
1

Relational Matching for Graphical Calculi of Relations

WOLFRAM KAHL

Department of Computing Science, German Armed Forces University Munich.
85577 Neubiberg, Germany

ABSTRACT

In this paper we extend an earlier approach to graphical relation calculi towards relational
matching, thus allowing proofs with fewer auxiliary steps and concentrating more on the
essential proof ideas.

For facilitating the formal argument we introduce hierarchical relational diagrams as
an intermediate structure and employ more of the algebraic graph rewriting repertoire for
defining relational rewriting of these hierarchical diagrams.

1. Introduction

Relational formalisations can be very concise and precise and can allow short,
calculational proofs under certain circumstances. Examples can be found in [16,
18, 2].

In situations corresponding to the simultaneous use of many variables in predi-
cate logic, however, either a style using predicate logic at the meta-level with point
variables has to be adopted or impractical and clumsy manipulations of tuples have
to be employed inside relation calculus. In the application of relational formalisa-
tion to term graphs with bound variables [8, 9, 12] we have been forced to employ
both methods extensively, and, independently of other approaches [3, 4], have
been driven to develop a graphical calculus for making complex relation algebraic
proofs more accessible.

In [10] we presented this graphical calculus as a formalism for relation algebraic
diagrams (graphs) with a semantics that allows interpretation of these diagrams as

2 2 MOTIVATION

relation algebraic formulae. We defined a rewriting mechanism for relational
diagrams and showed how rewriting sequences could be used as proofs. The
matching concept of the rewriting mechanism consists of — more or less standard
— functional graph homomorphisms. The rewriting mechanism itself is a variant
of the algebraic approach to graph rewriting (see [5] for a tutorial overview). This
background makes our approach more general and more flexible than the other
approaches presented in the literature [3, 4], although otherwise it does of course
share many common points with them.

In this paper we extend the approach of [10] to hierarchical diagrams and
relational matching, thus allowing proofs with fewer auxiliary steps. These proofs
therefore concentrate more on the essential proof ideas and continue the trend of
[10] of avoiding technical transformations in the proofs that only serve to prepare
more essential proof steps.

We start this paper, after some further motivation in Sect. 2,with a recapitulation
of the essential definitions from [10] in Sect. 3. We then proceed to take advantage
of the generality of these definitions for achieving an comparatively easy transition
to relational matching, presented in Sect. 4.

2. Motivation

At least for simple relational expressions that employ only intersection and com-
position of relations, it is easy to come up with a graphical representation; for
example the two sides of the inclusion���

; Θ ����� ; Θ � �	� ��� ; Θ � ; Θ

which holds whenever Θ is an equivalence relation, can be depicted as the leftmost
and rightmost graphs in the following picture (with orientation from the lower left
to the upper right):

� Θ � � Θ � ��
�� �
���

��
�

� Θ � � Θ � ��
�� �
���

� Θ � �
� ���

Θ� � � �
� . . .

� �� �
���

� Θ � �
� ���

Θ� � � �
Here � and

�
are type variables, and

�
and � are relation variables. At least for

diagrams as simple as these two, it is also obvious which relational expressions
they correspond to.

When applying such an inclusion rule ����� in a relational proof, one is never
sure whether it is safe to throw � away or whether one should keep it around, using
the inclusion ��������� , which then is in fact an equality.

2.1 Example Derivation 3

Since it is always possible to throw superfluous intersection terms away as long
as one is only interested in an inclusion, a safe policy is to keep the left-hand sides
around until it is clear that they are not needed anymore.

Therefore we chose to let the graph rule consist of the left and middle graphs
in the picture above together with the embedding between them.1

Matching of a rule into an application diagram obviously should just be another
diagram morphism, so the natural choice of rewrite mechanismis the single pushout
in the category of total diagram morphisms.2

With the example rule above, we can obtain the following rewrite step:

� Θ � � Θ � ��
 � �
���

��
� �

� Θ � � Θ � ��
 � �
���

� Θ � �
� ���

Θ� � � �

� �� � Θ � � Θ � � �
���

! "

$#&%� �

���
' (*) �+ � �

, �
- �

� �� � Θ � � Θ � � �
���

! "

.#/%� �

���
' � Θ�

� ���
Θ � (0)+ � �# % � �

1 �

2.1. Example Derivation

To show the usefulness of this approach, let us resort to an example from an
application, a part of the proof of [8, Lemma 4.2.3]. Let us assume an object 2
and relations 3 , 4 and 5 in the underlying relation algebra 6 for which the
following two rules are correct:

1Actually, the diagram rule given here is a little bit stronger than the original inclusion, in that we did
not draw an independent second “ � ”-edge, but this stronger version follows easily from the symmetry
of the equivalence relation Θ and is easier to draw.

2In a category, for three objects 7 , 8 , and 9 and two arrows : : 7<;=8 and > : 7<;?9 , a pushout is an
A

f
� B

C

�
g

j � D

h
�object @ together with two arrows A : 8B;=@ and C : 9<;=@ with : ; AEDF> ; C , such that for

every object @HG together with two arrows AIG : 8B;=@HG and CJG : 9<;=@HG with : ; AEGKDL> ; CJG
there is a unique arrow M : @N;=@ G such that A ; MED&A G and C ; MEDIC G . For an introduction
to the use of the pushout concept in graph rewriting see [5].

4 2 MOTIVATION

5 ; 3 % �O3 ; 5 %�QP �
23 R SSS T 5
2 2UUUV5
 3

2

3 ; 4 % �W4 % ; 3�XPYP �
2 4 Z 23
 3 R
2 4 � 2

For both rules we have explicitely drawn only the right hand side; the left hand sides
are the subgraphs induced by the boldened edges — as long as the rule morphism
is injective, this abbreviating method of representation is possible. (The different
layout of the two rules has been chosen for better fitting into their application below.
Furthermore note that the first rule could also have been read 3 ; 5 % �[5 % ; 3 —
the rules are valid no matter which orientation of the left-hand side is considered.)

Now, for a derivation of \ \ ;
� 3]�^4 ; 5_�`�a\ \ ;

� 3]�^4 ; 5b� ; 3 , first these
two rules are applied in order and then we restrict the result to a subgraph that is
sufficient for our purposes:

c defegefegegefe � 23
 UUUV 5
2 4 � 2

c defegeheYeheYe � 23
 UUUV 5
2 4 � 2

UUUV5
 3
2

c degefegefegefe � 23
 UUUV 5
2 4 � 23
 UUUV 5
 3
2 4 � 2

c degefegefegehe � 23

23
 UUUV 5
2 4 � 2

A standard inclusion chain for the same proof takes considerably more steps:

\ \ ;
� 3i�j4 ; 5_� (1)� \ \ ; 4 ;
� 5k�]4 % ; 3?� modal rule� \ \ ;

� 4 % �]5 ; 3 % � ; 3 l l ;V mil l , modal rule� \ \ ;
� 4 % �i3 ; 5 % � ; 3 (2): (i)� \ \ ; 3 % ;

� 5k�n3 ; 4 % � ; 3 modal rule� \ \ ;
� 5a�j4 % ; 3?� ; 3 l l ;C

% mil l , (3): (ii)� \ \ ; 4 % ;
� 3i�]4 ; 5b� ; 3 modal rule� \ \ ;

� 3i�j4 ; 5_� ; 3 l l ;V
% mil l

c defegefegefege � 23 1 R UUUV 5 1

2 4 1 � 23 3 R SSS T 5 2

 3 2

2 4 3Z 2
(On the right we have shown a different way to present the diagrammatic proof: we
draw just one graph and additionally annotate the edges with their “generation”;
we also boldened the edges needed in the result.)

2.2 Extension to Relational Matching 5

Obviously, the diagram proof is simpler and more intuitive than the linear
(term) proof. The main reason for this are the frequent “changes of point of view”
that are reflected most typically in applications of modal rules. These “changes of
point of view” together with references to many previously introduced nodes are
the main effects that make the kind of diagram proofs as seen so far (i.e., in the
manner of [10]) shorter and easier to read than linear proofs.

2.2. Extension to Relational Matching

Within the framework presented in [10], however, the following desirable rewriting
step is impossible:

� Θ � � Θ � �
UU

UV � �
�
�

� Θ � � Θ � �
UU

UV � �
 U U U�oΘ

Θ� � � �

�� �
���

Θ� Θ � �� �
���

Xp �
� � � + 3� �

�

�
�� �

���
Θ

Θ� Θ � � Θ � �� �

���

Xp �
 p

� � � + 3� � 3 � +

�

Here the edge labelled with the relation variable
�

is itself considered to be a
variable, and it is matched so-to-speak to the whole gray sub-diagram consisting
of the two edges labelled 3 and

p
.

For emulating such a rewriting step, in the absence of the � -edge the following
intermediate steps would be sufficient:q Contraction of the sub-diagram into one 3 ;

p
edgeq Rule applicationq Expansion of now two 3 ;

p
edges

In the presence of the � -edge, however, even more care has to be taken: the
sub-diagram would not be contracted but instead an additional 3 ;

p
edge created,

which would have to be removed again after rule application — in more complex
situations quite some bookkeeping would be involved in order to properly undo
all temporary modifications. Obviously an approach allowing to do all this in one
step would be much more satisfying.

6 3 BASICS

A possible direct solution to this problem might be to define relational match-
ings with several edges in the image of one edge, and then to find an appropriate
category where composition of such relational matchings is well-defined and well-
behaving; finally several correctness proofs would have to be redone for being able
to substitute relational matchings for functional matchings in the approach of [10].

This direct solution looks rather nontrivial, and a concept of relational matching
where one pattern edge is related to several (contiguous) edges in the application
graph while the nodes in-between are not related to anything is not very satisfactory.

Instead we shall adopt an indirect solution: We shall define hierarchical graphs
with whole sub-diagrams inside edge labels of other diagrams — such sub-diagrams
can be flattened via double-pushout rewriting steps. Since matchings are only used
in the vertical arrows, we can employ a heterogeneous rewriting square (related to
those of [1, 11]), and relational matchings then do not need to give rise to a category,
i.e., we need not make sure that composition of two relational matchings is again
a relational matching. For rewriting we shall introduce a stacked single pushout
rewriting step, so on the whole our approach is very modular, fitting together small
pieces, that are themselves not too complicated, into a very powerful diagram
rewriting concept.

Before we get to do this, however, we have to review the basics of [10].

3. Basics

In this section we recapitulate the basic definitions and results of [10]. We do this
in considerable detail and also provide key motivations for facilitating the access
to the remainder of the paper.

First we recapitulate the relation algebraic notation in 3.1, then we start with
simple terms in 3.2. These are then brought into the labels of relational diagrams
in 3.3, where the concepts of rules and rewriting are introduced, too. In 3.4, finally,
we deal with the correctness of our graphical calculus.

3.1. Notation

The structure we exploit in our diagram proofs is that of a locally complete unitary
pretabular allegory (LCUPA) [7], which is essentially an abstract relation algebra
in the sense of [16] (without negation), equipped with all relational products (which
are the direct products in the underlying category of total functions).

For improving understandability we shall use the more widely accepted nomen-
clature of abstract relation algebra (rather than that of LCUPAs, which is employed
by [3]) and also its notation as agreed upon in [2]. A relation algebra has at its core
a (self-dual) category with objects

�
.��
srtrtr and morphisms �u
 #
trsrtr ; we call the
morphisms relations. Composition of two relations � :

�wv � and
#

: � v 3
is written � ;

#
; the converse of a relation � :

�xv � is � % : � vy�
; the

3.2 Type and Relation Terms 7

complement (or negation) of a relation � :
�jv � is � :

�jv � ; intersection
of two relations �z
 # :

�wv � is �i� # , and their union is �|{}� ; for any object�
, the identity relation is ~ 7 ; for two objects

�
and � the universal relation is\ \ 7<� 8 , and the empty relation is � � 7<� 8 . Inclusion of � :

�jv � in
#

:
��v � ,

i.e. the fact that �i� #�� � , is denoted by ��� # .
Among the binary operators, relational composition “;” has higher priority than

union “ { ” and intersection “ � ”.
For the relational product

�j� � of two objects
�

and � , � 7B�F8 and � 7B�F8
denote the first resp. second projection mapping. For two products

��� �
and 3 � p and two relations � :

��v 3 and
#

: � v p
, the product� �z� # � :

����� ��� v�� 3 � p � of � and
#

is defined as
� �u� # � � � 7B�F8 ; � ; � %9B�F@ �� 7B�F8 ;

#
; � %9B�L@ .

The laws that are required to hold are the usual laws of relation calculus which
we do not restate here.

For a set
�

we denote the set of finite sequencesof elements of
�

with
�) . For a

function
,

: ���
, we denote the mapping of

,
to sequences by

,) : �) �) .
A sequence � � 1
trtrsr.
 ����� of objects that is itself considered as an object is

understood to be the corresponding finite product
�	�

1
���t�t������� � .

We write set-comprehensions according to the Z-notation [17], which uses
the pattern “ � signature � predicate q term � ” instead of the otherwise frequently
observed pattern “ � term � predicate � ”. So we have, for example, ��� : ���L�¡
4 q � 2 � � � 0
 1
 4
 9 ��r
3.2. Type and Relation Terms

We first introduce type terms and relation terms as the syntactic basis of our
calculus. We reuse the operator symbols introduced above, but we shall employ
“ ¢ ” for syntactical equality of terms.

Definition 3.1 A type term can be a type constant, including
c

for the unit type,
a type variable (�
 �
 �
srtrtr), a product type £ �j¤ of two type terms £ and

¤
,

or a constructor type 3 � £ 1
trsrtr.
�£ � � created from � type terms £ 1
srtrsr.
�£ � by
application of an � -ary type term constructor 3 .

Obviously, the product type could be considered as just another constructor
type, but since it has a special status here, we rather treat it separately.

A type substitution is a finite domain partial function from type variables to
type terms. Application of a type substitution is defined as usual.

Definition 3.2 A relation term of type
�jv � for two type terms

�
and � can

be q a relation constant, including ~ (if
� ¢j�), \ \ , � � , � (if there is a type term 3

such that
� ¢�� � 3), and � (if there is a type term 3 such that

� ¢¥3 � �),

8 3 BASICS

q a relation variable,q the converse � % of a relation term � of type � v¦�
(written � : � vk�

),q the negation � of a relation term � :
�wv � ,q the composition � ;

#
of two relation terms � :

�wv 3 and
#

: 3 v � ,q the intersection �i� # or the union �b{ # of two relation terms � :
�jv �

and
#

:
�wv � ,q a constructor term § � � 1
trsrtr.
¨� � � created from � relation terms �ª© by appli-

cation of an � -ary relation term constructor § , with type constraints on the�ª© depending on § .
Additionally, in any composite term, all occurrences of a relation variable must be
of the same type.

A relation substitution is a finite domain partial function from relation vari-
ables to relation terms. Application of a substitution is again defined as usual.

Finally, an atomic relational formula is either an equality � �«#
or an

inclusion ��� # for two relational terms � and
#

of the same type.

3.3. Syntax of Relational Diagrams

We now introduce relational diagrams as a special kind of labelled graphs or
hypergraphs. Although hypergraphs are of course more general, we include the
graph case for offering the reader a smoother access:

Definition 3.3 A relational diagram is a labelled directed (hyper-)graph�­¬
X®H
¨¯I
Q°±
Q²=
Q³�� with node set
¬

, edge set ® , source mapping ¯ : ®[� ¬
(resp. ¯ : ®�� ¬)), target mapping ° : ®´� ¬

(resp. ° : ®�� ¬)); furthermore² is the node labelling, assigning every node a type term, and ³ is the edge
labelling, assigning every edge a relation term of type ² � ¯ �Xµ �X� v ² � ° �Xµ �Q� (resp.²) � ¯ �Xµ �X� v ²) � ° �Xµ �X�).

All occurrences of a relation variable in the range of ³ must be of the same
type.

For any relational diagram ¶ ���­¬
X®H
¨¯·
X°±
Q²=
Q³�� we define its emptied dia-
gram as the corresponding discrete graph: ¶ 0 :

�^�g¬
.¸L
.¸L
.¸L
Q²¹
.¸±� .
Homomorphisms between relational diagrams are defined as homomorphisms

of labelled graphs with the additional possibility of substitutions in the labels:
Definition 3.4 A simple relational diagram homomorphism

,
from one

relational diagram ¶ 1 to another ¶ 2 is a pair
� , ²
 , ³ � of functions, withq , ² :

¬
1 � ¬

2,
, ³ : ® 1 �k® 2,q ¯ 2 � , ³ �Qº �Q� � , ² � ¯ 1 �Qº �Q� , ° 2 � , ³ �Qº �Q� � , ² � ° 1 �Xº �X� , or, in the case of hyper-

graphs, ¯ 2
� , ³ �Xº �X� � ,)² � ¯ 1 �Xº �X� , ° 2 � , ³ �Xº �X� � ,)² � ° 1

�Qº �Q� ,q there is a type substitution » such that ² 2
� , ² �Q¼ �X�B¢j» � ² 1

�X¼ �Q� for all nodes
¼
,q there is a relation substitution ½ with ³ 2

� , ³ �Xº �X�B¢j½ � ³ 1
�Xº �X� for all edges

º
.

3.4 Relative Correctness of the Graphical Calculus 9

,
is called plain if » and ½ can be set to empty substitutions.

For graph rules, we have an inclusion semantics “ ���O� ” in mind. Since it
is usually advisable to preserve previously established information, we arrive at a
useful rule concept with just a plain homomorphism between the rule sides:

Definition 3.5 A rule
� �k¾¿ �b��� consists of two relational diagrams � and �

together with a plain homomorphism � from � to � .

According to the definition of rules as single homomorphisms, rewriting is
defined by a single pushout construction — the difference to the single-pushout
approach of [13, 14] is that here we still consider total homomorphisms:

Definition 3.6 A rewrite step for a rule
� �k¾¿ �i��� and a relational diagram ¶

together with a homomorphism
,

from � to ¶ is the pushout

� � � �, � 1 �
¶ - � "

of � and
,

; the result diagram is the pushout object
"

.
A derivation of

"
:
� ¶ � from ¶ :

� ¶ 0 is a sequence of rewrite steps

� © � © � � ©, © � 1 © �
¶H©	À 1

- © � ¶ ©
and we let the derivation morphism be - 1 ; rtrtr ; - � .
3.4. Relative Correctness of the Graphical Calculus

When considering the meaning of a diagram, a “direction” has to be imposed from
the outside, and we use interfaces for this purpose:

Definition 3.7 An interface
�ÂÁ
	Ã�� for a relational diagram ¶ consists of a rela-

tional diagram
Á

and a homomorphism Ã from
Á 0 to ¶ , where

Á
has no isolated

nodes and exactly one edge (� ®LÄ�� � 1), which has to be labelled with a variable.
An interface

�ÅÁ
	Ã�� for ¶ can be composed with a homomorphism Æ from ¶
to
"

, yielding the interface
�ÂÁ
�Ã�� ; Æ :

�Ç�ÅÁ
	Ã ; ÆL� for
"

.

For keeping the whole approach as simple and as modular as possible, we only
concern ourselves with correctness of the graphical calculus of relations relatively
to the conventional calculus of relations. Therefore, the “semantics” of a relational
diagram when seen through an interface is a relation term of appropriate type which

10 3 BASICS

appropriately assembles the relation terms to be found as the edge labels of the
diagram in question.

Our aim is to construct such a relational expression in a canonic way — using
the laws of relational calculus with products, it always may be transformed into
equivalent expressions that may be more appealing for one or the other reason.

Below, for an example, to the left a relational diagram ¶ consisting of four
hyperedges is shown together with a three-input, one-output interface d . To the
right, we have drawn an intermediate diagram that will serve as guideline to
the construction of the semantics of ¶ under the interface d , which we call the
“readout” of ¶ along d and which we denote ¶¹È ÉtÊ . All simple edges there are
labelled with the identity ~ . Collapsing those edges returns the original diagram¶ , so the two should obviously considered as equivalent.

Ë Ì

ÍÎÏ
ÍÎÏ
ÌÐ
Ñ

Ð
Ñ
ÌÌÓÒ

Ô ÕÍ Õ
Ö

Ð

Ì
Ò Ë

Î ÏÔ
Ñ

Assuming an appropriately nested input product and using the nested-pair isomor-
phism ×IØ=ÙtÚQÚ : � �b� � � � �Û� � � � � � � � , the readout obviously has to be
equivalent to � ~�� � � ; ����×IØHÙtÚXÚ ;

� 3z�Ü~s� ;
p r

For abbreviating the formal treatment, we consider a sequence �I£ 1
trsrtr.
�£ ��� of
type terms as denoting the product term £ 1

�i�t�s�F� £ � . For the image of a set#
: Ý �	� � under a function

,
:
� �Þ� we just write

, �Â# � : Ý � ��� .
Definition 3.8 (Readout) Let a relational diagram ¶ and an interface d �^�ÂÁ
�Ã��
for ¶ with the one hyperedge

º É be given. Let �¨ß 1
trtrsr.
tß ex
�

be a sequentialisation
of the nodes of ¶ outside the range of Ã . Then let à�á � É be the following type term
representing all nodes of the interface together with all other nodes of ¶ :

à á � É : ¢�²) � Ã) � ¯ �Xº É �X�Q� � ²) � Ã) � ° �Xº É �X�X� � ²) � �¨ß 1
srtrtrX
tß ex
� �

Furthermore, let � in : à¹á � É ��²) � Ã) � ¯ �Qº É �X�Q� and � out : à¹á � É �«²) � Ã) � ° �Qº É �Q�X�
be the projections onto the source and target of the interface image. For every nodeâ�ã ¬ Ä of the interface diagram, let �Lä : à á � É �å² � Ã � â �X� be the projection onto
the component of â , and for every node sequence -?ã ¬) , let �/æ : à á � É �k²) � - �
be a projection onto the components of à á � É corresponding to - .

The readout of ¶ via d is now a relation term ¶ È É Ê with the typing

¶ È É Ê : ²) � Ã) � ¯ �Qº É �Q�X� v ²) � Ã) � ° �Qº É �Q�X��r

3.4 Relative Correctness of the Graphical Calculus 11

The readout is defined as:¶ È ÉtÊ : ¢w� %in; ç � º : ® q � � ¯tè	éQêIë ; ³ �Xº ����� °Iè	éXêIë � ; \ \��� � â
tì :
¬ ÄL� â�í� ìïîuÃ � â � � Ã � ì�� q � � ä ���/ðI� ; \ \����� out ñ

(See [10] for a discussion of the irrelevance of the choices involved.)
In the example above, the three main layers of nodes in the right diagram

obviously correspond to the input type ²) � Ã) � ¯ �Xº É �X�X� , the all-nodes type à¹á � É and
the output type ²) � Ã) � ° �Xº É �X�Q� respectively. The nodes ending the hyperedges can
be regarded as the input of \ \ in the first set component of ¶ È É Ê ; the readout is

� %123;
�X� � 23 ;

� �*� 6 � ; \ \ò� � � 16 ; �ò�*� 4 � ; \ \ò� � � 12 ; 3z�*� 5 � ; \ \ò� � � 53 ;
p �*� 3 � ; \ \`�*� 4 �

This is equivalent to

� %123;
�Q� � 1 ; � % 1 ��� 23 ;

�
; � % 6 � ; � 16 ; �w� � � 12 ; 3 ; � % 5 ��� 3 ; � % 3 � ; � 53 ;

p � ; � 4

and again (modulo nesting of the input product) to the relation term initially
proposed as readout of the example diagram. The second set component from the
readout definition is empty here, since the interface is injective; otherwise there
would be additional ~ -edges between nodes of the middle layer.

We now start considering an arbitrary set 6 of additional axioms besides those
for relation algebras with products, mainly for additional relation constants and
relation term constructors. Since we have reserved the symbol “ ¢ ” for syntactic
equality of terms, we can use “

�
” and “ � ” freely for forming formulae. We shall

write “6Wóò� �Ç# ” resp. “6[ó}��� # ” if the respective equality or inclusion can
be derived using the axioms in 6 and those of relation algebras with products.

An important result about the readout construction is that plain homomorphisms
can only decrease the semantics.

Theorem 3.9 6aój¶ È É ; ô Ê � � È É Ê holds for every interface d for � and every
plain homomorphism Æ from � to ¶ .

Accordingly, for every interface d for ¶ and every subgraph � of ¶ with
natural injection Æ , whenever Ã �ÅÁ 0 �öõ�Æ � � � then 6[ó|¶¹È ÉsÊï� � È É ; ô·÷ 1 Ê .

Based on the readout, the appropriate concept of admissibility of rules is the
following:

Definition 3.10 A rule
� � ¾¿ �i��� is correct if for all interfaces

�ÂÁ
�Ã�� for � ,

6øó�� È è Ä � CJë Ê � � È è Ä � C ; ¾ ë Ê r
It is not difficult to construct concrete rules where this equality holds for some
interfaces, but not for others, and where application of these rules leads to invalid
proofs. This equality is, however, guaranteed to hold for all interfaces for �
whenever it holds for any interface

�ÅÁ
�Ã�� for � where Ã is surjective on the nodes.

12 4 HIERARCHICAL DIAGRAMS AND RELATIONAL MATCHING

The central result of [10] is that application of correct rules yields derivations which
preserve the semantics of the readout of any interface into the starting diagram:

Theorem 3.11 Let an interface
�ÅÁ
	Ã�� for a relational diagram ¶ and

� � ¾¿ �b��� with
a matching homomorphism

,
from � to ¶ be given, and consider the rewriting

step yielding the pushout object
"

and the homomorphism - from ¶ to
"

, then
we have 6¥ó|¶ È è Ä � CJë Ê � " È è Ä � C ; æ ë Ê .

Accordingly, for every interface
�ÅÁ
�Ã�� for the starting diagram ¶ of a derivation

from ¶ to
"

with derivation morphism ½ , we have 6�ói¶ È è Ä � CJë Ê � " È è Ä � C ; ù ë Ê .
With all this, the natural strategy for finding a proof of the inclusion formula�ú� #

as a graph derivation on relational diagrams, as already applied in the
example in 2.1, is the following:

i) Construct a diagram ¶ with an interface
�ÂÁ
�Ã�� such that 6[ó�� � ¶ È è Ä � CJë Ê .

ii) Suitably derive
"

from ¶ with derivation morphism ½ .

iii) Factorise ½ into plain homomorphisms ½ c from ¶ to a suitable diagram
" c

and Æ from
" c

to
"

iv) Recognise
" c

as a diagram with 6¥ó #�� " c È è Ä � C G ë Ê where Ã cû� Ã ; ½ c .
Only in rare cases the full derivation result

"
will be needed (yielding an equality);

usually only an inclusion is required anyway.

4. Hierarchical Diagrams and Relational Matching

The idea of relational matching for our diagrams is that variable-labelled hyper-
edges in the rule can be matched not only to single hyperedges in the application
diagram, but to whole sub-diagrams.

For being able to properly define relational matching and rewriting based
on relational matching, we use the trick to employ hierarchical diagrams as an
intermediate structure. For this purpose, the generality of our previous definitions
comes in extremely handy, and more of the repertoire of algebraic graph rewriting
can be employed in a very natural manner.

Definition 4.1 A pointed diagram of type
�wv � is a pair

� ¶u
 �ÅÁ
�Ã��Q� consisting
of a diagram ¶ together with an interface

�ÂÁ
�Ã�� for ¶ (with the one hyperedgeº É), if
� ¢w²) � Ã) � ¯ �Qº É �Q�X� and �Ç¢�²) � Ã) � ° �Xº É �Q�X� .

As an example we show the left-hand side of the rule from Sect. 2 as a pointed
diagram: � Θ � � Θ � � � q
 � � �

���
� ü ü ü ü

ü ü&ýÁ� � q

13

Here
Á

consists of the whole graph induced by the edge labelled “
Á
” in the drawing;

the dotted arrows represent Ã .
From now on we consider the definition 3.2 of relation terms of type

��v � to
be extended to include pointed diagrams of type

��v � . We call a relation term
that may contain pointed diagrams as some subterms an extended relation term
while the original version will be called simple relation term.

As an example extended relation term we insert the pointed diagram from above
into some context:

�	� �
� Θ � � Θ � ��
 � �

���
�ü ü ü ü

ü ü&ýÁ� � % ; 3

Here we have drawn the interface edge directly into the diagram; this is more
concise and — as long as Ã is injective — does not obscure any relevant information.

This gives of course rise to a mutual recursion between relation terms and the
relational diagrams of Def. 3.3, which are now hierarchical diagrams.

In the next example, a pointed diagram occurs inside a relation term labelling
an edge of the diagram under consideration:

�
�	� �

� Θ � � Θ � ��
 � �
���

�ü ü ü ü
ü ü&ýÁ� � % ; 3

� + þ ��ÿ
The readout of Def. 3.8 now in general only yields an extended relation term;
therefore we introduce another concept that maps any extended relation term to a
corresponding simple relation term:

Definition 4.2 The unfolding of an extended relation term � , denoted � ����� � , is
defined as follows:q if � is a relation constant or relation variable, then � ����� � : ¢�� ,q � ��� % � � : ¢�� ����� � % and � � ��� � : ¢ � ����� � ,q for � ã � ;
.�H
¨{ö� we let � �	�
���
� � : ¢�� ����� ����� �	��� � ,q if § is an � -ary relation term constructor, then

� �h§ � � 1
trsrtr.
�� � ��� � : ¢Ç§ � � ��� 1 � �X
srtrsrQ
�� ��� � � �	��
q for every pointed diagram
� ¶u
 d � we let � � � ¶u
 d ��� � : ¢�� ��¶ È É Ê � � .

14 4 HIERARCHICAL DIAGRAMS AND RELATIONAL MATCHING

We extend the concept to arbitrary hierarchical diagrams by letting the vector
interface for ¶ , written � á , be defined as the interface consisting of all nodes
of ¶ and one hyperedge with empty source and all nodes as targets, and we let
the unfolding of an arbitrary diagram be the unfolding along its vector interface:
� ��¶�� � : ¢�� � � ¶z
�� á ��� � .

Actually, in the definition 3.8 of the readout, the first factor of the intersection
exactly corresponds to � ��¶�� � % , a fact that we shall use below for Theorem 4.3.

The substitution concept for relational diagrams need not be adapted at all, and
the homomorphism concept can be carried over, too, without any adjustment. One
might have the impression that it would be sufficient to have sub-diagrams at deeper
levels in the hierarchy only related with homomorphisms instead of with substitu-
tions, but since this would make strong assumptions about the monotonicity of the
operators involved in constructing relation terms containing such sub-diagrams,
which are obviously violated already by negation, we cannot in general allow this.
So we use the homomorphism definition 3.4 without any change.

The importance of the unfolding of diagrams as defined via the vector interface
lies in the following fact:

Theorem 4.3 For every two hierarchical relation diagrams ¶ and
"

with a
plain homomorphism Æ in-between, if 6åó�� ��¶�� � � � � � "
��Bá ; ÆL��� � , then for every
interface d for ¶ we have 6[ó�� � � ¶u
 d ��� � � � � � "
 d ; ÆL��� � .
Proof: The proof relies on the fact that d corresponds to two projections � É and� É from the all-nodes-type to the respective input and output types of d . Then the
central line of reasoning can sloppily be summarised as follows (let d c :

� d ; Æ):
6 ó�� � � ¶z
 d ��� � � � � %É ��\ \ ;� ��¶�� �Y� ; � É � � � %É G ��\ \ ;� � � "
��Bá ; ÆL��� �	� ; � É G� � � � "
 d c ��� � � � � � "
 d ; ÆL��� �

In simple cases, the hierarchical structure introduced above can be flattened imme-
diately:

Definition 4.4 Let a relational diagram ¶ with an edge
µ

labelled with the pointed
diagram

� "
 �ÂÁ
�Ã��X� be given, and let
º É be the single hyperedge of

Á
.Á P� Á

0 Ã � "
Æ � P�c � � �
¶ �� ¶ c - � ¶ cKc

Let ¶ c be the pushout-complement of the embed-
ding

P
of
Á 0 into

Á
and of the injective homomorphismÆ from

Á
to ¶ mapping

º É onto
µ
. ¶ c is just ¶ without

the edge
µ
, and � ² is therefore the identity on nodes, and� ³ is a natural injection on edges.

The direct flattening ¶ cKc of
µ

is then the pushout of Ã and of the morphism
P�c

from
Á 0 to ¶ c resulting from the pushout-complement construction above.

In one word, ¶ cKc results from ¶ by a double-pushout rewriting step with
the rule

Á ©� Á 0 C � " and with the matching Æ . The direct flattening pair,
:
� � , ²
 , ³ � for ¶ and

µ
consists of

, ² :
� � %² ; - ² , which is a total function from

15

the nodes of ¶ to those of ¶ cKc , and
, ³ :
� � %³ ; - ³ {�� µ � � � º : ®
� q � ³ �Xº �.� , which

is a relation relating edges in ¶ apart from
µ

to the corresponding edges in ¶ cKc and
relating

µ
to all edges in the flattened image of

"
.

A direct flattening is called trivial if
, ³ is a function, too.

The double-pushout rewriting step that is so-to-speak “remembered” in edges that
are labelled with pointed diagrams makes our hierarchic diagrams quite similar
to the multi-level graphs of [15]. There arbitrary interfaces are possible, while
here we have restricted the interfaces to single hyperedges. The advantage of our
approach, however, is that the application morphisms for the rules need not be
remembered separately since they are “built-in” into the labelling.

Below we show a full-blown example of the double-pushout rewriting step in
a direct flattening:

�
ü ü ü ü

ü ü&ý
V

�
� P �

�
Ã �

 Θ � Θ �

A
� � ���

B!

!

 Θ � Θ � � �

A
� � ���

B ü ü ü ü
ü ü&ý

I! � � �

� B

R �#"Q�

Æ �

� P !

� B

R �$"Q�

P�c
�

Ã �
 Θ � Θ �

A
� � ���

B! Q

�� B
 R � "

� �

Definition 4.5 A diagram ¶ 1 is a general flattening of a diagram ¶ 2, if there is
a diagram ¶ c2 resulting from ¶ 2 by a series of direct non-trivial flattenings, such
that there is a surjective plain homomorphism - from ¶ c2 to ¶ 1. The composi-
tion

,
1 ;
�t�s�

;
, ô ; - of the individual direct flattening pairs

,
1
trtrsr.
 , ô with - is called

the flattening pair for the general flattening of ¶ 2 to ¶ 1; the surjective plain
homomorphism - is also called the suffix of the general flattening.¶ 2 is also called a general unflattening of ¶ 1.

The rôle of - here is to make sharing of previously hierarchical parts possible.
More precisely, it allows to use parts of the original graph ¶ 1 in more than one

16 4 HIERARCHICAL DIAGRAMS AND RELATIONAL MATCHING

place in an unflattening ¶ 2, for example once in its top-level structure and one or
more times in lower levels.

In the following example, after the direct flattening from above a suffix homo-
morphism identifies the two � -edges:

!

 Θ � Θ � � �
 A�
���
B ü ü ü ü

ü&ý
I! � � �

� B

R �$"Q�
dir. flat.�

 Θ � Θ �

A
� � ���

B! Q �� B
 R � "

suffix�
 Θ � Θ �

A
� � ���

B

U U U�o
R

Q �
! "

While any sequence of direct flattenings preserves semantics, a general flattening
needs not do so because of the identifications of nodes resulting from the overlay- tucked onto the end. Nevertheless, we shall have a use for general flattenings.

Definition 4.6 A relational matching from a relational diagram ¶ to another
diagram

"
is a pair

, �[� , ²
 , ³ � consisting of a total function
, ² :

¬ á � ¬ �
between the node sets and a relation

, ³ : ® á v ®
� between the edge sets of ¶
and

"
, such that there exist a general unflattening

" c
of
"

with flattening pair %
and a simple homomorphism 1 from ¶ to

" c
with

, � 1 ; % .
If
" c

is the limit of all such factorisations, then
� 1
�%û� is called the canonical

factorisation of & . ¶ U U U�o1
' ' ' ' ' ' ')(

1 c
,
�

" c ! �� " cKc���
! %

üüüüüüü * % c"

To be precise, for this limit to exist we have to restrict
the flattenings considered to those that can be regarded
as “induced” by the edge relation

, ³ .
We now shall use this canonical factorisation of

relational matchings for defining a rewrite step for a
functional rule (as before) with a relational matching
from the left-hand side into the application diagram:

Definition 4.7 A relational rewrite step for a rule
� � ¾¿ �i��� and a relational

diagram ¶ together with a relational matching
,

from � to ¶ is constructed as
follows: Let

� , c
.ÆL� be the canonical factorisation of
,

via ¶ c , and let
" c

be the
result of the simple rewrite step for

� � ¾¿ �i��� and
, c

with rewrite morphism - . LetÆ � Æ c ; + the factorisation of Æ into direct flattenings Æ c : ¶ c � ¶ cKc and the final
overlay + : ¶ cKc � ¶ , then construct

" cKc
as the result of transferring the direct

flattenings Æ c to " c — this means to re-flatten the redex — and finally construct
"

,
the result of the rewriting step, as the pushout of + and the appropriately transferred
rewrite morphism - c — this means to re-introduce the sharing between intermediate
sub-diagrams and other nodes.

17

� � � �
matching homomorphism

, c � pushout �
¶ c - � " c

direct flattenings

,

- �

, Æ c � transfer �
¶ cKc - c � " cKc

plain surjective suffix + � pushout �
¶ - cKc � "

Correctness of this rewriting step relies essentially on the fact that rules are just
plain homomorphisms and rule application via total single pushouts can only add
and identify items, but never delete items. Nevertheless it is interesting that this
rewrite step is still correct although there are two overlays involved — the crucial
point is that exactly the original sharing is re-established by the final pushout.

Theorem 4.8 In the relational rewriting step described above, we have

6øó�� �	¶.� � � � � � "
��Bá ; - cKc �/� � r
Proof: The key to the proof lies in the fact that the unfolding of the diagram ¶ (with
all the sharing) can be written in the shape of an intersection, 6øó�� �	¶.� � � � c �|3 ,
where � c corresponds to an instance of the unfolding of the rule’s left-hand side
and 3 is the remaining context. We have for a suitable product with projections �
and � that

6¥óÛ� c �i3 �Ç� � c ; � % �|3 ; � % ��\ \ ;
� � % �Û� % �X� ; �¥r

For the unfolding of the unshared diagram ¶ cKc we then have (informally and sim-
plifyingly assuming that the vector interfaces make all the unfoldings compatible)

6øó�� ��¶ cKc � � � � �	¶ c � � �^� � c ; � % �|3 ; � % � ; �
(for the sake of simplicity we also assume an unsharing tearing off the image of� at all nodes). The conventional rewrite step uses 6 ój� � � for obtaining6[ó�� cû� � c and therewith:

6[ó�� �	¶ cKc � � � � ��¶ c � � �^� � c ; � % �|3 ; � % � ; � �^� � c ; � % �|3 ; � % � ; � � � � " c � � � � � " cKc � �

18 REFERENCES

The construction of
"

from
" cKc

via reinstating the sharing lets the unfolding of
"

be (still with the simplifying assumption about the vector interfaces)

6[ó�� � � "
��Bá ; - cKc ��� � �^� � c ; � % �|3 ; � % ��\ \ ;
� � % �Û� % �X� ; � � � c �|3«r

Thus 6[ó�� c � � c also justifies the whole relational rewrite step.

In the usual case it will probably useful to flatten any newly created flattenable
hyperedges in the final rewriting result — this obviously does not influence the
correctness. Only then we would obtain the example rewriting step in 2.2 directly
as a relational rewriting step.

This formalisation of a relational rewrite step may at first look somewhat
involved, but its advantage is that we did not have to introduce many new concepts
in order to arrive at this formalisation. It is also pretty close to the steps that would
have to be taken by an interactive proof assistant anyway.

5. Outlook and Conclusion

In this paper, we have extended the graphical calculus of relations in the shape
introduced in [10] to the ability to cope with relational matchings for applying
rules, or equivalently, to the possibility to have variable edge labels in rule sides
match to whole sub-diagrams. This brings about a considerable shortening and
simplification of proofs by hiding the technicalities. Thus a stronger emphasis on
the key steps of a proof is reached.

We have so far only considered rather simple unflattening for the purpose of
making rules applicable — just enough to yield a reasonable concept of derivations
with relational matching.

It would of course be interesting what other operations — in a loose analogy
to for example AC-matching — would make sense in order to get an even more
general grip on derivation steps, and how that would bring us closer to the goal of
freeing proofs from technicalities and concentrate on the essential ideas instead.

Another question that arises in this context is how to present proofs that have
been arrived at in such a powerful graphical calculus. For this, and also for
making the procedure of finding proofs more reliable, some tool support would be
extremely helpful.

References

1. R. BANACH. Term Graph Rewriting and Garbage Collection using Opfibrations. The-
oretical Computer Science 131 29–94, 1994.

2. C. BRINK, W. KAHL, G. SCHMIDT, eds. Relational Methods in Computer Science.
Advances in Computing. Springer-Verlag, Wien, New York, 1997.

REFERENCES 19

3. C. BROWN, G. HUTTON. Categories, Allegories and Circuit Design. In: Proceedings,
Ninth Annual IEEE Symposium on Logic in Computer Science, pp. 372–381, Paris,
France, 1994. IEEE Computer Society Press.

4. S. CURTIS, G. LOWE. A Graphical Calculus. In B. MÖLLER, ed., Mathematics of Pro-
gram Construction, Third International Conference, MPC ’95, Kloster Irsee, Germany,
July 1995, LNCS 947, pp. 214–231. Springer Verlag, 1995.

5. H. EHRIG, M. KORFF, M. LÖWE. Tutorial Introduction to the Algebraic Approach of
Graph Grammars Based on Double and Single Pushouts. In [6], pp. 24–37.

6. H. EHRIG, H.-J. KREOWSKI, G. ROZENBERG, eds. Graph-Grammars and Their Appli-
cation to Computer Science, 4th International Workshop, Lecture Notes in Computer
Science 532, Bremen, Germany, 1990. Springer-Verlag.

7. P. J. FREYD, A. SCEDROV. Categories, Allegories, North-Holland Mathematical Library
39. North-Holland, Amsterdam, 1990.

8. W. KAHL. Kategorien von Termgraphenmit gebundenenVariablen. Technischer Bericht
9503, Fakultät für Informatik, Universität der Bundeswehr München, 1995.

9. W. KAHL. Algebraische Termgraphersetzung mit gebundenen Variablen. Reihe Infor-
matik. Herbert Utz Verlag Wissenschaft, München, 1996. ISBN 3-931327-60-4; also
doctoral dissertation at Fakultät für Informatik, Universität der Bundeswehr München.

10. W. KAHL. Algebraic Graph Derivations for Graphical Calculi. In F. D’AMORE,
P. G. FRANCIOSA, A. MARCHETTI-SPACCAMELA, eds., Graph Theoretic Concepts in
Computer Science, 22nd International Workshop, WG ’96, Caddenabbia, Italy, June
1996, Proceedings, LNCS 1197, pp. 224–238. Springer-Verlag, 1997.

11. W. KAHL. A Fibred Approach to Rewriting — How the Duality between Adding and
Deleting Cooperates with the Difference between Matching and Rewriting. Technical
Report 9702, Fakultät für Informatik, Universität der Bundeswehr München, 1997.

12. W. KAHL. Relational Treatment of Term Graphs With Bound Variables. Journal of the
IGPL 6 259–303, 1998.

13. R. KENNAWAY. Graph Rewriting in Some Categories of Partial Morphisms. In [6], pp.
490–504.

14. M. LÖWE. Algebraic Approach to Graph transformation Based on Single Pushout
Derivations. Technical Report 90/05, TU Berlin, 1990.

15. F. PARISI-PRESICCE, G. PIERSANTI. Multilevel Graph Grammars. In E. W. MAYR,
G. SCHMIDT, G. TINHOFER, eds., Proc. 20th International Workshop on Graph-Theoretic
Concepts in Computer Science, LNCS 903. Springer-Verlag, 1995.

16. G. SCHMIDT, T. STRÖHLEIN. Relations and Graphs, DiscreteMathematics for Computer
Scientists. EATCS-Monographs on Theoretical Computer Science. Springer Verlag,
1993.

17. J. M. SPIVEY. The Z Notation: A Reference Manual. Prentice Hall International Series
in Computer Science. Prentice Hall, 1989.

18. H. ZIERER. Relation-Algebraic Domain Constructions. Theoretical Computer Science
87 163–188, 1991.

