Elements of an Array

z := xs[i] ;
xs[i] := xs[j] ;
xs[j] := z

Theorem “Array swap ”∶
i ≤ k ≥ j ∧ xs = xs0 ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ z ∶ = xs @ i ;
xs ∶ = xs ⊕ { ⟨ i, xs @ j ⟩ } ;
xs ∶ = xs ⊕ { ⟨ j, z ⟩ }

xs = xs0 ⊕ { ⟨ i , xs0 @ j ⟩, ⟨ j , xs0 @ i ⟩ }

Sortedness

Declaration∶ sorted ∶ (N ↔ N) → B
Axiom “Definition of `sorted` ”∶

sorted R ≡ R ⌣ # ⌜ < ⌝ # R ⊆ ⌜ ≤ ⌝
Theorem “Sortedness ”∶

sorted R ≡ ∀ i ● ∀ j i < j ● ∀ m ● ∀ n i R m ∧ j R n ● m ≤ n
Proof:

p := 0 ;
while p ≠ k do

xs[p] := 42 ;
p := p + 1

Theorem “Sorting 0 ”∶
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ p ∶ = 0 ;

while p ≠ k do
xs ∶ = xs ⊕ { ⟨ p, 42 ⟩ } ;
p ∶ = p + 1

od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs
Proof:

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ ⟨ ? ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted ((0 .. 0) ◁ xs)⇒ p ∶ = 0 ⟨ “Assignment ” with substitution ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted ((0 .. p) ◁ xs)⇒ while p ≠ k do xs ∶ = xs ⊕ { ⟨ p, 42 ⟩ } ; p ∶ = p + 1 od⟨ “While ” with subproof:

?⟩¬ (p ≠ k) ∧ xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted ((0 .. p) ◁ xs)⇒ ⟨ ? ⟩
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-29

Part 2: Bags/Multisets

“Multisets” or “Bags” — LADM Section 11.7
A bag (or multiset) is “like a set, but each element can occur any (finite) number of times”.
Bag comprehension and enumeration: Written as for sets, but with delimiters }and ~.
Sets versus bags example:{ x ∶ Z − 2 ≤ x ≤ 2 ● x ⋅ x } = {4,1,0} = {0,1,4} = {0,0,0,1,1,4}

}x ∶ Z − 2 ≤ x ≤ 2 ● x ⋅ x ~ = }4,1,0,1,4~ = }0,1,1,4,4~ ≠ }0,1,4~

The operator # ∶ t→ Bag t→ N counts the number of occurrences of an element in a bag:
1 # }0,0,0,1,1,4~ = 2

Bag extensionality and bag inclusion are defined via all occurrence counts:
B = C ≡ (∀ x ● x # B = x # C) B ⊆ C ≡ (∀ x ● x # B ≤ x # C)

Bag operations: x # (B∪C) = (x # B) + (x # C)
x # (B∩C) = (x # B) ↓ (x # C)
x # (B −C) = (x # B) − (x # C)

Bag Product and Bag Reconstitution
Recall: A bag is “like a set, but each element can occur any (finite) number of times”.

}x ∶ Z − 2 ≤ x ≤ 2 ● x ⋅ x ~ = }4,1,0,1,4~ = }0,1,1,4,4~ ≠ }0,1,4~

∶ t→ Bag t→ N counts the number of occurrences: 1 # }0,0,0,1,1,4~= 2

� ∶ t→ Bag t→ B is membership, with x � B ≡ x # B ≠ 0: 1 �}0,0,0,1,1,4~≡ true

Calculate: }x x �}0,0,0,1,1,4~~ = ?

Define bagProd ∶ Bag N→ N such that: bagProd }e1, e2, . . . , en~= e1 ⋅ e2 ⋅ . . . ⋅ en
e.g., bagProd}2,2,3,3,5~= 180

Easy with exponentiation ∗∗ : bagProd B =∏ ?
Without exponentiation: ?

Related question: For sets, we have (11.5): S = {x x ∈ S ● x}
What is the corresponding theorem for bags?

Bag reconstitution: B = } ? ? ● ? ~

Pigeonhole Principle — LADM section 16.4
The pigeonhole principle is usually stated as follows.

(16.43) If more than n pigeons are placed in n holes, at least one hole will contain more
than one pigeon.

Assume:
S ∶ Bag R is a bag of real numbers
av S is the average of the elements of S
max S is the maximum of the elements of S

Reformulating the pigeonhole principle: (16.44) av S > 1 ⇒ max S > 1

Generalising:

(16.45) Pigeonhole principle:
If S ∶ Bag R is non-empty, then: av S ≤ max S

Stronger on integers:

(16.46) Pigeonhole principle:
If S ∶ Bag Z is non-empty, then: ⌈av S⌉ ≤ max S

Generalised Pigeonhole Principle — Application

(16.45) Pigeonhole principle: If S ∶ Bag R is non-empty, then: av S ≤ max S

(16.46) Pigeonhole principle: If S ∶ Bag Z is non-empty, then ⌈av S⌉ ≤ max S

(16.47) Example: In a room of eight people, at least two of them have birthdays on the
same day of the week.
Proof: Let bag S contain, for each day of the week, the number of people in the room
whose birthday is on that day. The number of people is 8 and the number of days is 7.
Therefore:

max S

≥ ⟨ Pigeonhole principle (16.46) — S contains integers ⟩
⌈av S⌉

= ⟨ S has 7 values that sum to 8 ⟩
⌈8/7⌉

= ⟨ Definition of ceiling ⟩
2

Bag-based Specification of Sorting

Theorem “Sorting 1 ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ SORT

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-30

Part 1: Total Correctness

Bag-based Specification of Sorting

Theorem “Sorting 1 ”∶
xs0 = xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ SORT

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

A Verified Sorting Algorithm

while true do
xs[0] := 42

Theorem “Sorting 0’ ”∶
xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ while true do

xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }
od

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~
Proof:

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟⇒ ⟨ “Right-zero of⇒ ” ⟩
true⇒ while true do xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ } od⟨ “While ” with subproof:

true ∧ true⇒ xs ∶ = xs ⊕ { ⟨ 0, 42 ⟩ }⟨ “Idempotency of ∧ ”, “Assignment ” with substitution ⟩
true⟩¬ true ∧ true⇒ ⟨ “Contradiction ”, “ex falso quodlibet ” ⟩

xs ∈ (0 .. k) ○Ð→ ⌞ N ⌟ ∧ sorted xs∧ }p p ∈ xs ● snd p ~ = }p p ∈ xs0 ● snd p ~

Precondition-Postcondition Specifications in Dynamic Logic Notation
Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.
So far, we have been using the dynamic logic notation:

P ⇒[C] Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in states in which the postcondition Q holds.

Differences between partial and total correctness:
Commands that do not terminate properly:

Commands that crash — evaluating undefined expressions
Infinite loops

Rules That Work for Both

Sequential composition:

3ULPLWLYH�LQIHUHQFH�UXOH�'6HTXHQFH(��
����C3��î?�&U�@��4C���C4��î?�&V�@��5C�
���1���������������������������������
������C3��î?�&U�)�&V�@��5C

Strengthening the precondition:
�����C3U�î�3VC����C3V�î?�&�@�4C�
���1������������������������������
����������C3U�î?�&�@�4C

Weakening the postcondition:
�����C3�î?�&�@�4UC����C4U�î�4VC�
���1������������������������������
����������C3�î?�&�@�4VC�

Total Correctness Rule for Assignment

Used so far: Dynamic Logic Partial Correctness Assignment Axiom:

Q[x ∶= E] ⇒[x : = E] Q

LADM Total Correctness Assignment Axiom (10.1):

{ dom ‘E’ ∧ Q[x ∶= E] } x : = E { Q }
For each programming-language expression E, the predicate

dom ‘E’
is satisfied exactly in the states in which E is defined.
(dom is a meta-function taking expressions to Boolean conditions.)

Examples:
dom ‘sqrt (x / y)’ ≡ y ≠ 0∧x / y ≥ 0
dom ‘a @ i’ ≡ i ∈ Dom a
For int-variables i and j:
dom ‘i + j’ ≡ minint ≤ x + y ≤ maxint

Assignment “ : = ”:
Two characters;
type “:=”

Substitution “∶=”:
One Unicode character;
type “/:=”

Conditional Rule

Each evaluation of an expression E needs to be guarded by a precondition dom ‘E’:

{ B ∧ P } C1 { Q } { ¬ B ∧ P } C2 { Q }
{ dom ‘B’ ∧ P } if B then C1 else C2 fi { Q }

“While” Rule

So far: �����������������C%�<�4��î?�&�@��4C�
��������1��������������������������������������
����������C4��î?�ZKLOH�%�GR�&�RG�@��n�%�<�4C�

Now two additional ingredients:
Invariant: Q ∶ B — as before, ensuring functional correctness
Variant (or “bound function”): T ∶ Z — ensuring termination

{ B ∧ Q } C { Q } { B ∧ Q ∧ T = t0 } C { T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q }
In each iteration:

The invariant Q is preserved.
The variant T decreases.

Termination: The relation < on the subset {t ∶ Z t > 0} is well-founded.

“Merged” While Rule

Now two additional ingredients:
Invariant: Q ∶ B — as before, ensuring functional correctness
Variant (or “bound function”): T ∶ Z — ensuring termination

{ B ∧ Q ∧ T = t0 } C { Q ∧ T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q } prov. ¬occurs(‘t0’, ‘B,C,Q,T’)
In each iteration:

The invariant Q is preserved.
The variant T decreases.

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-11-30

Part 2: Frama-C

Frama-C and ACSL — https://www.frama-c.com/

Frama-C: An industrially-used framework for C code analysis and verification
Delegates “simple” proofs to external tools, mostly Satisfiability-Modulo-Theories
solvers (e.g., Z3)
Practical Program Proof = Verification Condition Generation (VCG) + SMT checking

ACSL: ANSI-C Specification Language
Similar to the JML — Java Modelling Language
But Java is more complex:
Statements that can raise exceptions need additional postconditions for those.
ACSL “is” standard first-order predicate logic in C syntax.
ACSL allows definition of inductive datatypes
— natural abstractions for specification, but rather clumsy in ACSL

— From discrete math to C: A big gap to bridge!
Start reading:
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

The findMax FramefindMax0.c:

/*@ requires ???;
ensures ???;

*/
int findMax(int n, int a []) {

???
}

Overall program correctness is based on function contracts:

“requires”: Procedure call precondition

“ensures”: Procedure call postcondition
May refer to /result for the return value.

Loops are “Opaque” — Need Annotations to Help Automatic Provers

Total correctness While rule:

{ B ∧ Q ∧ T = t0 } C { Q ∧ T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q } prov. ¬occurs(‘t0’, ‘B,C,Q,T’)
Loop invariant Q: Property always true in a loop

true at loop entry, at each loop iteration, at loop exit
usually contains a generalisation of the post-condition
may need to contain additional “sanity” conditions

Loop variant: To prove termination
Show a metric that is strictly decreasing at each iteration
and bounded by 0

Loop assigns: What is assigned within the loop
More modular than integrating this into the pre-postcondition spec.

findMax Attempt 1findMax1.c:

/*@ requires n > 0;
requires \valid(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ \result ≥ a[i];
ensures ∃ integer i ; 0 ≤ i < n ⇒ \result ≡ a[i];

*/
int findMax(int n, int a []) {

int i ;
/*@ loop invariant ∀ integer j ; 0 ≤ j < i ⇒ a[j] ≡ 0;

loop invariant 0 ≤ i ≤ n;
loop variant n − i ;

*/
for(i = 0; i < n; i++) a[i] = 0;
return 0;
}

frama-c-gui -wp findMax1.c

The findMax Attempt 1afindMax1a.c:

/*@ requires n > 0;
requires \valid(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ \result ≥ a[i];
ensures ∃ integer i ; 0 ≤ i < n ⇒ \result ≡ a[i];

*/
int findMax(int n, int a []) {

int i ;
/*@ loop invariant ∀ integer j ; 0 ≤ j < i ⇒ a[j] ≡ 0;

loop invariant 0 ≤ i ≤ n;
loop assigns i , a[0 .. n − 1];
loop variant n − i ;

*/
for(i = 0; i < n; i++) a[i] = 0;
return 0;
}

findMax Attempt 2findMax2.c:

/*@ requires n ≥1;
ensures ∀ integer i ; 0 ≤ i < n ⇒ a[i] ≤ \result ;
ensures ∃ integer i ; 0 ≤ i < n ∧ a[i] ≡ \result ;
assigns \nothing;

*/
int findMax(int n, int a []) {

int i ;
/*@

loop invariant 0 ≤ i ≤ n;
loop assigns i ;

*/
for(i = 0; i < n; i++) ;
return 0;
}

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-12-02

Frama-C

Frama-C and ACSL — https://www.frama-c.com/

Frama-C: An industrially-used framework for C code analysis and verification
Delegates “simple” proofs to external tools, mostly Satisfiability-Modulo-Theories
solvers (e.g., Z3)
Practical Program Proof = Verification Condition Generation (VCG) + SMT checking

ACSL: ANSI-C Specification Language
Similar to the JML — Java Modelling Language
But Java is more complex:
Statements that can raise exceptions need additional postconditions for those.
ACSL “is” standard first-order predicate logic in C syntax.
ACSL allows definition of inductive datatypes
— natural abstractions for specification, but rather clumsy in ACSL

— From discrete math to C: A big gap to bridge!
Start reading:
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

ACSL Function Contracts
Overall program correctness is based on function contracts, mainly:

“requires”: Procedure call precondition
“assigns”: Global variables that may be updated
“ensures”: Procedure call postcondition
May refer to /result for the return value.

Contracts of exported functions are part of the module interface, and therefore should be
in the module interface file (*.h).

all zeros.h:

/*@ requires n ≥ 0 ∧ \valid(t + (0.. n−1));
assigns \nothing;
ensures \result ≠ 0 ⇔ (∀ integer j ; 0 ≤ j < n ⇒ t [j] ≡ 0);

*/
int all zeros (int *t , int n);

ACSL Loop Annotations

Total correctness While rule:

{ B ∧ Q ∧ T = t0 } C { Q ∧ T < t0 } B ∧ Q ⇒ T > 0

{ dom ‘B’ ∧ Q } while B do C od { ¬ B ∧ Q } prov. ¬occurs(‘t0’, ‘B,C,Q,T’)
“loop invariant Q”: Property always true in the following loop

true at loop entry, at each loop iteration, at loop exit
usually contains a generalisation of the post-condition
may need to contain additional “sanity” conditions

“loop assigns footprint”: What may be assigned to within the loop
“loop variant T”: To prove termination:

Integer metric T that is strictly decreasing at each iteration
and bounded by 0

all zerosall zeros.c:

/*@ requires n ≥ 0 ∧ \valid(t + (0.. n−1));
assigns \nothing;
ensures \result ≠ 0 ⇔ (∀ integer j ; 0 ≤ j < n ⇒ t [j] ≡ 0);

*/
int all zeros (int *t , int n) {

int k=0;
/*@ loop invariant 0 ≤ k ≤ n;

loop invariant ∀ integer j ; 0 ≤ j < k ⇒ t [j] ≡ 0;
loop assigns k;
loop variant n − k;

*/
while(k < n){

if (t [k] ≠ 0)
return 0;

k++;
}
return 1;
}

findMax Attempt 1findMax1.c:

/*@ requires n > 0;
requires \valid(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ \result ≥ a[i];
ensures ∃ integer i ; 0 ≤ i < n ⇒ \result ≡ a[i];

*/
int findMax(int n, int a []) {

int i ;
/*@ loop invariant ∀ integer j ; 0 ≤ j < i ⇒ a[j] ≡ 0;

loop invariant 0 ≤ i ≤ n;
loop variant n − i ;

*/
for(i = 0; i < n; i++) a[i] = 0;
return 0;
}

frama-c-gui -wp findMax1.c

frama-c-gui -wp -wp-rte findMax1.c

The findMax Attempt 1afindMax1a.c:

/*@ requires n > 0;
requires \valid(a + (0 .. n − 1));
ensures ∀ integer i ; 0 ≤ i < n ⇒ \result ≥ a[i];
ensures ∃ integer i ; 0 ≤ i < n ⇒ \result ≡ a[i];

*/
int findMax(int n, int a []) {

int i ;
/*@ loop invariant ∀ integer j ; 0 ≤ j < i ⇒ a[j] ≡ 0;

loop invariant 0 ≤ i ≤ n;
loop assigns i , a[0 .. n − 1];
loop variant n − i ;

*/
for(i = 0; i < n; i++) a[i] = 0;
return 0;
}

findMax Attempt 2findMax2.c:

/*@ requires n ≥1;
ensures ∀ integer i ; 0 ≤ i < n ⇒ a[i] ≤ \result ;
ensures ∃ integer i ; 0 ≤ i < n ∧ a[i] ≡ \result ;
assigns \nothing;

*/
int findMax(int n, int a []) {

int i ;
/*@

loop invariant 0 ≤ i ≤ n;
loop assigns i ;

*/
for(i = 0; i < n; i++) ;
return 0;
}

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-12-06

Part 1: Total/Partial Correctness, Relational Semantics

Recall: Total Correctness versus Partial Correctness
Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.
So far, we have been using the dynamic logic notation:

P ⇒[C] Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Differences between partial and total correctness:
Commands that do not terminate properly:

Commands that crash — evaluating undefined expressions
Infinite loops

The Programming Language: Expressions and Commands

The types Cmd, ExprV, and ExprB are abstract syntax tree (AST) types

Declaration∶ ExprV, ExprB ∶ Type
Declaration∶ Cmd ∶ Type

Declaration∶ ; ∶ Cmd → Cmd → Cmd
Declaration∶ ∶ = ∶ Var → ExprV → Cmd
Declaration∶ if then else fi ∶ ExprB → Cmd → Cmd → Cmd
Declaration∶ while do od ∶ ExprB → Cmd → Cmd

Types for Semantics of Expressions and Commands

Imperative programs, such as Cmd, transform a State that assigns values to variables.

Declaration∶ Value ∶ Type
Declaration∶ State ∶ Type
Declaration∶ Var ∶ Type

Axiom “Definition of `State` ”∶ State = Var → Value

Declaration∶ eval ∶ State → ExprV → Value
Declaration∶ sat ∶ ExprB → set State

Declaration∶ ⊕′ ∶ (A → B) → A , B → (A → B)
Axiom “Definition of function override ”∶(x = z ⇒ (f ⊕′ ⟨ x, y ⟩) z = y)∧ (x ≠ z ⇒ (f ⊕′ ⟨ x, y ⟩) z = f z)

Semantics of Commands

Program execution induces a state transformation relation.

Declaration∶ J K ∶ Cmd → (State ↔ State)
Axiom “Semantics of := ”∶

J x ∶ = e K = { s ∶ State ● ⟨ s , s ⊕′ ⟨ x , eval s e ⟩ ⟩ }
Axiom “Semantics of ; ”∶ J C1 ; C2 K = J C1 K # J C2 K
Axiom “Semantics of `if` ”∶

J if B then C1 else C2 fi K = (sat B ◁ J C1 K) ∪ (sat B −◁ J C2 K)
Axiom “Semantics of `while` ”∶

J while B do C od K = (sat B ◁ J C K) * −▷ sat B

Relation-Algebraic Total and Partial Correctness
Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.

Axiom “Total Correctness ”∶(P ⇒ C Q) ≡ sat P ⊆ Dom J C K ∧ J C K (∣ sat P ∣) ⊆ sat Q

So far, we have been using the dynamic logic notation:
P ⇒[C] Q

with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Axiom “Partial Correctness ”∶(P ⇒ C Q) ≡ J C K (∣ sat P ∣) ⊆ sat Q

Total and Partial Correctness in Predicate Logic
Program correctness statement in LADM (and much current use): “Hoare triple”:{ P } C { Q }
Meaning (LADM ch. 10): “Total correctness”:
If command C is started in a state in which the precondition P holds
then it will terminate in a state in which the postcondition Q holds.

Theorem “Total Correctness ”∶(P ⇒ C Q)≡ (∀ s1 s1 ∈ sat P ● ∃ s2 s1 J C K s2 ● s2 ∈ sat Q)∧ (∀ s1, s2 ● s1 ∈ sat P ∧ s1 J C K s2 ⇒ s2 ∈ sat Q)
So far, we have been using the dynamic logic notation:

P ⇒[C] Q
with its partial correctness meaning:
If command C is started in a state in which the precondition P holds
then it will terminate only in a state in which the postcondition Q holds.

Theorem “Partial Correctness ”∶(P ⇒ C Q)≡ ∀ s1, s2 ● s1 ∈ sat P ∧ s1 J C K s2 ⇒ s2 ∈ sat Q

H16: Blanchard: Hoare Triples

2. Program proof and our tool for this tutorial: Frama-C

The logic we use here is a variant of the Hoare logic, adapted to the C language and all its
complex subtleties (which makes this model concrete).

2.1.3. Hoare triples

Hoare logic is a program formalization method proposed by Tony Hoare in 1969 in a paper
entitled An Axiomatic Basis for Computer Programming. This method defines:

• axioms, that are properties we admit, such as “the skip action does not change the
program state”,

• rules to reason about the different allowed combinations of actions, for example “the skip
action followed by the action A” is equivalent to “the action A”.

The behavior of the program is defined by what we call “Hoare triples”:

{P} C {Q}

Where P and Q are predicates, logic formulas that express properties about the memory at
particular program points. C is a list of instructions that defines the program. This syntax
expresses the following idea: “if we are in a state where P is verified, after executing C and if
C terminates, then Q is verified for the new state of the execution”. Put in another way, P is
a sufficient precondition to ensure that C will bring us to the postcondition Q. For example,
the Hoare triples that corresponds to the skip action is the following one:

{P} skip {P}

When we do nothing, the postcondition is the precondition.

Along this tutorial, we will present the semantics of different program constructs (conditional
blocks, loops, etc) using Hoare logic. So, let us skip these details now since we will work on
it later. It is not necessary to memorize these notions nor to understand all the theoretical
background, but it is still useful to have some ideas about the way our tool works.

All of this gives us the basics that allow us to say “here is what this action does” but it does
not give us anything to mechanize a proof. The tool we will use rely on a technique called
weakest precondition calculus.

1 There also exists formal methods which are interested in understanding how executable machine code work,
for example in order to understand what malwares do or to detect security breaches introduced during
compilation.

10

2. Program proof and our tool for this tutorial: Frama-C

The logic we use here is a variant of the Hoare logic, adapted to the C language and all its
complex subtleties (which makes this model concrete).

2.1.3. Hoare triples

Hoare logic is a program formalization method proposed by Tony Hoare in 1969 in a paper
entitled An Axiomatic Basis for Computer Programming. This method defines:

• axioms, that are properties we admit, such as “the skip action does not change the
program state”,

• rules to reason about the different allowed combinations of actions, for example “the skip
action followed by the action A” is equivalent to “the action A”.

The behavior of the program is defined by what we call “Hoare triples”:

{P} C {Q}

Where P and Q are predicates, logic formulas that express properties about the memory at
particular program points. C is a list of instructions that defines the program. This syntax
expresses the following idea: “if we are in a state where P is verified, after executing C and if
C terminates, then Q is verified for the new state of the execution”. Put in another way, P is
a sufficient precondition to ensure that C will bring us to the postcondition Q. For example,
the Hoare triples that corresponds to the skip action is the following one:

{P} skip {P}

When we do nothing, the postcondition is the precondition.

Along this tutorial, we will present the semantics of different program constructs (conditional
blocks, loops, etc) using Hoare logic. So, let us skip these details now since we will work on
it later. It is not necessary to memorize these notions nor to understand all the theoretical
background, but it is still useful to have some ideas about the way our tool works.

All of this gives us the basics that allow us to say “here is what this action does” but it does
not give us anything to mechanize a proof. The tool we will use rely on a technique called
weakest precondition calculus.

1 There also exists formal methods which are interested in understanding how executable machine code work,
for example in order to understand what malwares do or to detect security breaches introduced during
compilation.

10

2. Program proof and our tool for this tutorial: Frama-C

The logic we use here is a variant of the Hoare logic, adapted to the C language and all its
complex subtleties (which makes this model concrete).

2.1.3. Hoare triples

Hoare logic is a program formalization method proposed by Tony Hoare in 1969 in a paper
entitled An Axiomatic Basis for Computer Programming. This method defines:

• axioms, that are properties we admit, such as “the skip action does not change the
program state”,

• rules to reason about the different allowed combinations of actions, for example “the skip
action followed by the action A” is equivalent to “the action A”.

The behavior of the program is defined by what we call “Hoare triples”:

{P} C {Q}

Where P and Q are predicates, logic formulas that express properties about the memory at
particular program points. C is a list of instructions that defines the program. This syntax
expresses the following idea: “if we are in a state where P is verified, after executing C and if
C terminates, then Q is verified for the new state of the execution”. Put in another way, P is
a sufficient precondition to ensure that C will bring us to the postcondition Q. For example,
the Hoare triples that corresponds to the skip action is the following one:

{P} skip {P}

When we do nothing, the postcondition is the precondition.

Along this tutorial, we will present the semantics of different program constructs (conditional
blocks, loops, etc) using Hoare logic. So, let us skip these details now since we will work on
it later. It is not necessary to memorize these notions nor to understand all the theoretical
background, but it is still useful to have some ideas about the way our tool works.

All of this gives us the basics that allow us to say “here is what this action does” but it does
not give us anything to mechanize a proof. The tool we will use rely on a technique called
weakest precondition calculus.

1 There also exists formal methods which are interested in understanding how executable machine code work,
for example in order to understand what malwares do or to detect security breaches introduced during
compilation.

10

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-12-06

Part 2: Frama-C: Behaviours, . . .

“ACSL by Example”: The max element Algorithm — Specificationmax element.h:

#include ”typedefs.h”
/*@ requires valid: \valid read(a + (0.. n−1));

assigns \nothing;
ensures result : 0 ≤ \result ≤ n;

behavior empty:
assumes n ≡ 0;
assigns \nothing;
ensures result: \result ≡ 0;

behavior not empty:
assumes 0 < n;
assigns \nothing;
ensures result: 0 ≤ \result < n;
ensures upper: ∀ integer i ; 0 ≤ i < n ⇒ a[i] ≤ a[\result];
ensures first : ∀ integer i ; 0 ≤ i < \result ⇒ a[i] < a[\result];

complete behaviors; disjoint behaviors;
*/
size type max element(const value type* a, size type n);

#endif /* MAX ELEMENT H INCLUDED */

“ACSL by Example”: The max element Algorithm — Implementationmax element.c:

#include ”max element.h”

size type max element(const value type* a, size type n)
{ if (0u < n) {

size type max = 0u;
/*@ loop invariant bound: 0 ≤ i ≤ n;

loop invariant max: 0 ≤ max < n;
loop invariant upper: ∀ integer k; 0 ≤ k < i ⇒ a[k] ≤ a[max];
loop invariant first : ∀ integer k; 0 ≤ k < max ⇒ a[k] < a[max];
loop assigns max, i ;
loop variant n−i;

*/
for (size type i = 1u; i < n; i++) {

if (a[max] < a[i]) { max = i; }
}
return max;
}
return n;
}

ACSL By Example — Conventions
SizeValueTypes.h:

#ifndef SIZEVALUETYPES

typedef int value type;
typedef unsigned int size type;
typedef int bool;
#define false 0
#define true 1

#define SIZEVALUETYPES
#endif

IsValidRange.h:

#ifndef ISVALIDRANGE

#include ”SizeValueTypes.h”
/*@ predicate IsValidRange(value type* a, integer n)

= (0 ≤ n) ∧ \valid(a+(0.. n−1));
*/

#define ISVALIDRANGE
#endif

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-12-07

Part 1: Z Function Set Arrows

Professional Behaviour for Students

Learn a lot!

Behave with Academic Integrity!

Fill in the evaluations for all your courses! Ð→ https://evals.mcmaster.ca/

Response rates are noted at the Faculty level

The better the Faculty sees CompSci, the more interesting
electives you will have available in Level IV

Do all you can to get the response rates up for all COMPSCI
courses!

Plan for Today
The Z Specification Notation

λ-abstraction, . . .

“Natural Deduction” — A different presentation of logics (LADM ch. 7)

Conclusion

Review Sessions — Details to be announced — likely dates:
Mon., Dec. 13th
Tue., Dec. 14th
Wed., Dec. 15th

COMPSCI 2LC3 on Avenue and CALCCHECKWeb remains active
throughout term 2.

Collected lecture slides will be posted under “General”.

Please fill in the evaluations for all your courses!Ð→ https://evals.mcmaster.ca/

The Z Specification Notation

Mathematical notation intended for software specification

ISO-standardised

Two parts:
Typed set theory in first-order predicate logic
— essentially the logic and set theory you are using in CALCCHECK
— except that in Z, types are maximal sets
“Schemas” modelling of states and state transitions

AvenueÐ→ Resources Ð→ Links Ð→ Z

Function Sets — Z Definition and Description [Spivey 1992]

In Z, X↔ Y = P(X ×Y) , and x↦ y = (x,y) is an abbreviation for pairs.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections

 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y) ∩ (X � Y)

X
 Y == { f : X � Y | ran f = Y }
X � Y == (X
 Y) ∩ (X � Y)

X � Y == (X � Y) ∩ (X 	 Y)

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows
 , � , and � with double heads make sets of functions that
are surjective. X
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections

 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y) ∩ (X � Y)

X
 Y == { f : X � Y | ran f = Y }
X � Y == (X
 Y) ∩ (X � Y)

X � Y == (X � Y) ∩ (X 	 Y)

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows
 , � , and � with double heads make sets of functions that
are surjective. X
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

If X and Y are sets, X → Y is the set of partial functions from X to Y. These
are relations which relate each member x of X to at most one member of Y.
This member of Y, if it exists, is written f (x). The set X → Y is the set of total
functions from X to Y. These are partial functions whose domain is the whole
of X; they relate each member of X to exactly one member of Y.

Function Sets — Z Definition and Laws (1) [Spivey 1992]

In Z, X↔ Y = P(X ×Y) , and x↦ y = (x,y) is an abbreviation for pairs, and S ○R = R #S.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections

 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y) ∩ (X � Y)

X
 Y == { f : X � Y | ran f = Y }
X � Y == (X
 Y) ∩ (X � Y)

X � Y == (X � Y) ∩ (X 	 Y)

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows
 , � , and � with double heads make sets of functions that
are surjective. X
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

Laws:

106 The Mathematical Tool-kit

X � Y is the set of total surjections from X to Y , the functions which have
the whole of X as their domain and the whole of Y as their range.

The set X � Y is the set of bijections from X to Y . These map the elements
of X onto the elements of Y in a one-to-one correspondence. As suggested
by its shape, X � Y contains exactly those total functions that are both
injective and surjective.

Laws

f ∈ X � Y ⇔ f ◦ f ∼ = id(ran f)

f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X 	 Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X � Y ⇒ f � S ∩ T � = f � S � ∩ f � T �
f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X
 Y ⇒ f ◦ f ∼ = idY

Function Sets — Z Definition and Laws [Spivey 1992]

In Z, X↔ Y = P(X ×Y) , and x↦ y = (x,y) is an abbreviation for pairs, and S ○R = R #S.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections

 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y) ∩ (X � Y)

X
 Y == { f : X � Y | ran f = Y }
X � Y == (X
 Y) ∩ (X � Y)

X � Y == (X � Y) ∩ (X 	 Y)

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows
 , � , and � with double heads make sets of functions that
are surjective. X
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

4.3 Functions 105

4.3 Functions

Name

� – Partial functions

� – Total functions

� – Partial injections

	 – Total injections

 – Partial surjections

� – Total surjections

� – Bijections

Definition

X � Y == { f : X � Y | (∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2) }

X � Y == { f : X � Y | dom f = X }
X � Y == { f : X � Y | (∀ x1, x2 : dom f • f (x1) = f (x2)⇒ x1 = x2) }
X 	 Y == (X � Y) ∩ (X � Y)

X
 Y == { f : X � Y | ran f = Y }
X � Y == (X
 Y) ∩ (X � Y)

X � Y == (X � Y) ∩ (X 	 Y)

Description

If X and Y are sets, X � Y is the set of partial functions from X to Y .
These are relations which relate each member x of X to at most one member
of Y . This member of Y , if it exists, is written f (x). The set X � Y is the
set of total functions from X to Y . These are partial functions whose domain
is the whole of X ; they relate each member of X to exactly one member of
Y . An alternative definition of X � Y was given on page 88. It is equivalent
to the one given here.

The arrows � , 	 , and � with barbed tails make sets of functions that
are injective. X � Y is the set of partial injections from X to Y . These are
partial functions from X to Y which map different elements of their domain
to different elements of their range. X 	 Y is the set of total injections from
X to Y , the partial injections that are also total functions.

The arrows
 , � , and � with double heads make sets of functions that
are surjective. X
 Y is the set of partial surjections from X to Y . These
are partial functions from X to Y which have the whole of Y as their range.

Laws:

106 The Mathematical Tool-kit

X � Y is the set of total surjections from X to Y , the functions which have
the whole of X as their domain and the whole of Y as their range.

The set X � Y is the set of bijections from X to Y . These map the elements
of X onto the elements of Y in a one-to-one correspondence. As suggested
by its shape, X � Y contains exactly those total functions that are both
injective and surjective.

Laws

f ∈ X � Y ⇔ f ◦ f ∼ = id(ran f)

f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X 	 Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X � Y ⇒ f � S ∩ T � = f � S � ∩ f � T �
f ∈ X � Y ⇔ f ∈ X � Y ∧ f ∼ ∈ Y � X

f ∈ X
 Y ⇒ f ◦ f ∼ = idY

Z Function Sets in CALCCHECK

For two sets A ∶ set t1 and B ∶ set t2, we define the following function sets:

CALCCHECK Z
f ∈ A ○Ð→ B /tfun total function Dom f = A ∧ f ⌣ # f ⊆ id B f ∈ A→ B
f ∈ A→ B /pfun partial function Dom f ⊆ A ∧ f ⌣ # f ⊆ id B f ∈ A→ B
f ∈ A↣ B /tinj total injection f # f ⌣ = id A ∧ f ⌣ # f ⊆ id B f ∈ A↣ B
f ∈ A↣ B /pinj partial injection f # f ⌣ ⊆ id A ∧ f ⌣ # f ⊆ id B f ∈ A↣ B
f ∈ A→→ B /tsurj total surjection Dom f = A ∧ f ⌣ # f = id B f ∈ A→→ B
f ∈ A→→ B /psurj partial surjection Dom f ⊆ A ∧ f ⌣ # f = id B f ∈ A→→ B
f ∈ A↣→ B /tbij total bijection f # f ⌣ = id A ∧ f ⌣ # f = id B f ∈ A↣→ B
f ∈ A↣→ B /pbij partial bijection f # f ⌣ ⊆ id A ∧ f ⌣ # f = id B

Counting . . .

Let A and B be finite sets with # A = a and # B = b:
(A × B) = ? — pairs

(A ○←→ B) = # (P (A × B)) = ? — relations

(A ○Ð→ B) = ? — total functions

(A→ B) = ? — partial functions

(A↣→ A) = ? — homogeneous total bijections

(A↣→ B) = ? — total bijections

(A↣ B) = ? — total injections

(A↣→ B) = ? — partial bijections

(A↣ B) = ? — partial injections

(A→→ B) = ? — total surjections

{ S S ⊆ B∧# S = a } = ? — a-combinations of B

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-12-07

Part 2: λ, O

λ-Abstraction
λ-abstraction creates nameless functions: If E ∶ B, then (λ x ∶ A ● E) ∶ A→ B .
The following are usually introduced as left-to-right reduction rules:

Theorem “β-reduction ”∶ (λ x ● E) a = E[x ∶= a]
Theorem “η-reduction ”∶ (λ x ∶ A ● F x) = F — provided ¬occurs(‘x’, ‘F’)
In addition, “α-conversion” is capture-avoiding renaming of bound variables.

Theorem “Function extensionality ”∶ f = g ≡ ∀ x ● f x = g x

Theorem “Refl.-trans. closure ”∶ R * is (λ S ● reflexive S ∧ transitive S) closure-of R
Proof:

Using “Relation closure ”∶
Subproof for `R ⊆ R *`∶

By “Characterisation of ` *`∶ Expanding ”
Subproof for `(λ S ● reflexive S ∧ transitive S) (R *)`∶(λ S ● reflexive S ∧ transitive S) (R *)≡ ⟨ “β-reduction ”, substitution ⟩

reflexive (R *) ∧ transitive (R *)
Proof for this∶

By “Characterisation of ` *`∶ Reflexivity ”
and “Characterisation of ` *`∶ Transitivity ”
and “Idempotency of ∧ ”

Subproof for `∀ S ● (λ S ● reflexive S ∧ transitive S) S ∧ R ⊆ S ⇒ R * ⊆ S`∶
For any `S`∶

Assuming (rt) `(λ S ● reflexive S ∧ transitive S) S`
and using with “β-reduction ” and substitution,

`R ⊆ S`∶
By “Characterisation of ` *`∶ Minimality ” with assumptions `R ⊆ S` and (rt)Big-O

Does O(n ⋅ log n) talk about n? — Abuse of notation!

O(n ⋅ log n) talks about the function “λ n ● n ⋅ log n ”!

Declaration∶ O ∶ (R → R) → set (R → R)
Axiom “Definition of big O ”∶

f ∈ O g ≡ ∃ b ● ∃ c c > 0 ● ∀ x x > b ● abs (f x) < c ⋅ g x

Theorem∶ (λ x ● 4 ⋅ x + 7) ∈ O (λ x ● x)
Proof: (λ x ● 4 ⋅ x + 7) ∈ O (λ x ● x)≡ ⟨ “Definition of big O ” ⟩∃ b ● ∃ c c > 0 ● ∀ x x > b ● abs ((λ x ● 4 ⋅ x + 7) x) < c ⋅ (λ x ● x) x≡ ⟨ “β-reduction ”, substitution ⟩∃ b ● ∃ c c > 0 ● ∀ x x > b ● abs (4 ⋅ x + 7) < c ⋅ x⇐ ⟨ “∃-Introduction ” ⟩(∃ c c > 0 ● ∀ x x > b ● abs (4 ⋅ x + 7) < c ⋅ x)[b ∶= 2]≡ ⟨ Substitution, “Trading for ∃ ” ⟩(∃ c ● c > 0 ∧ ∀ x x > 2 ● abs (4 ⋅ x + 7) < c ⋅ x)⇐ ⟨ “∃-Introduction ” ⟩(c > 0 ∧ ∀ x x > 2 ● abs (4 ⋅ x + 7) < c ⋅ x)[c ∶= 8]≡ ⟨ Substitution, Fact `8 > 0`, “Identity of ∧ ” ⟩(∀ x x > 2 ● abs (4 ⋅ x + 7) < 8 ⋅ x)

Proof for this∶
For any `x` satisfying `2 < x`∶

Side proof for (1) `4 ⋅ x + 7 > 0`∶
4 ⋅ x + 7> ⟨ “¡-Isotonicity of + ” with Fact `7 > 0`, “Identity of + ” ⟩
4 ⋅ x> ⟨ “¡-Monotonicity of ⋅ ” with Fact `4 > 0` and assumption `2 < x` ⟩
4 ⋅ 2> ⟨ Fact `4 ⋅ 2 > 0` ⟩
0

Continuing:
abs (4 ⋅ x + 7)= ⟨ “Definition of `abs` ” with local property (1) ⟩
4 ⋅ x + 7< ⟨ “¡-Isotonicity of + ” with subproof:

7< ⟨ Evaluation ⟩
4 ⋅ 2< ⟨ “¡-Monotonicity of ⋅ ” with Fact `4 > 0` and assumption `2 < x` ⟩
4 ⋅ x⟩

4 ⋅ x + 4 ⋅ x= ⟨ Fact `4 + 4 = 8`, “Distributivity of ⋅ over + ” ⟩
8 ⋅ x

Recall: Topological Sort — Complete O(# B +# V) Algorithm
for p ∈ B do

preCount[snd p] : = preCount[snd p] + 1
postSet[fst p] : = postSet[fst p]∪{snd p}

od ;
sources : =

>

; for v ∈ 0 . . k do if preCount[v] = 0 then sources : = sources ▹ v fi od
ghost vs : = 0 . . k ;
s : =

>

while sources ≠
>

do
u : = head sources ;
s : = s ▹ u ;
sources : = tail sources ; — remove u from sources
ghost vs : = vs − {u} ;
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od

Topological Sort — Complete O(# B +# V)-ghosted Algorithm
ghost int stepCount = 0 ;
for p ∈ B do

preCount[snd p] : = preCount[snd p] + 1 ; ghost stepCount++ ;
postSet[fst p] : = postSet[fst p]∪{snd p} ; ghost stepCount++

od ;
sources : =

>

;
for v ∈ 0 . . k do ghost stepCount++ ; if preCount[v] = 0 then sources : = sources ▹ v fi od
s : =

>

while sources ≠
>

do
u : = head sources ; s : = s ▹ u ; ghost stepCount++ ;
sources : = tail sources ; — remove u from sources
for v ∈ postSet[u] do

preCount[v] : = preCount[v] − 1 ; ghost stepCount++ ;
if preCount[v] = 0 then sources : = sources ▹ v fi

od
od ;
ghost assert stepCount ≤ C1 ⋅# B +C2 ⋅# V ;

Logical Reasoning for Computer Science
COMPSCI 2LC3

McMaster University, Fall 2021

Wolfram Kahl

2021-12-07

Part 3: Natural Deduction, Conclusion

(Simplified) Inference Rules —- See LADM p. 133, “Using Z” ch. 2&3

“Natural Deduction” — A Presentation of Logic for Mathematical Study of Logic

P∧Q
P ∧-Elim1

P∧Q
Q ∧-Elim2

∀ x ● P
P[x ∶= E] Instantiation (∀-Elim)

P
P∨Q

∨-Intro1
Q

P∨Q ∨-Intro2
P[x ∶= E]∃ x ● P ∃-Intro

P⇒Q P
Q ⇒-Elim

P Q
P∧Q ∧-Intro P∀ x ● P ∀-Intro (prov. x not free

in assumptions)

⌜P⌝....
Q

P⇒Q ⇒-Intro
P∨Q

⌜P⌝....
R

⌜Q⌝....
R

R ∨-Elim
(∃x ● P)

⌜P⌝....
R

R ∃-Elim (prov. x not free
in R, assumptions)

About Natural Deduction
Example proof (using the inference rules as shown in Using Z):

⌜∃x ∶ a ● p⇒ q⌝[1] ⌜x ∈ a⌝[3] ⌜p⇒ q⌝[3] ⌜∀x ∶ a ● p⌝[2] ⌜x ∈ a⌝[3]
p ∀-elim

q ⇒-elim

∃x ∶ a ● q ∃-intro

∃x ∶ a ● q ∃-elim[3]
(∀x ∶ a ● p)⇒(∃x ∶ a ● q) ⇒-intro[2]

(∃x ∶ a ● p⇒ q) ⇒ ((∀x ∶ a ● p)⇒(∃x ∶ a ● q)) ⇒-intro[1]

Each formula construction C has:
Introduction rule(s): How to prove a C-formula?
Elimination rule(s): How to use a C-formula to prove something else?

Tactical theorem provers (Coq, Isabelle) provide methods to
(virtually) construct such trees piecewise from all directions
Several of the Natural Deduction inference rules correspond

to LADM Metatheorems or proof methods,
to CALCCHECK proof structures.

Writing Proofs
Natural deduction was designed as a variant of sequent calculus that closely
corresponds to the “natural” way of reasoning used in traditional mathematics.
As such, natural deduction rules constitute building blocks of proof strategies.
Natural deduction inference trees are not normally used for proof presentation.
CALCCHECK structured proofs are readable formalisations of conventional informal
proof presentation patterns.
If you wish to write prose proofs, you still need to get the right proof structure first
— think CALCCHECK!
For proofs, informality as such is not a value.
Rigorous (informal) proofs (e.g. in LADM)
strive to “make the eventual formalisation effort minimal”.
There is value to readable proofs, no matter whether formal or informal.
There is value to formal, machine-checkable proofs,
especially in the software context,
where the world of mathematics is not watching.

Strive for readable formal proofs!

Proofs for Software
Partial correctness: Verifying essential functionality
Total correctness: Verifying also termination
Absence of run-time errors imposes additional preconditions on commands
Termination is typically dealt with separately requires a well-founded “termination
order”.

These are supported by tools like Frama-C, VeriFast, Key, . . . :
Hoare calculus inference rules are turned into Verification Condition Generation
Many simple verification conditions can be proved using SMT solvers
(Satisfiability Modulo Theories) — Z3, veriT, . . .
More complex properties may need human assitance:
Proof assistants: Isabelle, Coq, PVS, Agda, . . .
Pointer structures require an extension of Hoare logic:
Separation Logic

Mathematical Programming Languages

Software is a mathematical artefact
Functional programming languages and logic programming languages aim to
make expression in mathematical manner easier

Among reasonably-widespread programming languages.
Haskell is “the most mathematical”

Dependently-typed logics (e.g., Coq, Lean, PVS, Agda) make it possible to express
mathematics in a natural way:

For a matrix M ∶ R3×4, the element access M5,6 raises a type error
A simple graph (V,E) can consist od a type V and a relation E ∶ V ↔ V.

Dependently-typed programming languages (e.g., Agda, Idris)
contain dependently-typed logics — “proofs are programs, too”
make it possible to express functional specifications via the type
system — “formulae as types”: Curry-Howard correspondence
A program that has not been proven correct wrt. the
stated specification does not even compile.

Continued Use of Logical Reasoning
2AC3 Automata and Computability
— formal languages, grammars, finite automata, transition relations, Kleene algebra!
acceptance predicates, . . .

CS 2SD3 / SE 3BB4 Concurrent Systems Design
—correctness of concurrent programs, temporal logic

COMPSCI 2DB3 Databases
— n-ary relations, relational algebra; functional dependencies

COMPSCI 3MI3 Principles of Programming Languages
— Programming paradigms, including functional programming;
mathematical understanding of prog. language constructs, semantics

3RA3 Software Requirements
— Capturing precisely what the customer wants, formalisation

COMPSCI 3EA3 Software and System Correctness
— Formal specifications, validation, verification

3FP3 Functional Programming

Concluding Remarks

How do I find proofs? — There is no general recipe

Proving is somewhat like doing puzzles — practice helps

Proofs are especially important for software — and much care is needed!

Be aware of types, both in programming, and in mathematics

Be aware of variable binding — in quantification, local variables, formal parameters

Strive to use abstraction to avoid variable binding
— e.g., using relation algebra instead of predicate logic

When designing data representations, think mathematics: Subsets, relations,
functions, injectivity, . . .

Thinking mathematics in programming is easiest
in functional languages, e.g., Haskell, OCaml

Specify formally! — Design for provability!

When doing software, think logics and discrete mathematics!

