
McMaster University
Department of Computing and Software

Dr. W. Kahl

CAS 781
Winter 2003
Assignment2

CAS 781— Functional Programming

2003-02-13

Thefollowing is thefile Assignment2.lhs on thecoursepage:

> type Vertex = (Float,Float)

> data Shape = Rectangle Vertex Vertex
> | Polygon [Vertex]
> | Polyline [Vertex]
> | Ellipse Vertex Vertex
> | ShearEllipse Vertex Vertex Vertex

> data Pic1 = EmptyPic1
> | Above1 Pic1 Pic1
> | Prim1 Shape
> | WithColor1 Color Pic1

Produce an instance of Eq for Pic1 that respects the
equalities involving emptyPic and withColor, in particular:

< WithColor1 c1 (WithColor1 c2 p) == WithColor1 c2 p = True

> data Pic2 = EmptyPic2
> | Above2 Pic2 Pic2
> | Prim2 {shape :: Shape
> ,color :: Color
> }
> | Move2 Pic2

Implement the following conversions:

> pic1FromPic2 :: Pic2 -> Pic1
> pic2FromPic1 :: Pic1 -> Pic2

Implement the following functions without using those conversions:

> graphicFromPic1 :: Pic1 -> Graphic
> graphicFromPic2 :: Pic2 -> Graphic

> move1 :: Vertex -> Pic1 -> Pic1
> move2 :: Vertex -> Pic2 -> Pic2

> withColor1 :: Color -> Pic1 -> Pic1
> withColor2 :: Color -> Pic2 -> Pic2

> prim1 :: Shape -> Pic1
> prim2 :: Shape -> Pic2

> above1 :: Pic1 -> Pic1 -> Pic1
> above2 :: Pic2 -> Pic2 -> Pic2

- 2 -

Implement instances of the following class for Pic1 and Pic2:

> class Picture p where
> prim :: Shape -> p
> move :: Vertex -> p -> p
> withColor :: Color -> p -> p
> above :: p -> p -> p
> graphicFromPic :: p -> Graphic

Add a scaling function to this class and its instances.

Use the extended class to implement a function that, when invoked with

< sierpinski size d

delivers a ‘‘Picture’’ Sierpinski triangle with outer side length
size and recursion depth d:

> sierpinski :: Picture p => Double -> Int -> p

Perform experiments using graphicFromPic.

Usetheotherfiles on thecoursepageto producefunctionsfor producingpaperfolding modelslike the
following (or better!),but ideallyfor arbitraryflat-sidedthree-diemnsionalshapes:

Thelasttwo filesneednotbeunderstood:PSPic.lhs providesinstances:

> instance HasPS Shape
> instance HasPS s => HasPS (Pic s)

andthefunction

> writeEPS :: (HasVert a, HasPS a) => String -> a -> IO ()

to write picturesinto PostScriptfiles;it usesthemodulePostScript.

Tacklethisproblemasaproper project:

• Producea requirementsdocument

• Exploredesignalternatives

• Documenttheutilitiesyouprovide

