Electronic Notes in Theoretical Computer Science 59 No. 2 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 29 pages

Named Instances for Haskell Type Classes

Wolfram Kahl!

Federal Armed Forces University Munich
Department of Computer Science, Institute for Software Technology
85577 Neubiberg, Germany

Jan Scheffczyk 2

Federal Armed Forces University Munich
Werner-Heisenberg- Weg 102, App. 404
85579 Neubiberg, Germany

Abstract

Although the functional programming language Haskell has a powerful type class
system, users frequently run into situations where they would like to be able to
define or adapt instances of type classes only after the remainder of a component
has been produced. However, Haskell’s type class system essentially only allows
late binding of type class constraints on free type variables, and not on uses of type
class members at variable-free types.

In the current paper we propose a language extension that enhances the late
binding capabilities of Haskell type classes, and provides more flexible means for
type class instantiation. The latter is achieved via named instances that do not
participate in automatic context reduction, but can only be used for late binding.
By combining this capability with the automatic aspects of the Haskell type class
system, we arrive at an essentially conservative extension that greatly improves
flexibility of programming using type classes and opens up new structuring principles
for Haskell library design.

We exemplify our extension through the sketch of some applications and show
how our approach could be used to explain or subsume other language features as
for example implicit parameters. We present a typed A-calculus for our extension
and provide a working prototype type checker on the basis of Mark Jones’ “Typing
Haskell in Haskell”.

1 Email: kahl@ist.unibw-muenchen.de
2 Email: jan.scheffczyk@gmx.net

(©2001 Published by Elsevier Science B. V.

KAHL, SCHEFFCZYK

1 Introduction

One of the major success stories of Haskell is its type class system. Haskell’s
type classes allow a certain kind of ad-hoc polymorphism, and also enhance
parameterisation of programs by allowing late binding of their members. In
terms of implementations, this means that the dictionary that contains all the
members of a certain instance of a class is supplied as a parameter in a late
stage. However, this is not always possible, and so we find in the standard
library pairs of functions like the following:

nub i (Eq a) => [a] -> [al
nubBy :: (a -> a -> Bool) -> [a] -> [al
sort :: (Ord a) => [a] -> [a]
sortBy :: (a -> a -> Ordering) -> [a] -> [a]

The motivation of this design is that currently Haskell allows only one instance
of a given class for a given type, and provides quite a few standard instances,
S0 it is not possible to have, for example,

* an instance Eq Integer that considers two integers as equal if they are
equivalent modulo the 38th Mersenne prime,

* an instance Ord String that ignores case, or,

e given an expression type Expr with instance Show Expr producing plain
text output, an additional instance Show Expr producing TEX output.

Therefore, case-insensitive sorting of strings (that one does not want to wrap
in a newtype constructor®) has to resort to the function sortBy. In such
simple cases, this may not be a serious problem. But frequently one designs
a component around larger classes, only to notice later that the ad-hoc poly-
morphism provided by type classes does not easily allow ad-hoc instantiations,
and the component has to be re-factored along the lines of the -By pattern.

In this paper we propose a language extension that allows such ad-hoc in-
stantiations. The central idea is to allow named instances besides the anony-
mous instances of current standard Haskell, and to provide a mechanism for
explicit instance supply. For example, TEX output of expressions might be
provided for via the following instance of Show for Expr:

instance ExprShowTeX :: Show Expr where
show (Power el e2) = ’{’ : show el ++ "}"{" ++ show e2 ++ "}"

3 With the definitions

newtype CIString = CI {unCI :: String}

instance Eq CIString where compare = caselnsensitiveEqual

instance Ord CIString where compare = caselnsensitiveCompare

one would have sortBy caseInsensitiveCompare = map unCI . sort . map CI.

The wrappers between the newtype isomorphisms and the application are in this case simple
maps. In general, these wrappers can be harder to produce on the fly.

2

KAHL, SCHEFFCZYK

To preserve late binding possibilities, we have to suppress “context reduction”
even in the presence of anonymous standard instances, so an application built
on Expr might now have the following type:

calculator :: Show Expr => I0 ()

For instantiation, we now have two possibilities: Since the type of main has
an empty context, we can force context reduction via the following definition:

main = calculator

In this case, the anonymous Show Expr instance will be used for all occur-
rences of show :: Show Expr = Expr — String, and expressions are out-
put (presumably) in their plain text format.

With our preliminary syntax for explicit instance supply we can force ex-
pressions to be output in their TEX format instead:

main = calculator # ExprShowTeX
In short, our extension unites the following features:

* the (dynamic) semantics of the current type class and instance system is
preserved,

» some inferred types have larger contexts, and

* “later” binding of class members via explicit instance supply is possible.

One understanding of our extension is that we make some of the power of the
target language of dictionary translations available to users, without burden-
ing them significantly more with technical details than conventional Haskell
classes do.

Another understanding also provides valuable guidance to our design. It is
folklore that the Haskell type class system may be explained as an extremely
restricted subset of ML module systems like the generative module system of
SML [15,14], and Leroy’s applicative module system [12] with manifest types
[11], implemented in OCaml. In his proposal of parameterised signatures [6],
Jones presents a nice overview of the differences between the SML and OCaml
module systems, and also shows how parameterised signatures are closer to
OCaml’s system — the most relevant differences being the following:

* Parameterised signatures and the structures typed with parameterised sig-
natures do not contain type components except as parameters.

* Parameterised signatures can be understood as easily producing polymor-
phic modules, which OCaml does not support.

* The ML module system issues of sharing and generativity are bypassed by
relegating them to type checking.

» structures in the parameterised signature context are first-class values.

The system we propose in this paper is rather close to Jones’ parameterised
signatures, but does not go all the way to accept structures as first-class

KAHL, SCHEFFCZYK

citizens. Instead, we preserve compatibility with the automatic aspects of the
Haskell 98 type class system.

Let us briefly list the parallels between our understanding of Haskell type
classes on the one hand, and the OCaml module system and parameterised
signatures on the other hand.

* Simple Haskell 98 classes correspond to OCaml signatures, containing the
class members as value entries, and the argument type variable as an ab-
stract type entry. (Haskell 98 modules in addition feature non-abstract
type entries.)

Abstract type entries in OCaml module types have two kinds of appli-
cation: The first is for hiding implementations and occurs in the construct
ConcreteModule : AbstractModuleType, which produces a module with
a hidden implementation for the abstract type entry; in Haskell, this has
a parallel only in the conventional module system in the shape of abstract
naming of algebraic datatypes in export lists.

The second application is for opening up instantiation possibilities via
the with-clause of the OCaml module language (which introduces “mod-
ule constraints”), as in AbstractModuleType with t = int; this instanti-
ation corresponds to the instantiation of class argument type variables via
instance declarations.

» Haskell instance declarations without type class constraints * declare struc-
tures for the signature corresponding to the associated class, but where
the type entry corresponding to the class parameter has been turned, via
a with-clause, into a manifest type according to its instantiation by the
instance declaration.

» Haskell classes with superclasses correspond to signature inclusion.

* Multiple abstract type entries in an OCaml module type correspond to the
parameters of a multiparameter class in Haskell — these are no problem
per se, only for automatic type inference of overloaded functions.

* Haskell instance declarations with type class constraints declare functors
for which the argument types are induced by the constraints and the result
type is the signature corresponding to the instantiated class, but where the
type entries corresponding to the class parameters have been turned into
manifest types according to their instantiation by the instance declaration.

But, since a class may be instantiated only once for a particular type, in
Haskell 98 there can be only one module in scope for every instantiation
of a declared module type. (The “overlapping instances” allowed in some
implementations do not significantly improve the situation with respect to
ad-hoc instantiation.)

4 In the Haskell 98 report, and in large part of the literature, type class constraints are
called “contexts” — to avoid confusion with other kinds of contexts we are going to use the
term constraint throughout.

KAHL, SCHEFFCZYK

According to these analogies, there are several choices for nomenclature.
Talking about dictionaries and dictionary types seems to us too much imple-
mentation oriented, and introduces additional difficulties when talking about
types representing functions between dictionaries. In OCaml, the name mod-
ule type is used both for signatures, that is, “dictionary types”, and for functor
types, that is “types representing functions between dictionaries”, therefore we
shall use the term module type with the same meaning. The third module type
constructor of OCaml, the with clause introducing module type constraints,
is reflected by instantiation of “signature parameters”, i.e., class arguments.

OCaml also uses the term “module” both for structures and for functors,
so we feel that this is most appropriate in this paper, too. In this way, ev-
erything that has a module type is a module. For non-functorial modules
we may use the term structure; this corresponds to its usage in the context
of parameterised signatures. In addition, we may subsume both instances
and conventional Haskell modules under the term “structure” — conventional
Haskell modules with appropriate elements can also be used for instance sup-
ply, see Sect. 3.

The named instances we introduce in this paper can then be considered as
lightweight modules, and Haskell constraints indicate parameterisation that
can be put to use by explicitly supplying appropriate parameter instances.
Therefore, our extension eliminates the constraint that there can be at most
one module for every module type; we also introduce explicit functor appli-
cation and even higher-order functors. The most important aspects of the
OCaml module system not covered by our extension include the following:

* Opaque types in interfaces, where not only the implementation of a type,
but even its identity are hidden, can, as in parameterised signatures, be
mimicked only via free type variables as class constraint arguments that
occur only once, see [6, Sect. 2.1] for details.

* We did not consider nested modules at all. Very limited forms arise nat-
urally, just by virtue of the fact that Haskell instances have to be defined
inside traditional Haskell modules, but we do not consider module types
specifying module entries in signatures.

Since we strive for maximal compatibility with Haskell (98), we also inherit a
Haskell feature that cannot be found in ML: a Haskell function that carries a
constraint in its type may be considered as an anonymous one-element func-
tor. This feature poses quite a few difficulties for a coherent module-system-
inspired extension of Haskell’s type class system, but it also gives additional
power to applications of such a system. Therefore, a coherent treatment of
these module type constraints is the main challenge in any effort to extend
the use of the Haskell class system towards what amounts to module system
capabilities that cannot be found in Haskell’s traditional module system.
Our current, solution, which is driven by the desire to change the current
language design of Haskell as little as possible, is therefore the main contri-

5

KAHL, SCHEFFCZYK

bution of this paper. To better express our points, we use some new syntax;
however, since throughout our extensions in this paper, we give proximity to
Haskell 98 syntax higher priority than other considerations, we consider the
concrete syntax of our extensions still open.

Through the desire to maximise compatibility and harmonious interac-
tion with the Haskell 98 class system, we end up with a system that includes
some rather complicated technical details, although its basic ideas are in fact
simple. Therefore, we give ample space to introducing the features of our pro-
posed extension and the motivations behind our design decisions in an informal
manner. We start with introducing the simplest aspect, named instances, in
Sections 2 and 3. The next level are functors, discussed in Sect. 4. Module
type constraints as type qualifications are discussed in some detail in Sect. 5,
and it turns out that rather fine-grained distinctions are necessary. Since our
extensions give users more control over the satisfaction of constraints than the
one-instance-per-type approach of Haskell 98, this means that we have to do
less constraint reduction (Sect. 6). We then discuss aspects of how subclass
relationships might translate into “module subtyping” in Sect. 7.

An interesting side-effect of our view of constraints is that the implicit pa-
rameters of Lewis et al. [13] are partly subsumed as “anonymous one-element
functors with one-element structures as arguments”; we show this in Sect. 8.

In Sect. 9, we sketch a typed A-calculus featuring module type constraints,
and in Sect. 10 we briefly describe a prototype implementation of the type-
inference aspects, based on Jones’ “Typing Haskell in Haskell” [7].

2 Named Instances

As seen in the introduction, the first step towards enabling really late binding
of class members even at types for which there are predefined instances is the
ability to define and name non-standard instances for later reuse. Therefore, in
our extended Haskell, we may provide names for instances, and, following the
module analogy, understand these named instance declarations as declaring
structures of the module type defined by the associated class declaration.
For syntactic convenience, we let these names share the name space of Haskell
module names, thus named instances must not use names that are also used as
conventional module names. (This decision also opens up additional flexibility
that will be exemplified in the next section.)

Let us now have a closer look at the named instance declaration from the
introduction.

instance ExprShowTeX :: Show Expr where
show (Power el e2) = ’{’ : show el ++ "}"{" ++ show e2 ++ "}"

It brings the module name “ExprShowTeX” into scope, and binds it to the
structure determined by the body of the instance declaration (together with

6

KAHL, SCHEFFCZYK

default definitions from the class — for sake of simplicity we shall completely
ignore the question of such default definitions in the sequel).

Since “ExprShowTeX” is a module name, we may use the qualified identifier
ExprShowTeX.show, which has the type Expr — String. The module name
ExprShowTeX itself is considered to have the module type Show Expr, which
we write “ExprShowTeX :: Show Expr”.

Note that such a named instance declaration does not introduce a “real”
instance for the class Show that would be available for automatic insertion
wherever show is used at the type Expr — String.

The class member show still has type (Show a) = a — String, contain-
ing the constraint “(Show a)”. This means it is parameterised over possible
instances for Show, or, more precisely, over structures of module type Show a.
In Haskell 98, there is no way to explicitly instantiate such parameters: it all
happens implicitly, via anonymous instances and constraint reduction.

With named instances, we can have more than one instance in scope for
the same type, and we introduce a possibility to explicitly supply instances
as parameters. We use the infix operator “#” as application to instance pa-
rameters, or, as we shall say from now on, to module parameters. Therefore,
“#” is the elimination form for types constructed with “=", in the same way
as standard application is the elimination form for types constructed with
“—”_ So we may write “show # ExprShowTeX”, and this has type Expr —
String. Essentially, this means that “#” corresponds to dictionary applica-
tion. However, in dictionary translations it is necessary to make all references
to dictionaries explicit, while in our system, much of the implicit character of
the Haskell class system is preserved.

Let us now turn to another very simple example which hints at possible
uses of named instances for structuring algebraic libraries, and which, at the
same time, also illustrates some further effects. Consider the following class
declaration for monoids:

class Monoid m where

unit :: m

comp ::m->m->m
Imagine further a complex body of utilities built around this class, including,
as a simple example:

complist :: Monoid m => [m] > m
complist = foldl comp unit

Desiring to use all this in integers, the user of this class in standard Haskell
now faces the problem of indicating which of the two well-known monoids
on integers to use for defining the instance of Monoid for Integer. For the
other monoid, the standard escape route is newtype, which allows to define a
different instance for the same class on a different type which, however, has
the same implementation. Jones perceives the use of newtype declarations to

7

KAHL, SCHEFFCZYK

“clutter up programs” [8]; this stems from the fact that they lead to artificial
distinctions on essentially the same type.
With named instances, this problem is easily solved. We just define:

instance AddMonInt :: Monoid Integer where
unit = 0
comp = (+)

instance MultMonInt :: Monoid Integer where
unit =1

comp = (%)

A complex application wishing to mix both views on integers just needs to
supply the respective instances to different library function invocations:

foo :: [[Integer]] -> Integer
foo = (complist # AddMonInt) . map (complist # MultMonInt)

Compare this with the Haskell 98 type inferred for the function

bar i x = complist $ map complist $
replicate i § replicate i $§ (x :: Integer)

which is (Monoid Integer) = Int — Integer — Integer with only one
constraint (the application bar # AddMonInt will use addition on both levels
of lists). Since both instances provided above are named, we assume that there
is no anonymous instance of type Monoid Integer in scope, so the constraint
would be locally unresolvable.

Even apart from the monomorphism restriction, such unresolvable con-
straints involving non-variable types are illegal in standard Haskell. In our
setting however, admitting such constraints makes sense. The delayed con-
straint may be satisfied at a later stage, for example via the explicit module
parameter supply bar # MultMonInt.

In contrast with anonymous instances, automatic export does not make
sense for named instances. Since they share the module name space, they may
be exported with module entries in export lists. They will be imported in the
same way as other module entries — then the instance name is available as
an argument to “#”-application, and members may be accessed as qualified
identifiers. Indeed, there is no reason to forbid using conventional modules
as arguments for “#”-application, provided they contain appropriately named
members — we show an example for this in the next section.

3 Named Instances for Multi-Parameter Classes

Multi-parameter classes are recognised as extremely useful, but it is not yet
clear how the design choices involving context reduction and type inference
should be resolved [16]. With named instances, it is possible to use multi-
parameter classes without ever defining anonymous instances for them, so
problems of context reduction and type inference can essentially be avoided.

8

KAHL, SCHEFFCZYK

In the following, we therefore allow named instances and forbid anonymous
instances for multi-parameter classes, thus reaping a significant portion of the
benefits of multi-parameter classes without incurring the usual costs.

Let the following module defining a collection class be given:

module Coll where
class Collection c e where

empty :: c e
insert :: e > c e -> Cc e
fold i (e >r >1r) >r >Cce—>r1

Let us furthermore assume a stand-alone module that implements sets using
some tricky balanced tree implementation and demands the constraint Ord on
element types:

module SetColl(Set(),empty,insert,fold) where

data Set a = EmptySet | TrickyBalancedTree ... a ...
empty :: Ord a => Set a

empty = EmptySet

insert :: Ord a => a -> Set a -> Set a

insert =

fold ::0rda=>(a->r->r) >r ->8Seta->r
fold =

As in this example, libraries built for our extended language would tend to
directly implement appropriate class interfaces. This improves much upon the
current practice of unqualified imports that foster the unfortunate tradition
of type-indicating names like foldSet. Any module that imports Coll un-
qualified will have to do qualified import of modules like SetColl, because
otherwise e.g. empty would refer both to the class member Coll.empty and
to SetColl.empty.
Accordingly, consider the following module header:

module Main where
import Coll
import qualified SetColl

Inside this module, it now makes sense to consider SetColl as an instance
of Collection with the type forall a . Ord a = Collection SetColl.Set a,
which is equivalent to the original (anonymous) type of the module SetColl.
This means that this is a fully polymorphic instance that can be used at
arbitrary (ordered) element types. The module SetColl, considered as a
functor in this way, hides the implementation of the Set datatype constructor,

KAHL, SCHEFFCZYK

but it does not hide its identity, nor its dependence on types provided by the
functor argument — these are the effects that lead to the bypassing of the
sharing issue, as discussed by Jones [6].

An application that has been designed to be independent of the implemen-
tation of collections might still use collections of different element types, so it
can be defined to depend on such a polymorphic instance:

app_main :: (forall a . Ord a => Collection ¢ a) => I0 O

Given all the above, it is now possible to instantiate this application inside
module Main in the following way, providing an explicit module type to the
conventional Haskell module SetColl:

import Application(app_main)
main = app_main #
(SetColl :: forall a . Ord a => Collection SetColl.Set a)

We conjecture that for most uses of multi-parameter classes, the resulting
need to specify the instance to be used will be only a small burden to the
user. Perhaps it may even be a liberation not to have to think about possible
overlaps, and being able to specify the intended instance, instead of having
to set up a puzzle for the compiler, and hoping that the compiler will solve it
correctly, and in finite time.

From the examples in this and the preceding section it should be clear
that named instances together with explicit module parameter supply are a
natural remedy to the commonly perceived weakness of type classes in Haskell
98 which are, citing [5], only “well suited to overloading, with a single natural
implementation for each instance of a particular overloaded operator”. For
many applications, already this simple extension would be extremely valu-
able. However, once the basic correspondence between type class concepts
and OCaml module concepts is established, further extensions are natural
consequences of the introduction of named instances, and are discussed in the
next few sections.

4 Instance Functors

In module systems, a functor is a function taking modules as arguments,
and having other modules as results. In the dictionary translation of classes,
instances with constraints are translated into functions between dictionaries.
Since dictionaries may directly be viewed as modules, we immediately see that
such instance declarations give rise to functors.

The constraints then express the types of the arguments, and the target
class of the instance is the result type. On the whole, we get a functor type,
for which we conveniently use syntax already present in Haskell. In contrast,
module types that are not functors are called atomic.

Let us consider a facility to show lists not in the standard way with brackets

10

KAHL, SCHEFFCZYK

and commas, but with every element on a separate line:

instance ShowListUL :: Show a => Show [a] where
show xs = unlines (map show xs)

Now ShowListUL has the functor type Show a =- Show [a]. Functor appli-
cation does of course expect appropriately typed arguments, so we cannot
provide ShowListUL as an argument to show; instead we have to apply the
functor to some argument first, and then provide the result to show. For this
functor application, we also use the infix operator “#”: The functor application
“ShowListUL # ExprShowTeX” has type Show [Expr], and we may write

show # (ShowListUL # ExprShowTeX)

which has type [Expr] — String. However, we may not always be working
with a fixed, predefined functor argument, so we need module variables:

showListUL # i = show # (ShowListUL # i)
The following type is then automatically inferred:
showListUL :: Show a => [a] -> String

The case where a functor takes several module arguments at first poses a
problem, since in Haskell 98, the types of the following two instances (apart
from being named) would be considered as completely equivalent ®:

instance D1 :: (Show a, Show b) => Show (a,b) where ...
instance D2 :: (Show b, Show a) => Show (a,b) where ...

If we accepted this, then it would not be possible to give a reasonable semantics
to applications like D1 # ExprShowTeX. However, since these constraint lists
arise in a place where they are written by the programmer, we regard the order
of these lists as intentional, so the above is equivalent to specifying curried
functor types (we accept the above syntax only for backward compatibility):

instance D1 :: Show a => Show b => Show (a,b) where ...
instance D2 :: Show b => Show a => Show (a,b) where ...

5 Module Type Constraints

We now look in more detail into the problems generated by our view that
constraints in the types of functions should be considered not just as class
constraints, but as general module type constraints. The real problems come
from our desire to let these module type constraints be satisfied not only by
“module supply” via “#”, but also by anonymous “default instances” via the
conventional class system of Haskell. In effect, we design our extensions in such

5 In 4.1.4 of the Haskell 98 report, the type generalisation preorder for qualified types is
defined and implies that types differing only in constraints that are equal up to permutation
have to be considered as equivalent. Another hint in that direction is the mention of “most
general instance context” in 4.3.2.

11

KAHL, SCHEFFCZYK

a way that we do not break existing Haskell programs. On the contrary, we
enhance the reusability of existing traditional library modules by admitting
different methods of module supply for constraints, and by exposing more
constraints to user-defined module supply.

5.1 Ordered and Unordered Constraints

Consider the following type signatures and definitions as given:

f :: Eqa=>a->c > (a,c)
bs :: Eq b => [b]

g x=1f x bs

hx=(ff -> ff x bs) f

The Haskell 98 interpreter Hugs98 and the compiler GHC-4.08 derive the
typings (up to a-conversion):

g :: (Eq a, EQ b) => a > (a,[bl)
h :: (Eq b, Eq a) => a -> (a,[bl)

In contrast, the compiler nhc98 derives oppositely ordered constraints — for
other similar examples pairs where Hugs and GHC derive different orders,
nhc98 derives the same orders.

Of course, g and h are the same function, and since in Haskell 98 the two
typings are considered as equivalent, this is no problem — if explicit type
signatures are added, all three systems accept any ordering of constraints.

Since every reasonable typing discipline should obey the subject reduction
property — [-reduction can only lead to a more general type — this example
shows that the structure of an expression induces no natural ordering for
inferred constraints.

A canonical order might be achieved by orientation at the structure of
the inferred type, for example preferring (Eq a, Eq b) => a -> (a,[b])
because of the order of occurrence of the type variables in a -> (a, [b]),
but this breaks down for constraints on types that do not occur in the raw
typing. Therefore, unordered constraints are a natural result of type inference
for Haskell 98 expressions, even in their embedding into our extension.

More precisely, it is function application that forces joining of the ordered
constraints in the types of the two constituents of the application into the
unordered constraint of the type of the whole application. For reasons of
compatibility with the Haskell 98 view of constraints, it does not make sense to
have functor types in unordered constraints. Therefore, unordered constraints
may only contain atomic module types, while ordered constraints may contain
even higher-order functors. For a functor type p in the ordered constraints of
the two constituents of an application we have to apply constraint reduction
(see the next section), which is of course only possible, if the class environment
contains an anonymous default functor of a type u’ such that p and ' both
map to the same Haskell 98 functor type.

12

KAHL, SCHEFFCZYK

With the unordered polymorphic constraints of the example above, there
is no way to allow the user to direct their satisfaction separately, since any
structure M :: Eq t for any type t could satisfy both constraints.

In our extension, however, separate satisfaction of constraints can be en-
abled even in more general cases by providing explicit module arguments in
the same way as functor arguments — this is a result of considering a func-
tion with constraints in its type as an implicit functor with an anonymous
one-element result signature. So we are able to make module parameterisa-
tion explicit, and in analogy to the definition of showListUL in Sect. 4, we
now may define:

k#i#j=(#1i) (bs # j)

For this, only the type EQ a = Eq b = a — b can be inferred, so here we
have an ordered list of constraints.

Since the two effects may occur together, we have to partition the con-
straint component of types into what we are, from now on, going to call
“ordered constraints” and “unordered constraints”. As an example for the
coexistence of ordered and unordered constraints, consider the following:

k>’ #i#j xy=1t k0 z = (f # i) z (bs # j) in
if x <=y && kO x <= kO y then kO x else kO y

Here we have Eq a and Eq b in the ordered constraints, since they are associ-
ated with the module variables i and j, and in addition Ord a and Ord b in
the unordered constraints, motivated by the two occurrences of <=. Therefore,
the following typing is inferred:

k’ :: EQ a =>Eqb=>4{0rd a, Ord b} => a ->a -> b

Note that from now on we shall write unordered constraints with braces {7},
not with parentheses (). In our present design these braces, representing
the unordered (Haskell 98) constraint, clearly indicate to which part of the
constraint a module type belongs to. Therefore, unlike in Haskell 98, the
following types should then be considered as different:

ff :: Eq a => [a] -> Bool
ff’ :: {Eq a} => [a] -> Bool

However, in our investigations this difference would have noticeable conse-
quences together with a certain set of decisions concerning module type sub-
typing (see Sect. 7) that seems to be a useful compromise and is implemented
in the prototype, but will not be discussed any further in the present paper.

Without subtypes, there is a noticeable difference only inside type class
definitions:

class Foo a where
fool :: Foob =>a ->b -> Bool
foo2 :: {Foo b} => a -> b -> Bool

13

KAHL, SCHEFFCZYK

The members of this class have different types:

fool :: Foo b => {Foo a} => a -> b -> Bool
foo2 :: {Foo a, Foo b} =>a -> b -> Bool

As a result, the late binding capabilities of foo2 are much more restricted
than those of fool.

5.2 Module Supply

It is natural to allow satisfaction of module types in unordered constraints
where no ambiguity arises, such as in the following (assuming the named
instance FooChar :: Foo Char):

qi=fo02 ’c’ (i :: Int) # FooChar

This has the type {Foo Int} = Int — Bool. We may allow this because the
type of FooChar is not an instance of Foo Int.

This “automatic selection” of parameter position by actual parameters may
be generalised to the ordered constraints, allowing out-of-order #-application
to modules. This means that the first type-compatible argument position in
the ordered constraints is used, or the only type-compatible element of the
unordered constraints.

f :: Eq Int => Eq Char => Eq [Int] => Eq [Char] =>
([Int], [Int]l) -> ([Char],[Char]) -> ([Int],[Char])

MyEqLC :: Eq [Char]

-— f # MyEqLC :: Eq Int => Eq Char => Eq [Int] =>
- ([Int], [Int]l) -> ([Char], [Char]) -> ([Int], [Char])

The case of several type-compatible elements in the unordered constraints has
to be rejected as an unresolvable ambiguity.

This convention — which is in fact nothing more than syntactic sugar —
avoids having to use module variables, and thus reduces the syntactic heaviness
of supplying parameters to specific parameter positions. Although it may
seem somewhat ad-hoc, we consider this usability aspect a strong argument
in favour of including this feature — it is also relatively cheap to implement
in the type checker and in the formal design, where the details are defined
(Sect. 9). For functors, however, out-of-order application is not an option,
since it makes module type inference undecidable.

5.8 Typing Functors

Finally, we have to decide how far we take module polymorphism. Consider
the following definition:
f#k# jxy=(0==)# (k#j)xy

14

KAHL, SCHEFFCZYK

The module variable k obviously must have a functor type, but we have no
information about its argument type. Thus the inferred type for £ could be
f:: (? = Eqa) = ? = a — a — Bool — where “?” might denote a
module type variable. Since we perceive this as an over-generalisation of very
limited use, we tend to exclude module type variables from the syntax, and
not to allow definitions that imply constraints with module types in which
module type variables occur. The definition above may then be legalised by
adding an appropriate type signature.

Functors are polymorphic by nature, but Haskell’s first-order type inference
makes it impossible to use arguments at polymorphic types. Extensions in
Hugs and in GHC include the feature of rank-2-types which we adopt for our
constraints. We have shown an application of a function with a second-order
constraint in Sect. 3; here we show how such a function might be defined:

int_component :: Collection ¢ Integer => IO ()
string_component :: Collection ¢ String => I0 ()

app_main :: (forall a . Ord a => Collection ¢ a) => I0 ()
app_main # coll = do int_component # coll
string_component # coll

It would of course be more comfortable without explicit instance variables:

app_main :: (forall a . Ord a => Collection c a) => I0 ()
app_main = do int_component
string_component

This could be made possible by an extension of forcing constraint reduction,
which is discussed at the end of the next section.

There is no intrinsic restriction of this kind of polymorphism to functors;
the above example could be rewritten for Collections defined without con-
straints, for example via lists.

It would of course be most elegant if we would not have to think about
such constraints while designing the application, so we would like to have:

app_main :: (forall a . Collection ¢ a) => I0 ()

However, this cannot be directly applied to SetColl in our current system;
one would have to supply (transparently through type quantification)

instance PolyOrd :: (forall a . Ord a)
main = app_main # (SetColl # PolyOrd)

The polymorphic ordering instance might be defined via Hinze’s and Peyton
Jones’ derivable type classes [3] or Hinze’s fully polymorphic atomic instances
from [2,1].

Short of requiring such fully polymorphic ordering instances, one might
also consider polymorphism restricted to ground types generated by a limited
set of type constructors, which would allow more compile-time control:

15

KAHL, SCHEFFCZYK

appmain :: (forall a BuiltFrom {Int,Maybe,(,)} . Collection ¢ a) = I0 ()

Obviously, this area deserves further investigation.

6 Constraint Reduction

As we have seen in the previous sections, we must have a closer look at con-
straint reduction and module type instantiation. We say that a module type is
instantiated if its type variable(s) are made less polymorphic. In contrast, a
constraint is reduced if we delete one of its module types. In addition, moving
a module type from the unordered to the ordered constraint is also a kind of
constraint reduction.

The concept of how constraints are reduced and module types are instanti-
ated directly influences the use and flexibility of module type constraints. The
tradeoff to be balanced is between compatibility with Haskell 98 and the de-
sire for maximum flexibility. An eager approach to constraint reduction would
enforce ultimate compatibility, but incur a severe loss of flexibility, whereas
a “fairly lazy” approach is as flexible as possible, while only compromising
compatibility in tolerable ways. Fully lazy constraint reduction is not feasi-
ble, since it would produce ambiguous constraints and inhibit polymorphic
recursion [16].

Monomorphic Module Types

As we have seen in Sect. 2, monomorphic module types such as Monoid
Integer play an essential role when using named instances. Therefore, we
will not delete a monomorphic module type from constraints, since the user
may decide at a “later” stage which structure to choose.

In order to accept Haskell 98 programs, we have to allow constraint reduc-
tion through explicit type annotations; this will then eliminate monomorphic
module types for which a satisfaction is entailed from anonymous class in-
stances. Thus, adding for example the type signature

bar :: Int —-> Integer -> Integer

is only legal when a default instance declaration for Monoid Integer is in
scope, and then this type signature forces bar to have precisely this type.
This perfectly reflects the behaviour of Haskell 98.

Note that every compilable Haskell 98 program has at least one explicit
type annotation® main :: I0(a), which is forced by the Haskell compiler if
it is not explicitly given by the programmer — this would be the ultimate
point of forcing away delayed constraints by supplying the anonymous default
instances from the Haskell 98 class system.

6 Since the type variable a may be instantiated in the process, this is a somewhat special
case.

16

KAHL, SCHEFFCZYK

Ambiguous Constraints

As seen above, there may be problems when two module types M; and M,
in an unordered constraint are ambiguous. This is the case if there exist
substitutions #; and 6, such that 8; M; = ;M. If, according to the definition
of Peyton Jones et al. [16], M; entails M, denoted by M; I+ My, then there is
a default functor ® justifying this entailment. So we can delete the constraint
M, and supply ® # M, into the original parameter position of My. This is
the only case where automatic constraint reduction is left intact.

Of course, explicit type annotations with ordered constraints may be used
to prevent this automatic constraint reduction:

f :: Eq a = Eq [a] => [a] -> [a] -> Bool
f xs ys = (head xs) == (head ys) || (tail xs) == (tail ys)

However, we cannot allow type annotations that change ordered constraints
into unordered constraints, because ordered constraints only arise from the
use of module variables and from explicit type annotations.

Note that the definition of entailment of Peyton Jones et al. [16] also
includes superclass declarations which we regard as projection functors. Since
the problem of ambiguous constraints only involves module types related to
the same class, we do not need to include superclass projection functors in
the definition of entailment used in our context. Note further that with our
notion of automatic constraint reduction, “lonely” constraints, as for example
{Eq [al}, are always treated as irreducible.

Forcing Constraint Reduction

As we have seen in the preceding sections, we can force constraint reduction
via explicit type annotations. This will be full Haskell 98 constraint reduction
without exceptions, and it can force away only from elements of the unordered
constraints. Of course it needs to have the corresponding instance (and
class) declarations in scope.

7 Instance Subtyping and Joint Instance Declarations

According to the above, a named variant of the default Ord instance for Maybe,
with the header instance OM :: Ord a => Ord (Maybe a) would have the
type Ord a = Ord (Maybe a).

Now consider the implications of the fact that 0rd is defined as a subclass of
Eq. With the usual understanding of subclass relationships, the module type
Ord (Maybe a) should also be a subtype of the module type Eq (Maybe a).
This implies that wherever an instance of type Eq (Maybe a) can be used, an
instance of type Ord (Maybe a) should also be acceptable.

At first sight this seems to be no problem: class declarations for classes
with superclasses can be seen as containing #mplicit functor definitions for

17

KAHL, SCHEFFCZYK

projection functors from the signature of the subclass to the signatures of the
superclasses. A radical view on this subtyping relation implies that the current
definition of the class Ord is equivalent to the following expanded version:

class Ord a where
(==), (/=), k=), (), (=), (>) :: a -> a -> Bool
compare :: a —> a —> Ordering

This would then also support joint instance declarations, which have recently
been proposed in a mailing list discussion. They address mainly the following
scenario which is relevant to adaptability of library classes:

Assume a library class declaration

class C a where
ml :: a
m2 :: a
for which a user defined the following instance:

instance C Int where
ml =1
m2 = 2

Now the library undergoes some redesign, and it is decided that splitting the
class has advantages, so now we have:

class Cl a where ml :: a
class C1 a => C a where m2 :: a

But in Haskell 98, this breaks the user’s instance definition! Since C1 Int is a
supertype of C Int, the proponents of joint instance definitions propose that
the user’s instance definition should be considered as legal, because it really
defines a structure of type C Int, from which a structure of type C1 Int may
be extracted by the corresponding superclass projection functor.

In contrast, the “conventional” instance definition

instance C Int where m2 = 2

really defines an anonymous functor of type C1 Int = C Int, which is used
to construct a structure of type C Int from a previously available structure
of type C1 Int.

In the same way, our named instance from the beginning of this section
should have the type MO :: Eq (Maybe a) = Ord a = Ord (Maybe a). We tend
to put Eq first since in common understanding no instance of a subclass can
be defined before there are instances of all its superclasses. Now this is quite
counter-intuitive, but making this type explicit in the instance declaration
would fail to indicate that the Eq structure of the first argument will end up
as the Eq component of the result. Furthermore, in the presence of more than
one instance at some type we run into the same multiple-inheritance problems
as in C++ — just imagine additional class declarations as the following:

18

KAHL, SCHEFFCZYK

class Eq a => R a
class (R a, Ord a) => S a

Now we could define two joint instances for R and Ord, equipped with different
equalities, and a non-joint implicit functor for S:

instance R1 :: R Int where (==) = eql -- Rl :: R Int
instance 02 :: Ord Int where (==) = eq2 -- E2 :: Eq int
instance S1 :: S Int -- S1 :: R Int => 0Ord Int => S Int

As a result, S1 somehow contains the two different bindings eql and eq2
for the class member (==), and no sensible automatically defined projection
functor is available for using (S1 # R1 # 02) of type S Int at the subtype
Eq Int, as for example in the expression “(==) # (S1 # R1 # 02)”.

The whole topic of subtyping of module types therefore has to be treated
with great care.

From this discussion it should be obvious that joint instance definitions are
really independent from named instances and module type constraints, but we
claim that our system is a good way to explain the issues behind joint instance
definitions. This is especially so since default definitions for members in class
definitions may be considered as inducing a set of functors that turn different
subtypes of the defined class type into the complete class type. How these
default definitions are to interact with joint instance definitions is probably
much easier to analyse using our functor concept.

This problem is closely related to the problem that the identity of atomic
module types (i.e., signatures) in Haskell is defined by class name, and not
by the contained signature. From this point of view, implicit parameters are
more honest since they use anonymous module types as arguments, and an
accumulation of implicit parameter constraints may even be considered as a
multiple-member module type. However, there is no way to supply a single
multiple-member structure as an argument that instantiates all these param-
eters. Finding a better way to use “anonymous classes” would therefore be a
useful continuation of our present work.

8 Implicit Parameters

The Haskell interpreter Hugs [4] provides an experimental extension called
“implicit parameters” [13], introducing dynamic bindings. We argue that im-
plicit parameters cover a subset of the possibilities of module type constraints,
but are easier to use at least in simple cases.

A translation of the “File 10” example given by Lewis et al. [13] into
Haskell with module type constraints will naturally use zero-parameter type
classes and local instance declarations not discussed in this paper. For good
measure, we throw in a joint instance definition, used at a supertype:

19

KAHL, SCHEFFCZYK

class StdIn where stdIn :: I0 Handle
class StdOut where stdOut :: IO Handle
class {StdIn, StdOut} => StdIO

instance StdStdI0 where
stdIn = stdin
stdOut = stdout

getLine :: {StdIn } => I0 String
putStr :: {StdOut} => String -> I0 ()

session :: StdIn => StdOut => I0 ()
session = do putStr "What is your name?\n"
s <- getLine
putStr ("Hello, " ++ s ++ "!\n")

main = do h <- openFile "foo"
instance H :: MkStdOut where stdOut = h
session # StdStdIO # H

We feel that, on the one hand, the approach of module type constraints gives
much more flexibility and syntactically fits better into Haskell 98. On the other
hand, implicit parameters are easier to handle because the programmer can
use functions to modify them. Therefore, both approaches might “peacefully”
coexist in a Haskell environment.

9 A Typed M-Calculus with Named Instances

In this section we formalise named instances and module type constraints by
presenting a type system and a type inference algorithm for a small language
corresponding to the relevant extension of a subset of Haskell 98, covering
only the central aspects of our extension. We present this as a fairly standard
typed A-calculus with let-polymorphism.

9.1 Notation and Utility Functions

In this section we will introduce syntactical notations (see Fig. 1) and define
some basic functions. We follow the common notations of [13,9].

Distinguishing A-bound variables (z) from let-bound variables (p) is not
really necessary, but makes the reading of formulae easier. Module variables
have their own name space (which they share with Haskell 98 modules). Types
are constructed from type variables via the function type constructor — and
other type constructors y.

Module types are simpler than types in that there is only the functor type
constructor := (associating to the right) for producing non-atomic module
types. As noted in Sect. 5, a constraint consists of an ordered part O and
an unordered part U. The ordered part is a list of module types (and we use
Haskell list syntax), while the unordered part is a set of atomic module types.

20

KAHL, SCHEFFCZYK

Constraints are used to construct qualified types o which are then of the shape
O > U = 7. For qualified types with empty constraints we just write 7.

A Haskell 98 context I is a finite partial function associating variables from
Var with either a qualified type (QType) or a type scheme (TScheme), where
Var contains A-bound variables and let-variables. An additional context A is
provided, associating module names and module variables with module types.

A-variables T
let variables p
Terms or expressions ef,t ==z |p|izt|ef|letp=eint

Module variables MVar 4,7
Module expressions m o= 0| myg #my
Type variables a
Type constructors X
Types T o= Q|TOT|XTLTh
Class predicate symbol &

v

Module type variable

Atomic module type K{T)

Module types MType p == pl|Va.u® where a C tvars(uP)
pl = pt| (Vapd) = pl where a C tvars(ul)
ptou= g0 | =t | k() |V

Ordered constraint O == [, k]

Unordered constraint U = {p1,..-, i}

Constraint o U

Qualified type QType o == OpU=>T7

Type scheme TScheme 17 := Va.o where a C tvars(o)

Substitution 0, 6

Haskell 98 context I : Var + (QType + TScheme)

Module context A : MVar +» MType

Fig. 1. Syntax

When we write S; & Ss, this denotes the union S; U S; and additionally
expresses the fact that S; and Sy are disjoint. We write mgu(7y,72) resp.
mgu(p1, 12) to denote the most general unifier for types 7; and 75, or module
types p1 and o, respectively.

In Sect. 5 we argued that it makes sense to accept module arguments for
the first argument position expecting a matching argument type. In order
to preserve type-substitutivity, we have to make sure that no earlier position
unifies with the argument type. Therefore, we define the partial function
fstmgu that takes as arguments a constraint and a module type p. In case of
success, fstmgu returns a substitution # that instantiates p, together with the
constraint without pu.

¢ fstmgu([,ul, sy Mi—1y Mgy i1y - e e N’k] I>Ua ,LL) = ([/j’li sy i1y Bl e s ﬂ'k] >
U, 0) if = mgu(p, u;) and no p; with j < i is unifiable with u, and

21

KAHL, SCHEFFCZYK

o fstmgu(O>U @ {1}, p) = (0> U,0) if # = mgu(p, p1), and no element of
O and no other element of U is unifiable with pu.

In addition, we define delfst(O > U,u) = O' > U’ iff fstmgu(O > U, u) =
(O'>U',id).

The notation gen(I', o) is used when we want to denote the generic type
scheme resulting from “generalisation” over the type variables in o:

gen([',o) =Va.c where & = tvars(o) \ tvars(I)

Substitutions form an upper semilattice with ordering <, where 6; < 0, iff
30" e 060, = 0,. We write 0; LI 5 to denote the least upper bound of two
substitutions in this semilattice.

Finally, we need a partial function join to join two potentially complex
constraints into a single unordered constraint, if possible. Therefore, join(O; >
Ui, Oy > Uy, T) is defined iff all functor types in O; and O, are contained in
[(as representants of anonymous default instances), and then its value is the

union of U; and U, and the set containing all atomic module types from O,
and O,.

9.2 Well Typed Terms

The following type system is an extension of a standard Hindley-Milner type
system. What distinguishes it is primarily the presence of the new module
context A which keeps track of named instances. We define a term as being
well typed if and only if it may be derived by the rules in Fig. 2.
Well-typedness judgements for module expressions, resp. for terms are there-
fore of the following shapes:

AT Em:p A;THE:o

Named instances are accessed via the rule (MVar)VT. Functor application
(App,)WT is straight-forward.

The standard A-calculus rules (Var)VT (A)WT and (App)WT are “mostly
standard”, with the following exceptions:

* the A-bound variable needs to have an un-constrained type, since otherwise
the stratification between the two type systems would be destroyed, and

* application has to join ordered constraints into an unordered constraint
since ordering makes no sense here, as seen in Sect. 5.

The next four rules work on the interface between terms and module terms:
Module abstraction via the (Ay)W" rules is similar to A-abstraction, where
polymorphic module types have to be annotated. Note that the (Ax)W" rules
always include the module type of the bound module variable into the ordered
constraint. In order to include polymorphic module types smoothly into our
calculus, we must allow the instantiation of their type variables o with arbi-

22

KAHL, SCHEFFCZYK

instancei: y € A AT Firme=p ATEjim
MVar)WT 222 App., \WT
(Var)WT e:OpU=71e€Tl ()WT AT,z:mm Fe:0>Us =7

ATFe:ObU=r1 AT F (Aze): 02> Uy =71 =7

AT Fe:01>Ui =1 > 7
A;F Fe:0>Us =1 U:jOin(Ol |>U1,02|>U2,F)

A WT

(App) AT F (ered):[DU=T

e)W T AsTyi:p b e:O>U=>T u Z Yauug

#1 AT F (Agie): (uHO)>U =7
AT,i:p b e:

BRLE: iitpFe:ODU=T

AT B (Ag(inp).e): (pH0)>U =71

ATe:ODU=>1,u0€0 F i:p
AT & (e#1) :delfst(O>U,p) = 71

)WT AT F d:Va.u

(Insty AT F i [F/aln @#)™*

A;F Fu:01>pU; =7
A;Top:n B t:03Us = 1 n=gen(l,0,>U; = 71)

Let)V™
(e) A7Fl—(letp:uj-nt)02|>U2:>T2
U; = {H<T1>a .- -7H<Tn)}
AT Fe:Va.OpU=r 361,02 .01 (K(x T1...T0)) € 62U
(auto)WT U=U10U: ®{s{x7...m)} Us b (X T1 ---Tn)
ATFe:ObU U =7
(force)WT AT Fe: O Ui aUs®Us) =1 Uy UUsIkp Uz Us = {p1,.--, it

AT F (ex(O[pay---pue]) > UL = 7) s (O [pa, - ux) D UL = 7

Fig. 2. Well-typedness rules

trary types 7 via the (Insty)W" rule. Explicit “dictionary application” (#)V"

is, as discussed above, not restricted to arguments matching the first argument
type of the constraint.

(Non-recursive) let bindings are treated as usual; there is no need to add
the constraints of u to those of ¢, since they are already taken care of via the
presence of p.

The last group of rules corresponds to constraint change and constraint
reduction. “Automatic” reduction only takes place in ambiguous unordered
constraints. Note that the rule (auto)VT only applies if and only if the type
variables are polymorphic.

Automatic constraint reduction might be considered as problematic since
we may derive several different types for one term — as Haskell 98 does in a
number of cases. As an example consider f :: {Eq a, Eq [a]l} = [a]l — [a]
which has also the type {Eq a} = [a]l — [al. For this reason, type inference
can only be complete when the unordered constraint of a qualified type is
irreducible. In addition, the rule (auto)V" may only be applied (repeatedly)

23

KAHL, SCHEFFCZYK

as last steps of the derivation of the type of u in the (Let)W?' rule (that is,
top-level in binding groups). Reduction via (auto)V7T is obviously normalising
because it strictly reduces the size of the unordered constraint, and because
of transitivity of entailment.

Less problematic is constraint change through explicit type annotation,
which is denoted by “::” as usual in Haskell. There are two effects possible
here. The first is elimination of atomic module types from the unordered
constraint if they can be entailed from anonymous instances in I' and the
remaining unordered constraint. The second allows to move atomic module
types from the unordered into the ordered constraint.

9.3 Type Inference Algorithm

An only slightly more involved set of rules defines a type inference algorithm
for our system. In comparison with well-typedness judgements, type inference
judgements carry an additional substitution; this substitution and the inferred
type are the output of the algorithm, while the two contexts A and I' and the
(module) term are its input:

IR IR

0; AT iy 0;A;T Fto
We understand a type inference judgement to be a result of the algorithm if
no further derivation is possible — the rule “(auto)” would otherwise intro-
duce ambiguities. It is understood that type inference is impossible if any of
the operations used in a rule invocation is undefined. The rules of the type
inference algorithm as shown in Fig. 3 correspond to the rules in the preceding
section.

The relationship between the type system and the inference algorithm is

made precise by the following two theorems.

Theorem 9.1 (Soundness) For every (module) term judgement resulting
from the type inference algorithm, a corresponding well-typedness judgement
may be derived:
;AT Fiap = A0 - 4:p
AT Ft:0bU=17 = A Ft:0>U=r1

Theorem 9.2 (Completeness) For every well-typedness judgement not in-
volving rank-2 module types, a corresponding judgement may be derived via
the type inference algorithm:
OA; 01 = ¢y = 301,00, 1. 01; 00 F 42 g A
A = 9291A A O = 0201F N Mm = 02[1,1
24

KAHL, SCHEFFCZYK

instancei: pu € A 0; AT F i:Va.u

TI TI
(MVar) GATF g Umste) ;0T b i [/alu
A I 01; 0T F iy = p Ox; 0T F 72 po 0 =61 U605 L mgu(py, pe)
PP 0: AT F (i#]):0u
(Van)T! e:OpU=>7€T ()T ATz Fe: 03Uz =>m
iGA; T Fe:OpU=T ;AT F (Aze): 02D Uy =7 =7

01;A;F Fer:01bU1=>1—T 0:91I_|02I_Imgu(7'1,7'2)

(A)TI 02;A;F Fe:0>U = 1 U:jOin(Ol I>U1,02 |>U2,F)
PP 0: 0T F (eres) :0(>U = 1)
)T ;AT i:pbe:ODU=T i Z Ya.ug
#; 0; AT F (Agiee) s (uHO)>U =7
(o)™ ;AT i:pte:OpU=T
#:2 0; AT F (Ap(inp).e) : ([HO)>U =7
0; 0T Fe: 01U =7 (O>U,03) = fstmgu(O1 > Uy, p)
T1 O AT Fdcp 0=60,16,105
(#) ;AT F (e#i):000>U = 71)
;AT Fu:01pUr =7 n=gen(91F,01DU1=>7'1)
(Let)TI GQ;A;F,p:n Ft:0,>U5 = 1 6=06,0U0,
;AT F (letp=uint): (02> Uz = 1)
Uz = {KZ(Tl),. ..,KZ(Tn)}
;AT Fe:Va.O>U=1 301,02 .01 (k{x T1...Tn)) € 62U2
(auto)™ U=U10U:®{6{x11-.-Tn)} Us lbr 6{x 71 ...Tn)
AT Fe:ObUL U =T
(force)TI H;A;F F e:OD(U1@U2@U3)=>T Ui UU;s lkr Uy U3={;L1,...,/Lk}

0; AT F (ex:(O4pr,-- - pe]) DUL = 7) - (OH[pta,. - puk]) >UL =T

Fig. 3. Type inference rules

OA; 0 - t:o = F01,05,01. ;AT F t:or A
0A20201A A 9F=9201F A 0'2020'1

If furthermore the unordered constraint of o is irreducible wrt. (auto)V?T, then
the unordered constraint of oy is irreducible wrt. (auto)™, too.

The proofs of both theorems proceed by induction on the structure of
derivations. Note that Theorem 2 implies p; < p and o; < 0. Apart from
that, possible types o can only differ in unordered constraints of ¢. Since this
holds for all possible module types u of ¢ and all possible types 7 of ¢, the
algorithm yields the principal types for 7 and t.

B-reduction is defined as usual, and it interacts sensibly with type infer-
ence. Since ordered constraints have to be joined in expression application,

25

KAHL, SCHEFFCZYK

we obtain a weaker variant of subject reduction:

Definition 9.3 A qualified type o1 = O1 > U; = 71 is called weaker than a
qualified type o9 = Oy > Uy = 75 under context I', iff there are a substitution

f and three subsequences O,, Oy, and O, of O, such that O, is an interleaving
of O,, Oy, and O, and

97‘1 =T9 , 900 = 02 s 9(|Ou|) U 9U1 - U2 , U2 ”_I‘ 909 .

Theorem 9.4 (Subject reduction) If 0; A;T F t; : o1 holds by type in-
ference and the term t; B-reduces to another term to, then there are 6y and oo

with Oy < 0 such that oy is weaker than o1 and the type inference judgement
Oa; A; T F t9 : 09 holds.

As an aside, the above definition of the weaker than relation can also be
used to help remedy the fact that with lazier context reduction for named
instances — in the same way as with implicit parameters — user-supplied
type signatures frequently hinder adaptability of Haskell code. We propose
lax type signatures, which are to be understood as asserting a lower bound
(with respect to the above weaker than relation) on the type of the defined
entity. This implies that

f ::< forall a . (Eqa) =>a ->b

would allow any of the following:

f :: (Eq a) =>a->b

f:: (Eqa) => a -> String

f :: (0rd a) =>a ->b -- modulo entailment equivalence
f :: (Eq a, Read b) => a -> b

Forcing the user to make the forall explicit follows the guideline that these
lax type signatures enable users to enforce structure for inferred types by
explicitly providing it. Writing

f ::< exists b . (Eqga) =>a ->b

instead would rather have a taste of explicitly specifying degrees of freedom
— but it does not specify degrees of freedom in the context. For the latter,
an appropriate syntax seems to be much harder to find. Therefore, we find
the forall variant more natural.

10 Type Checking Prototype

In order to be able to experiment with our design of module type constraints,
we developed a prototype type checker. It extends the Haskell 98 type checker
“Typing Haskell in Haskell” of Mark Jones [7] with module type constraints
and performs type inference in the manner described in the preceding sections.
We mainly extended the handling of constraints and introduced user defined

26

KAHL, SCHEFFCZYK

type classes and (named) instances as well as type checking inside them. Fur-
thermore, some experimental features, as for example subtyping (see Sect. 7),
have been implemented as well as extensions that are not covered in detail by
this paper (see below).

Nevertheless, the basic features of “Typing Haskell in Haskell” have not
been compromised, and our prototype continues to accept the original exam-
ples provided by Mark Jones, and to infer their principal types. This serves
to increase our confidence that our extension is essentially conservative. The
prototype is available on the WWW 7. Further developments will also be
published at this address.

11 Conclusion and Outlook

The desire to enable later binding of Haskell type class members together with
the known analogies between the Haskell type class system and ML module
systems lead us to design an extension of Haskell comprising named instances,
explicit instance supply, instance functors and module types. This extension
incorporates a subset of Jones’ parameterised signatures, but in a way that
preserves compatibility with the Haskell 98 type class system and refrains form
giving structures first-class citizenship, so in this respect stays closer to the
separate module language of OCaml.

In addition, the desire to remain compatible to conventional Haskell leads
also to a new feature: type class constraints now have to be considered as
module type constraints and thus lead to a new class of qualified types which,
as we have seen, can be considered as closely related to the implicit parameters
of Lewis et al. [13].

Apart from this, our work is of course closely related to work on first class
module systems, most notably that by Russo [17,18]. We believe that extend-
ing our proposal towards first-class module system capabilities is a natural
step and will most probably be necessary for many uses. Nevertheless we
have intentionally left out such considerations. We consider that already our
relatively small extensions have quite far-reaching consequences both concep-
tually and from the point of view of expressive power and (re)usability, so that
it makes sense to study them in relative isolation.

The relation with work on multi-parameter classes [16] turns out to be
relatively weak — module type constraints mainly offer a way to obtain many
of the benefits of multi-parameter classes, short-circuiting a lot of the prob-
lems research has been centring around. We think that our extension may in
fact allow more exploration of library design centred around multi-parameter

classes — it would certainly have been useful in the design of the relation
algebra toolkit RATH [10].

The design we presented should not be considered as an attempt at a

" URL: http://ist.unibw-muenchen.de/Haskell/NamedInstances/
27

KAHL, SCHEFFCZYK

conclusive definition of named instance features. Instead, we tried to present
an apparently reasonable subset of non-trivial features amidst some discussion
of the decisions involved. Due to lack of space we have concentrated on the
basic idea and left out further extensions that are already implemented in our
prototype and seem to prove their usefulness. A detailed discussion will be
contained in the second author’s diploma thesis [19].

Among these extensions are notations to directly access the anonymous
default instances (via the special instance name Default) and anonymous de-
rived instances (via the special instance name Derived). The possibility to
access these instances directly makes it possible to use them as explicit func-
tor arguments. We consider furthermore the possibility to import instances
“as Default”.

A straightforward step towards first-class instances is to make their param-
eterisation via module variables possible as well as their local definition via
let or where expressions — the example in Sect. 8 shows a possible notation.

We have not discussed implementation at all — this is mainly because it
does not seem to be a serious problem. Since current Haskell implementations
of type classes rely on dictionary translation, implementing our features mostly
amounts to extending the parser and connecting it to existing features of the
implementation, which just had not been directly accessible via the user-level
language before. We intend to address this in the near future.

In summary, following through the consequences of explaining the Haskell
type system in terms of the ML module system is not quite as trivial as it
might seem at first sight. However, it enforces useful conceptual clarifications
and then gives rise to a natural extension that, in our opinion, will also be of
great value to users of Haskell.

References

[1] Ralf Hinze. A generic programming extension for Haskell. In E. Meijer, editor,
Proceedings of the 3rd Haskell Workshop, Paris, France, September 1999. Tech.
Report UU-CS-1999-28.

[2] Ralf Hinze. A new approach to generic functional programming. Technical
Report TAI-TR-99-9, Institut fiir Informatik III, Universitit Bonn, 1999.

[3] Ralf Hinze and Simon Peyton-Jones. Derivable type classes. In Haskell
Workshop 2000, September 2000.

[4] M. P. Jones and J.C. Peterson. Hugs 98 — A functional programming system
based on Haskell 98 — User Manual, 1999.

[5] Mark P. Jones. Functional programming with overloading and higher-order
polymorphism. In J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, volume 925 of LNCS, pages 97-136. Springer, 1995.

28

KAHL, SCHEFFCZYK

[6] Mark P. Jones. Using parameterized signatures to express modular strucure.
In 23rd POPL, pages 68-78. acm press, 1996.

[7] Mark P. Jones. Typing Haskell in Haskell. In Third International Haskell
Workshop 1999, 1999.

[8] Mark P. Jones. Type classes with functional dependencies. In Smolka [20],
pages 230-244.

[9] S. Peyton Jones and P. Wadler. A static semantics for Haskell. Technical
Report G12 8 QQ, University of Glasgow, 1992.

[10] Wolfram Kahl and Gunther Schmidt. Exploring (finite) Relation Algebras using
Tools written in Haskell. Technical Report 2000-02, Fakultit fiir Informatik,
Universitdt der Bundeswehr Miinchen, October 2000.

[11] Xavier Leroy. Manifest types, modules, and separate compilation. In 21th
POPL, pages 109-122. acm press, 1994.

[12] Xavier Leroy. Applicative functors and fully transparent higher-order modules.
In 22nd POPL. acm press, 1995.

[13] J. Lewis, M. Shields, E. Meijer, and J. Launchbury. Implicit parameters:
Dynamic scoping with static types. In 27th POPL. acm press, 2000.

[14] David B. MacQueen and Mads Tofte. A semantics for higher-order functors.
In Donald Sanella, editor, ESOP ’94, volume 788 of LNCS, pages 409-424.
Springer, 1994.

[15] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
1991.

[16] Simon L. Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an
exploration of the design space, 1997.

[17] Claudio V. Russo. Types For Modules. LFCS thesis ECS-LFCS-98-389,
University of Edinburgh, 1998.

[18] Claudio V. Russo. First-class structures for Standard ML. In Smolka [20],
pages 336-350.

[19] Jan Scheffczyk. Named Instances with Class in Haskell. Diploma thesis
UniBwM-ID 04/01, Fakultdt fiir Informatik, Universitit der Bundeswehr
Miinchen, 2001. See also:
http://ist.unibw-muenchen.de/Haskell /NamedInstances/.

[20] G. Smolka, editor. ESOP 2000, 10th European Symposium on Programming,
volume 1782 of LNCS. Springer, March 2000.

29

