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Abstract. We propose pattern matching calculi as a refinement of
λ-calculus that integrates mechanisms appropriate for fine-grained mod-
elling of non-strict pattern matching.
Compared with the functional rewriting strategy usually employed
to define the operational semantics of pattern matching in non-strict
functional programming languages like Haskell or Clean, our pattern
matching calculi achieve the same effects using simpler and more local
rules.
The main device is to embed into expressions the separate syntactic cate-
gory of matchings; the resulting language naturally encompasses pattern
guards and Boolean guards as special cases.
By allowing a confluent reduction system and a normalising strategy,
these pattern matching calculi provide a new basis for operational
semantics of non-strict programming languages and also for implemen-
tations.

1 Introduction

The operational semantics of functional programming languages is usually ex-
plained via special kinds of λ-calculi and term rewriting systems (TRSs). One
way to look at the relation between these two approaches is to consider λ-calculi
as internalisations of term rewriting systems: λ-abstraction internalises applica-
tive TRSs (where each function is defined in a single “equation” the left-hand
side of which is an application of the function symbol to only variables), and
fixedpoint combinators internalise recursive function definitions.

In addition to these two features, modern functional programming languages
support function definitions based on pattern matching. A pattern is an expres-
sion built only from variables and constructors — in the context of applicative
TRSs, constructors are function symbols that never occur as head of a rule. In the
functional programming context, constructors are introduced by datatype defi-
nitions, for example the list constructors “[]” (empty list) and “ : ” (“cons”,
non-empty list construction from head and tail).

In the term rewriting view, a function is defined by pattern matching if it
is defined by a group of rules, each having as left-hand side an application of
the defined function symbol to patterns. Definitions using pattern matching are
“processed sequentially”; for an example assume the following definition:
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isEmptyList (x : xs) = False
isEmptyList ys = True

The second line is not an equation valid for arbitrary ys, but a rule that is only
considered if the left-hand side of the first rule gives rise to a mismatch — here,
the only value of ys for which this is the case is the empty list [].

Function definitions with patterns as arguments on the left-hand sides are
typical of modern functional programming languages. In non-strict languages
like Haskell, Clean, or Miranda, the operational semantics of pattern matching
is quite complex; usually it is formulated as the functional rewriting strategy,
which is a rather involved priority rewriting strategy [19, sect. 4.7.1].

In the case of, for example, Haskell, the operational semantics of pattern
matching is defined via the special instance of pattern matching in case expres-
sions. For isEmptyList, the above definition is considered as shorthand for:

isEmptyList zs = case zs of (x : xs) -> False
ys -> True

Case expressions can be seen as an internalisation of pattern matching that is not
quite analogous to the internalisation of function abstraction in λ-calculus; the
important difference is that, in comparison with λ-abstractions, case expressions
contain not only the abstracted pattern matchings, but also an additional appli-
cation to an argument. To further complicate matters, Boolean guards and, more
recently, pattern guards interfere with the “straightforward” pattern matching.

In this paper we present a new calculus that cleanly internalises pattern
matching by drawing a clearer distinction between the aspects involved. For
that purpose, we essentially liberate the case expression from its rigidly built-in
application, generalising the special syntactic category of case alternatives into
the new syntactic category of matchings that incorporates all aspects of pattern
matching, as opposed to the (preserved) syntactical category of expressions that
now is mostly concerned with pattern construction and function application.

This allows straightforward internalisation of pattern matching definitions
without having to introduce new variables like zs for the case variant:

isEmptyList = { (x : xs) ⇒ False ys ⇒ True }

In addition, using the pattern matching calculus as basis of functional program-
ming has advantages both for expressivity and reasoning about programs.

With respect to reasoning, the full internalisation of pattern matching elimi-
nates the problem of all priority systems that what is written down as an uncon-
ditional equation only applies to certain patterns “left over” from higher-priority
equations defining the same function. The usual justification for allowing this
non-orthogonality is that otherwise the number of equations would explode.
Our matching language allows direct transliteration of such prioritised defini-
tions without additional cost, and even includes the means to factor out more
commonalities than is possible in priority rewriting systems. The syntactical fea-
tures necessary to achieve this turn out to be sufficient to include both Boolean
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guards and pattern guards as special cases. This gives the language a boost in
expressivity over systems directly based on term rewriting, and at the same time
keeps the system simple and uniform.

A noteworthy result is that by providing two variants of a simple rule con-
cerned with results of matching failure, we obtain two interesting systems, both
confluent and equipped with the same normalising strategy:

– The first mirrors exactly the definition of pattern matching in, e.g., Haskell,
which corresponds to the functional rewrite strategy modified by treating
matching against non-covered alternatives as a run-time error. It is well
known that the functional strategy, considered as a term rewriting strategy,
is not normalising, so there are certain terms that, translated into our first
system, have a normal form that corresponds to such run-time errors.

– The second system is a refinement of the first in that it preserves all terminat-
ing reductions not ending in a run-time errors, and also has such “successful”
reductions for some terms that reduce to run-time errors in the first system.

Similar mechanisms have been proposed in the literature, see Sect. 8; we feel
that the setting of the pattern matching calculus helps to clarify the issues
involved and provides an attractive environment for describing and analysing
such alternative treatments of matching failure.

After presenting the abstract syntax, we show how the pattern matching
calculus encodes λ-calculus and Haskell pattern matching including Boolean and
pattern guards. Sect. 4 presents the reduction rules, which are applied to selected
examples in Sect. 5. In Sect. 6 we summarise the mechanised confluence proof,
and Sect. 7 is devoted to the normalising reduction strategy. Sect. 8 discusses
related work. Details omitted here for reasons of space can be found in [10].

2 Abstract Syntax

The pattern matching calculus, from now on usually abbreviated PMC, has two
major syntactic categories, namely expressions and matchings. These are defined
by mutual recursion. When considering the analogy to functional programs, only
expressions of the pattern matching calculus correspond to expressions of func-
tional programming languages. Matchings can be seen as a generalisation of
groups of case alternatives. Operationally, matchings can be “waiting for argu-
ment supply”, or they can be saturated ; saturated matchings can succeed and
then return an expression, or they can fail. Patterns form a separate syntactic
category that will be used to construct pattern matchings.

We now present the abstract syntax of the pattern matching calculus with
some intuitive explanation of the intended meaning of the constructs.

As base sets, we use Var as the set of variables, and Constr as the set of con-
structors. For the purpose of our examples, numbers are assumed to be elements
of Constr and are used only in zero-ary constructions (which are written without
parentheses). Constructors will, as usual, be used to build both patterns and
expressions. Indeed, one might consider Pat as a subset of Expr.
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The following summarises the abstract syntax of PMC:

Pat ::= Var variable
| Constr(Pat, . . . , Pat) constructor pattern

Expr ::= Var variable
| Constr(Expr, . . . , Expr) constructor application
| Expr Expr function application
| { Match } matching abstraction
| � empty expression

Match ::= �Expr� expression matching
| failure
| Pat ⇒ Match pattern matching
| Expr � Match argument supply
| Match Match alternative

Patterns are built from variables and constructor applications. All variables
occurring in a pattern are free in that pattern; for every pattern p : Pat, we
denote its set of free variables by FV(p). In the following, we silently restrict
all patterns to be linear, i.e., not to contain more than one occurrence of any
variable.

Expressions are the syntactic category that embodies the term construction
aspects; besides variables, constructor application and function application, we
also have the following special kinds of expressions:

– Every matching m gives rise to the matching abstraction (matching expres-
sion) {m }, which might be read “match m”.
If the matching m is unsaturated, i.e., “waiting for arguments”, then {m }
abstracts m into a function.
If m is a saturated matching, then it can either succeed or fail; if it suc-
ceeds, then {m } reduces to the value “returned” by m; otherwise, {m } is
considered ill-defined.

– we call � the empty expression; it results from matching failures — according
to the above, it could also be called the “ill-defined expression”.
We use the somewhat uncommitted name “empty expression” since we will
consider two interpretations of �:
• It can be a “manifestly undefined” expression equivalent to non-termi-

nation — following the common view that divergence is semantically
equivalent to run-time errors.

• It can be a special “error” value propagating matching failure , con-
sidered as an “exception” through the syntactic category of expressions.

None of the expression constructors binds any variables; we overload the FV( )
notation and denote for an expression e : Expr its set of free variables by FV(e).

For the purposes of pattern matching, constructor applications of the same
constructor, but with different arities, are considered incompatible.
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Matchings are the syntactic category embodying the pattern analysis aspects:

– For an expression e : Expr, the expression matching �e� always succeeds and
returns e, so we propose to read it “return e”.

– is the matching that always fails.
– The pattern matching p ⇒ m waits for supply of one argument more than

m; this pattern matching can be understood as succeeding on instances of
the (linear) pattern p : Pat and then continuing to behave as the resulting
instance of the matching m : Match. It roughly corresponds to a single case
alternative in languages with case expressions.

– argument supply a � m is the matching-level incarnation of function appli-
cation, with the argument on the left, and the matching it is supplied to on
the right. It saturates the first argument m is waiting for.
The inclusion of argument supply into the calculus is an important source
of flexibility in the design of the reduction system.

– the alternative m1 m2 will in this paper be understood sequentially: it be-
haves like m1 until this fails, and only then it behaves like m2.

Pattern matching p ⇒ m binds all variables occurring in p, so FV(p ⇒ m) =
FV(m)− FV(p), letting FV(m) denote the set of free variables of a matching m.
Pattern matching is the only variable binder in this calculus — taking this into
account, the definitions of free variables, bound variables, and substitution are
as usual. Note that there are no matching variables; variables can only occur as
patterns or as expressions.

We will omit the parentheses in matchings of the shape a � (p ⇒ m) since
there is only one way to parse a � p ⇒ m in PMC.

3 Examples

Even though we have not yet introduced PMC reduction, the explanations of
the syntax of PMC in the previous section should allow the reader to understand
the examples presented in this section. We first show the natural embedding
of the untyped λ-calculus into PMC and then continue to give translations for
Haskell function definitions first using pattern matching only, then together with
Boolean guards and finally together with pattern guards,

It is easy to see that the pattern matching calculus includes the λ-calculus.
Variables and function application are translated directly, and λ-abstraction is a
matching abstraction over a pattern matching that has a single-variable pattern
and a result matching that immediately returns the body:

λ v . e := { v ⇒ �e� }
In Sect. 5 we shall see that this embedding also preserves reducibility.

As an example for the translation of Haskell programs into PMC, we show one
that also serves as an example for non-normalisation of the functional rewriting
strategy; with this program and the additional definition bot = bot, the func-
tional strategy loops (detected by some implementations) on evaluation of the
expression f bot (3:[]), although “obviously” it “could” reduce to 2:
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f (x:xs) [] = 1
f ys (v:vs) = 2

For translation into PMC, we have to decide how we treat bot. We could translate
it directly into an application of a fixedpoint combinator to the identity function;
if we call the resulting expression ⊥, then ⊥ gives rise to cyclic reductions. In
this case, we obtain for f bot (3:[]) the following expression:

{ ((x : xs) ⇒ [] ⇒ �1�) (ys ⇒ (v : vs) ⇒ �2�) } ⊥ (3 : [])

A different possibility is to recognise that the above “definition” of bot has as
goal to produce an undefined expression; if the empty expression � is understood
as undefined, then we could use that.

We will investigate reduction of both possibilities below, in Sect. 5.

In several functional programming languages, Boolean guards may be added
after the pattern part of a definition equation; the failure of such a guard has the
same effect as pattern matching failure: if more definition equations are present,
the next one is tried. For example:

g (x:xs) | x > 5 = 2
g ys = 3

Translation into a case-expression turns such a guard into a match to the Boolean
constructor True and a default branch that redirects mismatches to the next line
of the definition. In PMC, we do not need to make the mismatch case explicit,
but can directly translate from the Haskell formulation. The above function g
therefore corresponds to the following PMC expression:

{ ((x : xs) ⇒ (x > 5) � True ⇒ �2�) (ys ⇒ �3�) }

A generalisation of Boolean guards are pattern guards [6]; these incorporate
not only the decision aspect of Boolean guards, but also the variable binding as-
pect of pattern matching. In PMC, both can be represented as saturated patterns,
i.e., as pattern matchings that already have an argument supplied to them. For
a pattern guard example, we use Peyton Jones’ clunky:

clunky env v1 v2 | Just r1 <- lookup env v1
, Just r2 <- lookup env v2 = r1 + r2

| otherwise = v1 + v2

We attempt analogous layout for the PMC expression corresponding to the func-
tion clunky (with appropriate conventions, we could omit more parentheses):

{ env ⇒ v1 ⇒ v2 ⇒ ((lookup env v1 � Just(r1) ⇒
lookup env v2 � Just(r2) ⇒ �r1 + r2�)
�v1 + v2� ) }
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Irrefutable patterns, in Haskell indicated by the prefix “~”, match lazily, i.e.,
matching is delayed until one of the component variables is needed. There are
no special provisions for irrefutable patterns in PMC; they have to be trans-
lated in essentially the same way as in Haskell. For example, with body possibly
containing occurrences of x and xs, the definition:
q ~(x:xs) = body
expands into the following shape according to the Haskell report:
q = \ v -> (\x -> \ xs -> body )(case v of (x:xs) -> x )

(case v of (x:xs) -> xs )

In PMC, we can turn the two function applications into saturated patterns:

q = { v ⇒ { v � (x : xs) ⇒ �x � } � x ⇒
{ v � (x : xs) ⇒ �xs� } � xs ⇒ body }

4 Standard Reduction Rules

The intuitive explanations in Sect. 2 only provide guidance to one particular way
of providing a semantics to PMC expressions and matchings. In this section, we
provide a set of rules that implement the usual pattern matching semantics of
non-strict languages by allowing corresponding reduction of PMC expressions as
they arise from translating functional programs. In particular, we do not include
extensionality rules.

Formally, we define two redex reduction relations: −→
E

: Expr ↔ Expr for

expressions, and −→
M

: Match ↔ Match for matchings. These are the smallest

relations including the rules listed in the sections 4.1 to 4.3. In 4.4 we shortly
discuss the characteristics of the resulting rewriting system.

We use the following conventions for metavariables: v is a variable; a, a1,
a2, . . ., b, e, e1, e2, . . ., f are expressions; k , n are natural numbers; c, d are
constructors; m, m1, m2, . . . are matchings; p, p1, p2, . . ., q are patterns.

4.1 Failure and Returning

Failure is the (left) unit for ; this enables discarding of failed alternatives and
transfer of control to the next alternative:

m −→
M

m ( )

A matching abstraction where all alternatives fail represents an ill-defined case
— this motivates the introduction of the empty expression into our language:

{ } −→
E

� ({ })

Empty expressions are produced only by this rule; the rules (�@) and (� � c)
below only propagate them.
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Expression matchings are left-zeros for :

�e� m −→
M

�e� (�� )

Matching abstractions built from expression matchings are equivalent to the
contained expression:

{ �e� } −→
E

e ({ �� })

4.2 Application and Argument Supply

Application of a matching abstraction reduces to argument supply inside the
abstraction:
{m } a −→

E
{ a � m } ({ }@)

Argument supply to an expression matching reduces to function application
inside the expression matching:

a � �e� −→
M

�e a� (���)

No matter which of our two interpretations of the empty expression we choose,
it absorbs arguments when used as function in an application:

� e −→
E

� (�@)

Analogously, failure absorbs argument supply:

e � −→
M

(� )

Argument supply distributes into alternatives:

e � (m1 m2) −→
M

(e � m1) (e � m2) (� )

4.3 Pattern Matching

Everything matches a variable pattern; this matching gives rise to substitution:

a � v ⇒ m −→
M

m[v\a] (�v)

Matching constructors match, and the proviso can always be ensured via α-
conversion (for this rule to make sense, linearity of patterns is important):

c(e1, . . . , en) � c(p1, . . . , pn) ⇒ m −→
M

e1 � p1 ⇒ · · · en � pn ⇒ m

if FV(c(e1, . . . , en)) ∩ FV(c(p1, . . . , pn)) = {} (c � c)

Matching of different constructors fails:

d(e1, . . . , ek ) � c(p1, . . . , pn) ⇒ m −→
M

if c �= d or k �= n (d � c)

For the case where an empty expression is matched against a constructor pattern,
we consider two different right-hand sides:
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– The calculus PMC� interprets the empty expression as equivalent to non-
termination, so constructor pattern matchings are strict in the supplied ar-
gument:

� � c(p1, . . . , pn) ⇒ m −→
M

� � � (� � c → �)

– The calculus PMC interprets the empty expression as propagating the ex-
ception of matching failure, and “resurrects” that failure when matching
against a constructor:

� � c(p1, . . . , pn) ⇒ m −→
M

(� � c → )

For statements that hold in both PMC� and PMC , we let the rule name (��c)
stand for the rule (� � c → �) in PMC� and for (� � c → ) in PMC .

4.4 Rewriting System Aspects

For a reduction rule (R), the one-step redex reduction relation defined by that
rule is written −−−→

(R)
; this will either have only expressions, or only matchings

in its domain and range. Furthermore, we let ◦−−−→
(R)

be the one-step reduction

relation closed under expression and matching construction.
Each of the rewriting systems PMC� and PMC formed by the reduction

rules introduced in sections 4.1 to 4.3 consists of nine first-order term rewriting
rules, two rule-schemata (��c) and (d �c) — parameterised by the constructors
and the arities — that involve the binding constructor ⇒, but not any bound
variables, the second-order rule (�v) involving substitution, and the second-order
rule schema (c � c) for pattern matching that re-binds variables.

The substituting rule (�v) has almost the same syntactical characteristics as
β-reduction, and can be directly reformulated as a CRS rule. (CRS stands for
combinatory reduction system [11,17].)

The pattern matching rule schema (c � c) involves binders binding multiple
variables, but its individual rules still could be reformulated as CRS rules.

The whole system is neither orthogonal nor does it have any other properties
like weak orthogonality for which the literature provides confluence proofs; we
describe a confluence proof in Sect. 6.

5 Reduction Examples

For the translation of λ-calculus into PMC it is easy to see that every β-reduction
can be emulated by a three-step reduction sequence in PMC:

(λ v . e) a = { v ⇒ �e� } a −−−→
({ }@)

{ a � v ⇒ �e� } ◦−−−→
(�v)

{ �e�[v\a] }
= { �e[v\a]� } −−−→

({ �� })
e[v\a]
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By induction over λ-terms and PMC-reductions starting from translations of λ-
terms one can show that such reductions can never lead to PMC expressions con-
taining constructors, failure, �, or alternatives, and can only use the four rules
({ }@), (�v), ({ �� }), and (���). Of these, the first three make up the translation
of β-reduction, and the last can only be applied to “undo” the effect of a “pre-
mature” application of ({ }@). In addition, for each PMC reduction sequence
starting from the translation of a λ-term t , we can construct a corresponding β-
reduction sequence starting from t showing that the only real difference between
arbitrary PMC reduction sequences of translations of λ-terms and β-reduction
sequences is that the PMC reduction sequence may contain steps corresponding
to “unfinished” β-steps, and “premature” ({ }@) steps.

Therefore, no significant divergence is possible, and confluence of the stan-
dard PMC reduction rules, to be shown below, implies that this embedding of
the untyped λ-calculus is faithful.

For the PMC translation of the Haskell expression f bot (3:[]), the nor-
malising strategy we present below produces the following reduction sequence:

{ ((x : xs) ⇒ [] ⇒ �1�) (ys ⇒ (v : vs) ⇒ �2�) } ⊥ (3 : [])

◦−−−→
({ }@)

{⊥ � (((x : xs) ⇒ [] ⇒ �1�) (ys ⇒ (v : vs) ⇒ �2�)) } (3 : [])

−−−→
({ }@)

{ (3 : []) � ⊥ � (((x : xs) ⇒ [] ⇒ �1�) (ys ⇒ (v : vs) ⇒ �2�)) }
◦−−−→

(� )
{ (3 : []) � ((⊥ � (x : xs) ⇒ [] ⇒ �1�) (⊥ � ys ⇒ (v : vs) ⇒ �2�)) }

From here, reduction would loop on the vain attempt to evaluate the first oc-
currence of ⊥. If we replace ⊥ with the empty expression �. then we obtain
different behaviour according to which interpretation we choose for �:

In PMC�, the empty expression propagates:

{ (3 : []) � ((� � (x : xs) ⇒ [] ⇒ �1�) (� � ys ⇒ (v : vs) ⇒ �2�)) }
◦−−−→

(��c→�)
{ (3 : []) � (� � � (� � ys ⇒ (v : vs) ⇒ �2�)) }

◦−−−→
(�� )

{ (3 : []) � � � � } ◦−−−→
(���)

{ � � (3 : [])� } ◦−−−→
({ �� })

� (3 : []) −−−→
(�@)

�

In PMC�, the empty expression � is like a runtime error: it terminates reduction
in an “abnormal” way, by propagating through all constructs like an uncaught
exception. In PMC , however, this exception can be caught: matching the empty
expression against list construction produces a failure, and the other alternative
succeeds:

{ (3 : []) � ((� � (x : xs) ⇒ [] ⇒ �1�) (� � ys ⇒ (v : vs) ⇒ �2�)) }
◦−−−→

(��c→ )
{ (3 : []) � ( (� � ys ⇒ (v : vs) ⇒ �2�)) }

◦−−−→
( )

{ (3 : []) � � � ys ⇒ (v : vs) ⇒ �2� }
◦−−−→

(�v)
{ (3 : []) � (v : vs) ⇒ �2� } ◦−−−→

(c�c)
{ 3 � v ⇒ [] � vs ⇒ �2� }

◦−−−→
(�v)

{ [] � vs ⇒ �2� } ◦−−−→
(�v)

{ �2� } ◦−−−→
({ �� })

2
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It is not hard to see that reduction in PMC cannot arrive at the result 2 in the
example with ⊥, even if the second alternative can, for example after the third
step of the original sequence, be reduced to �2�: If a pattern matching p ⇒ m
has been supplied with an argument a, then in the resulting a � p ⇒ m, the
matching m can be considered as guarded by the pattern guard “a �p” (in abuse
of syntax). An alternative can only be committed to if all its pattern guards
succeed ; discarding — ultimately via ( ) — an alternative with only non-
variable patterns and arguments for all patterns only works if its first pattern
guard can be determined as mismatching. In PMC�, this can only be via (d � c);
while in PMC , it could also be via (� � c → ).

6 Confluence and Formalisation

Just among the first-order rules, four critical pairs arise: where the matching
delimiters and { } on the one hand are eliminated by failure or expression
matchings �e�, and on the other hand are traversed by argument supply. None
of these critical pairs is resolved by single steps of simple parallel reduction. It
is easy to see that a shortcut rule, such as { a � �e� } → e a, immediately gives
rise to a new critical pair that would need to be resolved by a longer shortcut
rule, in this case { b � a � �e� } → e a b.

A more systematic approach than introducing an infinite number of such
shortcut rules is to adopt Aczel’s approach [1] to parallel reduction that also
reduces redexes created “upwards” by parallel reduction steps. Confluence of
PMC reduction can then be shown by establishing the diamond property for the
parallel reduction relations.

Using a formalisation in Isabelle-2003/Isar/HOL [15], I have performed a
machine-checked proof of this confluence result.1 Since both de Bruijn indexing
and translation into higher-order abstract syntax would have required consider-
able technical effort and would have resulted in proving properties less obviously
related to the pattern matching calculus as presented here, I have chosen as basis
for the formalisation the Isabelle-1999/HOL theory set used by Vestergaard and
Brotherston in their confluence proof for λ-calculus [22]. This formalisation is
based on first-order abstract syntax and makes all the issues involved in variable
renaming explicit. Therefore, the formalisation includes the rules as given in
Sect. 4 with the same side-conditions; only the formalisation of the substituting
variable match rule (�v) has an additional side-condition ensuring permissible
substitution in analogy with the treatment of the β-rule in [22].

Vestergaard and Brotherston employed parallel reduction in the style of the
Tait/Martin-Löf proof method, and used Takahashi’s proof of the diamond prop-
erty via complete developments. For PMC, we had to replace this by the Aczel-
style extended parallel reduction relations, and a direct case analysis for the
diamond property of these relations.

Due to the fact that we are employing two mutually recursive syntactic cat-
egories (in Isabelle, the argument list of constructors actually counts as a third
1 The proof is available at URL: http://www.cas.mcmaster.ca/˜kahl/PMC/

http://www.cas.mcmaster.ca/~kahl/PMC/
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category in that mutual recursion), and due to the number of constructors of the
pattern matching calculus (twelve including the list constructors, as opposed to
three in the λ-calculus), the number of constituent positions in these constructors
(twelve — including those of list construction — versus three), and the num-
ber of reduction rules (thirteen versus one), there is considerable combinatorial
blow-up in the length of both the formalisation and the necessary proofs.

7 Normalisation

Since PMC is intended to serve as operational semantics for lazy functional
programming with pattern matching, we give a reduction strategy that reduces
expressions and matchings to strong head normal form (SHNF), see, e.g., [19,
Sect. 4.3] for an accessible definition. With the set of rules defined in Sect. 4, the
following facts about SHNFs are easily seen:

– Variables, constructor applications, the empty expression �, failure , ex-
pression matchings �e�, and pattern matchings p ⇒ m are already in SHNF.

– All rules that have an application f a at their top level have a metavariable
for a, and none of these rules has a metavariable for f , so f a is in SHNF if
f is in SHNF and f a is not a redex.

– A matching abstraction {m } is in SHNF if m is in SHNF, unless {m } is a
redex for one of the rules ({ }) or ({ �� }).

– Since all alternative rules have metavariables for m2, an alternative m1 m2

is in SHNF if m1 is in SHNF, unless m1 m2 itself is a redex.
– No rule for argument supply a � m has a metavariable for m, and all rules

for argument supply a � m that have non-metavariable a have m of shape
c(p1, . . . , pn) ⇒ m ′. Therefore, if a � m is not a redex, it is in SHNF if m is
in SHNF and, whenever m is of the shape c(p1, . . . , pn) ⇒ m ′, a is in SHNF,
too.

Due to the homogenous nature of its rule set, PMC therefore has a deterministic
strategy for reduction of applications, matching abstractions, alternatives, and
argument supply to SHNF:

– If an application f a is a redex, reduce it; otherwise if f is not in SHNF,
proceed into f .

– For a matching abstraction {m }, if m is not in SHNF, proceed into m,
otherwise reduce {m } if it is a redex.

– For an alternative m1 m2, if m1 is not in SHNF, proceed into m1, otherwise
reduce m1 m2 if it is a redex.

– If an argument supply a � m is a redex, reduce it (this is essential for the
case where m is of shape m1 m2, which is not necessarily in SHNF, and (� )
has to be applied). Otherwise, if m is not in SHNF, proceed into m. If m is
of the shape c(p1, . . . , pn) ⇒ m ′, and a is not in SHNF, proceed into a.

Matching abstractions and alternatives are redexes only if the selected con-
stituent is in SHNF — this simplified the formulation of the strategy for these
cases.

This strategy induces a deterministic normalising strategy in the usual way.
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8 Related Work

In Peyton Jones’ book [18], the chapter 4 by Peyton Jones and Wadler intro-
duces a “new built-in value FAIL, which is returned when a pattern-match fails”
(p. 61). In addition, their “enriched λ-calculus” also contains an alternative con-
structor, for which FAIL is the identity, thus corresponding to our failure .
However, FAIL only occurs in contexts where there is a right-most ERROR al-
ternative (errors ERROR are distinguished from non-termination ⊥), so there is
no opportunity to discover that, in our terms, { FAIL } = ERROR. Also, errors
always propagate; since ERROR corresponds to our empty expression �, their
error behaviour corresponds to our rule (� � c → �). Wadler’s chapter 5, one of
the standard references for compilation of pattern matching, contains a section
about optimisation of expressions containing alternative and FAIL, arguing along
lines that would be simplified by our separation into matchings and expressions.

Similarly, Tullsen includes a primitive “failure combinator” that never suc-
ceeds among his “First Class Patterns” combinators extending Haskell [21]. He
uses a purely semantic approach, with functions into a Maybe type or, more
generally, into a MonadPlus as “patterns”. In this way, he effectively embeds
our two-sorted calculus into the single sort of Haskell expressions, with a fixed
interpretation. However, since expressions are non-patterns, Tullsen’s approach
treats them as standard Haskell expressions and, therefore, does not have the
option to consider “resurrecting failures” as in our rule (� � c → ). Harrison
et al. follow a similar approach for modelling Haskell’s evaluation-on-demand in
detail [9]; they consider “case branches p -> e” as separate syntactical units —
such a case branch is a PMC matching p ⇒ e — and interpret them as functions
into a Maybe type; the interpretation of case expressions translates failure into
bottom, like in Tullsen’s approach.

Erwig and Peyton Jones, together with their proposal of pattern guards, in
[6] also proposed to use a Fail exception for allowing pattern matching failure
as result of conventional Haskell expressions, and explicitly mention the possi-
bility to catch this exception in the same or in another case expression. This
is the only place in the literature where we encountered an approach somewhat
corresponding to our rule (� � c → ); we feel that our formalisation in the
shape of PMC can contribute significantly to the further exploration of this
option.

Van Oostrom defined an untyped λ-calculus with patterns in [16], abstracting
over (restricted) λ-terms. This calculus does not include mismatch rules and
therefore requires complicated encoding of typical multi-pattern definitions.

Typed pattern calculi with less relation to lazy functional programming are
investigated by Delia Kesner and others in, e.g., [3,8]. Patterns in these calculi
can be understood as restricted to those cases that are the result of certain
kinds of pattern compilation, and therefore need not include any concern for
incomplete alternatives or failure propagation.

As explained in the introduction, pattern matching can be seen as an inter-
nalisation of term rewriting; PMC represents an internalisation of the functional
rewriting strategy described for example in [19]. Internalisation of general, non-
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deterministic term rewriting has been studied by H. Cirstea, C. Kirchner and
others as the rewriting calculus, also called ρ-calculus [4,5], and, most recently,
in typed variants as “pure pattern type systems” [2]. The ρ-calculus is param-
eterised by a theory modulo which matching is performed; this can be used to
deal with views [23]. Since the ρ-calculus allows arbitrary expressions as pat-
terns, confluence holds only under restriction to call-by-value strategies. The
ρ-calculus has unordered sets of alternatives that can also be empty; in [7] a
distinction between matching failure and the empty alternative has been added
for improving support for formulating rewriting strategies as ρ-calculus terms.
Since matching failure in the ρ-calculus is an expression constant, it can occur
as function or constructor argument, and proper propagation of failure must be
enforced by call-by-value evaluation.

Maranget [13] describes “automata with failures” as used by several com-
pilers. Translated into our formalism, this introduces a default matching that
never matches, but transfers control to the closest enclosing alternative contain-
ing a wildcard (variable) pattern. This can be seen as closely related with our rule
(�� c → ); Maranget-1994 used this feature as a way of allowing backtracking
during pattern matching. In [12], this is extended to labelled exceptions, and
can also be understood as a way of implementing sharing between alternatives.

9 Conclusion and Outlook

The pattern matching calculus PMC� turns out to be a simple and elegant
formalisation of the operational pattern matching semantics of current non-strict
functional programming languages. PMC� is a confluent reduction system with
a simple deterministic normalising strategy, and therefore does not require the
complex priorisation mechanisms of the functional rewriting strategy or other
pattern matching definitions.

In addition, we have shown how changing a single rule produces the new cal-
culus PMC , which results in “more successful” evaluation, but is still confluent
and normalising, Therefore, PMC is a promising foundation for further explo-
ration of the “failure as exception” approach proposed by Erwig and Peyton
Jones, for turning it into a basis for programming language implementations,
and for relating it with Maranget’s approach.

The technical report [10] shows, besides other details, also a simple polymor-
phic typing discipline, and the inclusion of an explicit fixedpoint combinator,
which preserves confluence and normalisation.

The next step will be an investigation of theory and denotational semantics
of both calculi: For PMC�, the most natural approach will be essentially the
Maybe semantics of pattern matching as proposed in [21,9]. For PMC , the
semantic domain for expressions needs to include an alternative for failure, too,
to represent the semantics of empty expressions �.

We also envisage that pattern matching calculi would be a useful basis for an
interactive program transformation and reasoning systems for Haskell, similar
to what Sparkle [14] is for Clean.
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