
Calculational Relation-Algebraic Proofs

in Isabelle/Isar

Wolfram Kahl

Department of Computing and Software
McMaster University

Abstract. We propose a collection of theories in the proof assistant
Isabelle/Isar that support calculational reasoning in and about hetero-
geneous relational algebras and Kleene algebras.

1 Introduction and Related Work

Abstract relational algebra is a useful tool for high-level reasoning that, through
appropriate models, provides theorems in fields such as data mining, fuzzy
databases, graph transformation, and game theory. Frequently, once an applica-
tion structure is identified as a model of a particular relation-algebraic theory,
that theory becomes the preferred reasoning environment in this application
area. Since relation-algebraic reasoning typically follows a very calculational
style, and, due to the expressive power of its constructs and rules, also pro-
ceeds in relatively formal steps, one would expect that computer support for
this kind of reasoning should be relatively easy to implement. Since the number
of rules that can be applied in any given situation tends to be quite large, and
expressions can become quite complex, computer support also appears to be
very desirable.

Some applications, such as fuzzy relations [Fur98], or graph transforma-
tion [Kah01, Kah02], involve structures where complements in particular may
not be available. These structures therefore require weaker formalisations, such
as Dedekind categories, or other kinds of allegories [FS90]. Besides the cate-
gory structure encompassing composition and identities, allegories are equipped
with meet and converse, and are closely related with data-flow graphs. The dual
view of control-flow graphs corresponds to Kleene algebras which besides com-
position and identities feature join and iteration (via the Kleene star). Recent
years have seen a rapid growth of interest in computer science applications of
Kleene algebras and related structures, studied from a relational perspective,
see e.g. [DM01]. Since all of these structures still share a considerable body of
common theory, it appears desirable to structure the theory support for relation-
algebraic reasoning in such a way that the organisation of results reflects the nec-
essary premises in an intuitive way. On the “data-flow side”, the different kinds
of allegories proposed in [FS90] offer themselves naturally for this structuring; on
the “control-flow side”, we will use Kleene algebras and several extensions like
Kleene algebras with tests [Koz97] and Kleene algebras with domain [DMS03].

R. Berghammer et al. (Eds.): RelMiCS/Kleene-Algebra Ws 2003, LNCS 3051, pp. 178–190, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Calculational Relation-Algebraic Proofs in Isabelle/Isar 179

While allegories, being extensions of categories, correspond to the hetero-
geneous approach to relation algebras of [SS93, SHW97], Kleene algebras are
mostly studied in a homogenous setting. Since we believe that the heterogeneous
approach with its strongly-typed flavour has significant advantages in particu-
lar when it comes to computer science applications, we will adopt it through-
out. Therefore, in the remainder of this paper, “Kleene algebra” always means
“typed Kleene algebra” in the sense of [Koz98], and then, both allegories and
typed Kleene algebras are considered as kinds of categories.

Furthermore, since complex applications will require the possibility to rea-
son about relational algebras built from other relational algebras via certain
construction principles — for example product algebras or matrix algebras —
it becomes a necessity to allow reasoning not only within a single relational
algebra, but also about several structures and the connections between them,
using operations from both in a single formula. Therefore, relational algebras
must become addressable as objects, as in the relational programming framework
RATH [KS00].

Quite a few projects in the recent past have strived to provide computer-
aided proof assistance for abstract relation-algebraic reasoning, each with its
particular motivation and priorities, all quite different from the approach we are
proposing in this paper.

The relation-algebraic formula manipulation system and proof checker RALF
[BH94, HBS94, KH98] was designed as a special-purpose proof assistant for ab-
stract (heterogeneous) relation algebras with the goal of supporting proofs in the
calculational style typical for relation-algebraic reasoning. RALF has a graphical
user interface presenting goal formulae in their tree structure, a feature that al-
lows easy interactive selection of the subexpressions to be transformed by proof
steps. During interaction, only the current sub-goal is visible; document out-
put is generated in the calculational style of proof presentation. RALF is based
on a fixed axiomatisation, and only supports reasoning within a single relation
algebra.

Math
∫
pad is a flexible quasi-WYSIWYG syntax-directed editing environment

for mathematical documents that has been designed to support calculational
proof presentation. It has been connected with the theorem prover PVS to enable
checking of relation-algebraic proofs contained in Math

∫
pad documents [VB99].

Although the infrastructure is general, the system has been used only within
concrete relation algebra; there appears to be no provision so far for working in
weaker theories, nor for reasoning about multiple relation-algebraic structures in
the same context.

An interesting related experiment is “PCP: Point and Click Proofs”, a proof
assistant based on a small JavaScript rewriting engine that allows users to in-
teractively construct proofs of properties in a wide range of mathematical struc-
tures, characterised by equational and quasi-equational theories [Jip03, Jip01].
Currently, (homogeneous) relation algebra and Kleene algebra are already sup-
ported by the system, which is extensible and still under development. It appears

180 Wolfram Kahl

not to be geared to the addition of a type system as required for heterogeneous
relation algebras, and is also limited to reasoning within structures.

A previous formalisation of heterogeneous relation algebras in Isabelle, RALL
[vOG97], uses the Isabelle/HOL type system to support reasoning in abstract
heterogeneous relation algebras with minimal effort, but at the cost of limit-
ing itself to reasoning within a single relation algebra, as well. Besides interac-
tive tactical proving, with special tactics allowing to approach the calculational
style, RALL also explores automatic proving using the isomorphism of atomisa-
tion from relation-algebraic formulae into predicate logic, which allows Isabelle’s
classical reasoner to tackle the atomised versions of relation-algebraic formulae.
This approach is not available for weaker structures like allegories or Dedekind
categories, which were also not considered in RALL.

Struth realised a formalisation in Isabelle-1999 of untyped Kleene algebras
via a hierarchy of axiomatic type classes, and used this to fully formalise Church-
Rosser proofs in Kleene algebras [Str02]. Although Struth did all his reasoning
within a single structure, axiomatic type classes [Wen97] do support reasoning
“between” several structures; but they impose severe limitations to reasoning
about structures.

It turns out that our objectives, namely calculational reasoning both within
and about models of different theories with a relation-algebraic flavour are
quite nicely supported by recent developments in the theorem prover Is-
abelle [NPW02]:

For reasoning within abstract algebraic structures in essentially the same way
as it is done in pencil-and-paper mathematics, the concept of locales has been
introduced into Isabelle [KWP99]. If such locales are based on records, this also
allows reasoning about algebraic structures in the sense that several instances of
the same structure can be used simultaneously in a single context.

While internally Isabelle still is a tactical theorem prover, the addition of the
interpreted “Isar” language for “Intelligible semi-automated reasoning” allows
proofs to be structured in the same way as in traditional mathematical proof
presentation [Nip03, Wen02].

One additional aspect of Isar is its support for calculational reason-
ing [BW01]; this has been designed to also support user-defined transitive rela-
tions, such as the inclusion ordering of relations.

These features together allow us to provide a collection of theories extend-
ing from categories via different kinds of allegories and Kleene algebras up to
heterogeneous relation algebras, geared towards calculational reasoning in and
about relational algebras in a way that allows easy connection with concrete
application theories.

Filling in these theories to a degree that they will become a useful start-
ing point for applications is still ongoing work. From the examples we show in
the next section, the reader may obtain a first flavour of working with the cur-
rent state of our theory collection, which is not yet optimally tuned towards
the automatic proving support provided by Isabelle. Once this is achieved, we
will turn to extending the capabilities of Isabelle/Isar for the purpose of further

Calculational Relation-Algebraic Proofs in Isabelle/Isar 181

streamlining of calculational proof support for relational reasoning, for exam-
ple to eliminate certain repetitive patterns, but also to include special-purpose
decision procedures. The main purpose of this paper is to make a case that user-
friendly mechanised support for fully formal calculational reasoning in relational
algebras appears to become realistically achievable in the near future.

After the examples in the next section, we proceed to give an overview over
the organisation of our theories in Sect. 3, and in Sect. 4 we discuss some technical
details underlying the possibility of reasoning about and between structures.

2 Example Proofs

Essentially following [FS90], we define allegories as a special kind of categories.
However, while Freyd and Scedrov treat categories and allegories as one-sorted
algebraic structures with morphisms only, we follow the more usual approach
of providing a separate sort for objects which serve as source and target of
morphisms.

The inclusion ordering � in allegories is defined from the meet (or intersec-
tion) operation �:

incl-def [iff]: [[R : a ↔ b; S : a ↔ b]] =⇒ (R � S) = (S � R = R)

In the higher-order logic HOL, terms of type bool are used en lieu of proposi-
tions, so equality also takes on the role of propositional equivalence. The pres-
ence of the assumptions [[R : a ↔ b; S : a ↔ b]] implies that the equivalence
(R � S) = (R � S = R) only needs to hold if R and S belong to the same hom-
set a ↔ b, i.e., if R and S are well-defined morphisms between two well-defined
objects a and b.

As a first example proof, we show R � S � R via the above definition of
inclusion from the algebraic properties of �:

R � (R � S) = (R � R) � S associativity
= R � S idempotence

The Isar proof consists of the same steps. Since in our design, the well-typedness
for relation-algebraic expressions is not dealt with by HOL’s type system, but
rather by homset membership, we also need to aid the system to explicitly dis-
charge all well-typedness conditions — the automatic reasoning tactic auto is
sufficient in most cases, aided by introducing the typings as introduction rules
with [intro].

lemma (in Allegory) meet-decr1 :
assumes R-t [intro]: R : a ↔ b
assumes S-t [intro]: S : a ↔ b
shows R � S � R

proof −
have R � (R � S) = (R � R) � S by (rule meet-assoc [THEN sym], auto)
also have . . . = R � S by (subst meet-idem, auto)
finally show ?thesis by (rule-tac incl-contract , auto)

qed

182 Wolfram Kahl

Obviously, we were able to transfer our proof into Isar without significant loss
of readability or conciseness.

As a slightly more complicated example, we show that for univalent rela-
tions F , the equality R � S;F = (R;F� � S);F holds — this can be shown by
a cyclic inclusion chain:

R � S;F � (R;F� � S);F modal rule
� R;F�

;F � S;F meet-subdistributivity
� R � S;F F univalent

Here, quite a few implicit steps were hidden, and some of these technical details
need to be made explicit in the Isar proof. Some remain hidden; for example,
modal rules come in four shapes (equivalent by conversion and commutativity
of meet), so the Isabelle theory for allegories binds the theorem reference modal
to the set containing all four shapes of modal rules. Also, since longer inclusion
chains do not uniquely determine to which inclusions the antisymmetry rule
should be applied, we need to split the calculation into two separate inclusion
chains:

lemma (in Allegory) unival-meet-escape-1 :
assumes F-u: univalent F
assumes F-t [intro]: F : b ↔ c
assumes R-t [intro]: R : a ↔ c
assumes S-t [intro]: S : a ↔ b
shows R � S ; F = (R ; F� � S) ; F

proof −
have R � S ; F � (R ; F� � S) ; F by (rule modal , auto)
moreover have (R ; F� � S) ; F � R � S ; F
proof −
have (R ; F� � S) ; F � (R ; F�) ; F � S ; F by (rule meet-cmp, auto)
also have (R ; F�) ; F = R ; (F� ; F) by (rule cmp-assoc, auto)
also from F-u have F� ; F � Id c by (rule univalent , auto)
also (incl-mon-trans) have R ; Id c = R by (rule right-id , auto)
also show ?thesis by (rule calculation, best+)
qed

ultimately show ?thesis by (rule incl-antisym, best+)
qed

For this proof, a few additional points need explanation. While in most cases,
auto can discharge all well-typedness conditions, here there are two cases where
auto does not succeed, and we used the best-fit-first reasoning tactic best in-
stead. Since several conditions had to be discharged, application of best had to
be iterated — auto attempts to discharge all open subgoals, so never needs iter-
ation. One of the “also” occurrences has an explicitly specified transitivity rule
incl-mon-trans — this is necessary for cases where the transitivity rule cannot
be uniquely determined by Isabelle.

Furthermore, the conclusion of the second inclusion chain looks strange: in-
stead of “finally show ?thesis”, which is an abbreviation for “also from cal-
culation show ?thesis” (where calculation is the name of the local register that

Calculational Relation-Algebraic Proofs in Isabelle/Isar 183

Isar uses to accumulate the result of calculational proofs), we now have “also
show ?thesis by . . . calculation” — the reason for this is that calculation as pro-
duced by the previous chain is not a simple fact, but a meta-logic quantification
carrying many (well-typedness) assumptions, so that it is not easily accessible to
the automatic proof tools and instead needs to be explicitly applied to ?thesis,
the statement to be shown, as a rule.

The typing assumptions have, as always, again been flagged with [intro] as
introduction rules, so auto will use them to discharge the type correctness con-
ditions that all the other rule applications introduce. The assumption about
univalence has not been flagged in this way — if it had been, we would not have
needed to refer to it via “from F-u” for making use of univalence of F . The de-
cision not to make this assumption available to Isabelle’s automated proof tools
therefore contributes to traceability.

Finally, experienced Isar users will note that instead of showing the theorem
in the last line of the proof by “rule incl-antisym”, we might have declared this
as the rule organising the whole proof by inserting it after the opening “proof”
in the place where “−” explicitly excludes any proof structuring rule. However,
incl-antisym has not only the two inclusions as premises, but also two well-
typedness conditions, which then would have to be dealt with explicitly, while
with our approach they are implicitly discharged by the last “best+”.

Although this second proof employed a larger number of the features of Is-
abelle/Isar, calculational proofs typically need neither the full complexities of
the Isar proof language, nor all the capabilities of the Isabelle tactics language
used in the arguments to “by”.

The features that are used are limited to a set that can be learned relatively
easily, and the way in which these features are used mostly follows rather sys-
tematic patterns. Even for some unexpected failures there are recipes, like “if
auto fails to discharge type correctness conditions, then try best+ and (simp all
(no asm simp))”.

Even though more understanding of Isabelle and Isar is definitely helpful, and
for many basic and auxiliary pre-proven lemmas it is necessary to remember their
names for being able to invoke them explicitly, we expect the learning curve for
doing calculational Isar proofs based on our theory library to be much smoother
than for Isar proofs in predicate logic.

3 Theory Organisation

The kernel of our theory collection (which is still work in progress) is a hierarchy
of theories defining the structures of discourse and providing useful facts and
derived concepts:

– Categories: built on homsets, identities, and composition. Provides con-
cepts like mono-, epi-, and isomorphisms, initial and terminal objects, direct
sums and products. Functors will also be included here.

184 Wolfram Kahl

– Ordered categories: categories with an ordering � on every homset. Pro-
vides monotonicity and transitivity rules for reasoning with inclusions. Pred-
icates for bounds and residuals, where existing, are also already defined here.

– Allegories: extend ordered categories by meets and converse. Provides con-
cepts like univalent, total, . . ., symmetric, transitive, Relators come in
at this level.

– Distributive allegories: extend allegories by joins � and least relations ⊥⊥.
– Division allegories: extend distributive allegories by left and right residu-

als, and therefore also by symmetric quotients.
– Dedekind categories, or locally complete distributive allegories al-

low arbitrary joins, and therefore also greatest relations ��.
– Relation algebras have homsets that are Boolean algebras and therefore

also provide complements.
– Atomic relation algebras satisfying the Tarski rule are the setting

used in a large part of the literature, for example in [SS93].
– Concrete relation algebras with subobjects, quotients, finite sums

and finite products are the setting of the relational programs of RelView
[BBS97, BHL99]. This theory will allow verification of RelView programs
in a recognised theorem prover.

Each of these classes of structures is defined in Isabelle/Isar/HOL as a locale,
which corresponds to the mathematical habit of “assuming an arbitrary, but
fixed category/allegory/. . . throughout”.

Besides this “relational hierarchy”, we also add support for Kleene algebras
and related structures, since reasoning in these structures shares many aspects
with relational reasoning. Although Kleene algebra is usually presented as a ho-
mogeneous algebra, we axiomatise heterogeneous versions on top of ordered cate-
gories since this way their relations with our hierarchy of categories and allegories
are more natural.

– Heterogeneous Kleene algebras, according to Kozen’s axiomatisation
[Koz91], share the join structure with distributive allegories, and add the
Kleene star, which corresponds to the reflexive transitive closure present in
the relational hierarchy in Dedekind categories.

– Residuated Kleene algebras add residuals to Kleene algebras, these are
shared with division allegories.

– Action lattices [Koz94] essentially are residuated Kleene algebras where
homsets are lattices.

– Kleene algebras with domain (KAD) [DMS03] add to Kleene algebras
a domain operator corresponding to that definable in allegories by domR :=
I � R;R�.

A simplified overview of our theory dependency graph is shown in Fig. 1.
In order to be able to profit from the shared structures, we provide them

separately in small theories. For example, the shared join properties are collected
in our “heterogeneous idempotent semirings” (HISR), defined on top of locally
ordered categories with join.

Calculational Relation-Algebraic Proofs in Isabelle/Isar 185

Category

Locally ordered category

ConverseJoin MeetDomain

Allegory

Distributive Allegory

Residuals

Division Allegory

Dedekind Category

Kleene Algebra

KAD

Star

Residuated KA

Action Lattice

Relation Algebra

RelView

Fig. 1. Theory dependency summary

For the domain elements of Kleene algebras with domains, we do not fol-
low the approach of embedding a Boolean algebra of tests into the subiden-
ties. Instead we observe that the key properties of multiplicatively-idempotent
subidentities presented in [DMS03] do not depend on the semiring structure,
but already hold in ordered categories. We included a separete theory to col-
lect those properties and use them to axiomatise the domain operator; all the
resulting material is then made available to both allegories and Kleene algebras
with domain. (See [DG00] for argumentation why the domain operator should
be primitive in allegories.)

4 Structure Representation Aspects

For treating functors and relators, we obviously need to be able to deal with at
least two categories/allegories in the same context. For structures encapsulated
in Isabelle’s locales, this implies that each of these locales has to be based on
a record type. Such a record is essentially an explicit data structure aggregat-
ing all the information defining an algebra; for allegories and relation algebras,
a similar organisation can be found in the Haskell library RATH [KS00]. In
comparison with Haskell, the extensible records allowed by Isabelle simplify the
setup; only the linear hierarchy that is enforced on extensions appears slightly
unintuitive in some contexts, but does not lead to theoretical or practical prob-
lems. For example, within Kleene algebras, there is always a meet component
accessible, but nothing can be proved about it. By organising record extensions
and axiomatic theory definitions (i.e., locales) into separate files we achieved
a setup which guarantees that reasoning in, for example, Kleene algebras is not
burdened in any way by the presence of meets in the underlying records.

For being able to access derived concepts simultaneously in two structures
(as, for example, in the statement “relators preserve univalence”), a particu-
lar way of defining them with explicit reference to the underlying structure is

186 Wolfram Kahl

required; this structure is of type (′o, ′m, ′r) Allegory-scheme, the type of all ex-
tensions of allegory structure records — these are currently the smallest records
containing converse and inclusion. In addition, such derived concepts should, for
the sake of demonstrable consistency, be introduced via meta-level equations —
for technical reasons, these currently cannot employ user-defined syntax. There-
fore, definitions of derived concepts cannot be stated in a simple intuitive shape.
For example, ideally we would be able to define univalence by stating something
like the following:

R : a ↔ b =⇒ univalent R == (R� ; R � Id b)

Instead, we have to define an internal identifier isUnivalent and declare univalent
with index “ı” for reference to possibly different structures as user-level syntax
for this. For the definition, we have to refer to all allegory primitives via the
internal identifiers, such as incl for �, and have to explicitly supply the structure
argument that corresponds to the index position. We also have to impose the
well-typedness conditions via a conditional, with the other branch containing
the pseudo-value arbitrary about which nothing can be proven. For user-friendly
access to such a definition, an additional lemma is necessary that contains the
well-typedness condition as an assumption:

constdefs
isUnivalent :: (′o, ′m, ′r) Allegory-scheme ⇒ ′m ⇒ bool (univalent ı - [1000] 999)
isUnivalent s R == if isMor s R

then incl s (cmp s (conv s R) R) (CId s (Ctrg s R))
else arbitrary

lemma (in ConvOrdCat) univalent-def :
R : a ↔ b =⇒ univalent R = (R� ; R � Id b)

by (unfold isUnivalent-def , auto)

All subsequent reasoning will then use that lemma — its name, univalent-def,
has been chosen to essentially hide the real definition. For derived predicates,
such as univalence, this “definition-lemma” might be almost sufficient; typically,
more user-friendly lemmas are also provided, like the one used in the second
example proof:

lemma (in ConvOrdCat) univalent [elim?]:
assumes univalent R
assumes [simp]: R : a ↔ b
shows R� ; R � Id b

by (rule univalent-def [THEN iffD1])

For derived operations, one also needs to state and prove the derived rules that
help to automatically discharge well-typedness conditions.

This way of defining derived concepts applies in the same way to user-defined
extensions to our theory as to our theory library itself. Although this is of course
somewhat inconvenient, there is a systematic procedure to produce the necessary
material for user-defined extensions. Adhering to that procedure guarantees that

Calculational Relation-Algebraic Proofs in Isabelle/Isar 187

new derived concepts can be used with the same flexibility as those contained
in the library, and with the same safety with respect to consistency.

5 Conclusion and Outlook

We have shown that with new features of Isabelle, calculational reasoning in
relation algebras can be supported in a way that makes proofs both readable and
writable — indeed, in many cases producing a correct proof with the support
of the XEmacs interface ProofGeneral [Asp00] is probably slightly easier than
producing a good-looking proof directly in LATEX.

In particular, we have been able to add the flexibility of dealing with several
relation algebras at the same time, and of instantiating the abstract arguments
in concrete structures, without incurring a prohibitive cost in terms of dealing
with well-typedness conditions — the careful arrangement of homset rules allows
us to discharge those systematically and automatically.

For the future, we plan to tackle correctness proofs of RelView programs
as realistic case studies, and hope to be able to enlist more automated support
from Isabelle for “trivial” calculational proof steps.

Another natural application of our framework and its many small component
theories will be a study of the recently proposed “Kleene algebras with relations”
[Des03].

While the proofs we have shown are by themselves not interesting at all,
they demonstrate the style of prover-supported calculational reasoning that is
possible already now. As an important step towards more user-friendly support
for calculational reasoning we plan to incorporate decision procedures, where
feasible, into the corresponding theories, for example for the equational theory
of allegories [DG00], or for Kleene algebras. Once such decision procedures are
available they can eliminate many tedious steps that are currently still necessary.

Acknowledgements

I am grateful to Millie Rhoss de Guzman and Hitoshi Furusawa for their com-
ments on previous versions of this paper and many related discussions, and also
to the anonymous reviewers for their valuable comments and to Kevin Everets
for careful proofreading.

References

[Asp00] David Aspinall. Proof General: A generic tool for proof development.
In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1785 of LNCS, pages 38-42. Springer, 2000. See also
http://www.proofgeneral.org. 187

[BBS97] Ralf Behnke, Rudolf Berghammer, and Peter Schneider. Machine support
of relational computations: The Kiel RELVIEW system. Technical Re-
port 9711, Institut für Informatik und Praktische Mathematik, Christian-
Albrechts- Universität Kiel, June 1997. 184

188 Wolfram Kahl

[BH94] Rudolf Berghammer and Claudia Hattensperger. Computer-aided manipu-
lation of relational expressions and formulae using RALF. In Bettina Buth
and Rudolf Berghammer, editors, Systems for Computer-Aided Specifica-
tion, Development and Verification, Bericht Nr. 9416, pages 62-78. Univer-
sität Kiel, 1994. 179

[BHL99] Rudolf Berghammer, Thorsten Hoffmann, and Barbara Leoniuk. Rech-
nergestützte Erstellung von Prototypen für Programme auf relationalen
Strukturen. Technical Report 9905, Institut für Informatik und praktische
Mathematik, Christian-Albrechts-Universität Kiel, July 1999. 184

[BW01] Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited, an
Isabelle/Isar experience. In R. J. Boulton and P.B. Jackson, editors, Theo-
rem Proving in Higher-Order Logics: TPHOLs 2001, volume 2152 of LNCS,
pages 75-90. Springer, 2001. 180

[Des03] Jules Desharnais. Kleene algebras with relations. In Rudolf Berghammer
and Bernhard Möller, editors, Proc. RelMiCS 7, International Seminar on
Relational Methods in Computer Science, in combination with the 2nd Intl.
Workshop on Applications of Kleene Algebra, LNCS. Springer, 2003. (In-
vited Talk). 187

[DG00] Dan Dougherty and Claudio Gutiérrez. Normal forms and reduction for
theories of binary relations. In Leo Bachmair, editor, Rewriting Techniques
and Applications, Proc. RTA 2000, volume 1833 of LNCS, pages 95-109.
Springer, 2000. 185, 187

[DM01] Jules Desharnais and Bernhard Möller. Characterizing determinacy in
Kleene algebras. Information Sciences, 139:253-273, 2001. 178

[DMS03] Jules Desharnais, Bernhard Möller, and Georg Struth. Kleene algebra with
domain. Technical Report 2003-7, Universität Augsburg, Institut für Infor-
matik, 2003. 178, 184, 185

[dS02] H.C.M. de Swart, editor. Proc. RelMiCS 6, International Workshop on Rela-
tional Methods in Computer Science, Oisterwijk near Tilburg, Netherlands,
16-21 October 2001, volume 2561 of LNCS. Springer, 2002.

[FS90] Peter J. Freyd and Andre Scedrov. Categories, Allegories, volume 39 of
North-Holland Mathematical Library. North-Holland, Amsterdam, 1990.
178, 181

[Fur98] Hitoshi Furusawa. Algebraic Formalisations of Fuzzy Relations and Their
Representation Theorems. PhD thesis, Department of Informatics, Kyushu
University, March 1998. 178

[HBS94] Claudia Hattensperger, Rudolf Berghammer, and Gunther Schmidt. RALF
– A relation-algebraic formula manipulation system and proof checker.
Notes to a system demonstration. InMaurice Nivat, Charles Rattray,
Teodore Rus, and Giuseppe Scollo, editors, AMAST ’93, Workshops in
Computing, pages 405-406. Springer, 1994. 179

[Jip01] Peter Jipsen. Implementing quasi-equational logic on the web. Talk given
at the AMS Sectional Meeting, University of South Carolina, March 16-18
2001. http://www.chapman.edu/~jipsen/PCP/usctalk.html. 179

[Jip03] Peter Jipsen. PCP: Point and click proofs. Web-based system at URL:
http://www.chapman.edu/~jipsen/PCP/PCPhome.html, 2003. 179

[Kah01] Wolfram Kahl. A relation-algebraic approach to graph structure transfor-
mation, 2001. Habil. Thesis, Fakultät für Informatik, Univ. der Bundeswehr
München, Techn. Bericht 2002-03. 178

[Kah02] Wolfram Kahl. A relation-algebraic approach to graph structure transfor-
mation. In de Swart [dS02], pages 1-14. (Invited Talk). 178

Calculational Relation-Algebraic Proofs in Isabelle/Isar 189

[KH98] Wolfram Kahl and Claudia Hattensperger. Second-order syntax in HOPS
and in RALF. In Bettina Buth, Rudolf Berghammer, and Jan Peleska, ed-
itors, Tools for System Development and Verification, volume 1 of BISS
Monographs, pages 140-164, Aachen, 1998. Shaker Verlag. ISBN: 3-8265-
3806-4. 179

[Koz91] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Inform. and Comput., 110(2):366-390, 1991. 184

[Koz94] Dexter Kozen. On action algebras. In J. van Eijck and A. Visser, editors,
Logic and Information Flow, pages 78-88. MIT Press, 1994. 184

[Koz97] Dexter Kozen. Kleene algebra with tests. ACM Transactions on Program-
ming Languages and Systems, pages 427-443, May 1997. 178

[Koz98] Dexter Kozen. Typed Kleene algebra. Technical Report 98-1669, Computer
Science Department, Cornell University, March 1998. 179

[KS00] Wolfram Kahl and Gunther Schmidt. Exploring (finite) Relation Algebras
using Tools written in Haskell. Technical Report 2000-02, Fakultät für In-
formatik, Universität der Bundeswehr München, October 2000. see also the
RATH page http://ist.unibw-muenchen.de/relmics/tools/RATH/. 179,
185

[KWP99] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales -
a sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, editors, Theorem Proving in Higher-Order Logics,
12th International Conference, TPHOLs’99, volume 1690 of LNCS, pages
149-166. Springer, 1999. 180

[Nip03] Tobias Nipkow. Structured proofs in Isar/HOL. In H. Geuvers and F.
Wiedijk, editors, Types for Proofs and Programs, International Workshop
TYPES 2002, LNCS. Springer, 2003. 180

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002. 180

[SHW97] Gunther Schmidt, Claudia Hattensperger, and Michael Winter. Hetero-
geneous relation algebra. In Chris Brink, Wolfram Kahl, and Gunther
Schmidt, editors, Relational Methods in Computer Science, Advances in
Computing Science, chapter 3, pages 39-53. Springer, Wien, New York,
1997. 179

[SS93] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs, Discrete
Mathematics for Computer Scientists. EATCS-Monographs on Theoretical
Computer Science. Springer, 1993. 179, 184

[Str02] Georg Struth. Calculating Church-Rosser proofs in Kleene algebra. In de
Swart [dS02], pages 276-290. 180

[VB99] Richard Verhoeven and Roland Backhouse. Towards tool support for pro-
gram verification and construction. In Jeanette Wing, Jim Woodcock, and
Jim Davies, editors, FM ’99 - Formal Methods, volume 1709 of LNCS, pages
1128-1146. Springer, September 1999. 179

[vOG97] David von Oheimb and Thomas F. Gritzner. RALL: Machine-supported
proofs for relation algebra. In William McCune, editor, Conference on
Automated Deduction - CADE-14, volume 1249 of LNCS, pages 380-394.
Springer, 1997. 180

[Wen97] Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa
L. Gunter and Amy Felty, editors, Theorem Proving in Higher-Order Logics,
TPHOLs ’97, volume 1275 of LNCS, pages 307-322. Springer, 1997. 180

190 Wolfram Kahl

[Wen02] Markus M. Wenzel. Isabelle/Isar - A Versatile Environment for Human-
Readable Formal Proof Documents. PhD thesis, Technische Universität
München, Fakultät für Informatik, February 2002. 180

	Calculational Relation-Algebraic Proofs in Isabelle/Isar
	Introduction and Related Work
	Example Proofs
	Theory Organisation
	Structure Representation Aspects
	Conclusion and Outlook

