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ABSTRACT

Inthispaper weextend an earlier approach to graphical relation cal culi towardsrel ational
matching, thus allowing proofs with fewer auxiliary steps and concentrating more on the
essential proof ideas.

For facilitating the formal argument we introduce hierarchical relational diagrams as
an intermediate structure and employ more of the algebraic graph rewriting repertoire for
defining relational rewriting of these hierarchical diagrams.

1. Introduction

Relational formalisations can be very concise and precise and can alow short,
calculational proofs under certain circumstances. Examples can be found in [16,
18, 2].

In situations corresponding to the simultaneous use of many variablesin predi-
catelogic, however, either astyle using predicate logic at the meta-level with point
variables hasto be adopted or impractical and clumsy manipulations of tupleshave
to be employed inside relation calculus. In the application of relational formalisa-
tion to term graphs with bound variables|[8, 9, 12] we have been forced to employ
both methods extensively, and, independently of other approaches [3, 4], have
been driven to develop agraphical calculusfor making complex relation algebraic
proofs more accessible.

In[10] wepresented thisgraphical calculusasaformalismfor relation algebraic
diagrams (graphs) with a semantics that allows interpretation of these diagrams as
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relation algebraic formulae. We defined a rewriting mechanism for relational
diagrams and showed how rewriting sequences could be used as proofs. The
matching concept of the rewriting mechanism consists of — more or less standard
— functional graph homomorphisms. The rewriting mechanism itself is a variant
of the algebraic approach to graph rewriting (see [5] for atutorial overview). This
background makes our approach more general and more flexible than the other
approaches presented in the literature [3, 4], athough otherwise it does of course
share many common points with them.

In this paper we extend the approach of [10] to hierarchical diagrams and
relational matching, thus allowing proofswith fewer auxiliary steps. These proofs
therefore concentrate more on the essential proof ideas and continue the trend of
[10] of avoiding technical transformations in the proofs that only serve to prepare
more essentia proof steps.

Westart this paper, after somefurther motivationin Sect. 2, with arecapitulation
of the essential definitionsfrom [10] in Sect. 3. Wethen proceed to take advantage
of the generality of these definitionsfor achieving an comparatively easy transition
to relational matching, presented in Sect. 4.

2. Motivation

At least for simple relational expressions that employ only intersection and com-
position of relations, it is easy to come up with a graphical representation; for
example the two sides of theinclusion

(Ai®@MB);OLC (AN B:O);0

which holds whenever @ is an equivalencerelation, can be depicted asthe leftmost
and rightmost graphs in the following picture (with orientation from the lower left
to the upper right):

3-9,5_9,3 39,5 ©,p 3 3
AT% — Ay’@y - %’@ly
a a” A, p a4, 3

Here a and 5 are type variables, and A and B are relation variables. At least for
diagrams as simple as these two, it is also obvious which relational expressions
they correspond to.

When applying such aninclusionrule . C R inarelationa proof, oneis never
surewhether it is safe to throw L away or whether one should keep it around, using
theinclusion L C LM R, whichthenisin fact an equality.
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Sinceit isalwayspossibleto throw superfluousintersection termsaway aslong
asoneisonly interested in an inclusion, a safe policy isto keep the left-hand sides
around until it is clear that they are not needed anymore.

Therefore we chose to let the graph rule consist of the left and middle graphs
in the picture above together with the embedding between them.*

Matching of aruleinto an application diagram obviously shouldjust be another
diagram morphism, so the natural choice of rewrite mechanismisthesingle pushout
in the category of total diagram morphisms.?

With the example rule above, we can obtain the following rewrite step:

39,5 9, 3-9,5_9©,p3
A% _r . A%éy(
a a” A, 3

f gl

2.1. ExampleDerivation

To show the usefulness of this approach, let us resort to an example from an
application, a part of the proof of [8, Lemma 4.2.3]. Let us assume an object O
and relations C', V and W in the underlying relation algebra R for which the
following two rules are correct:

1Actually, the diagram rule given hereisalittle bit stronger than the original inclusion, in that we did
not draw an independent second “ B”-edge, but this stronger version follows easily from the symmetry
of the equivalencerelation © and is easier to draw.

2|n acategory, for three objects A, B, and ¢ and two arrows f:A— B and g:A—s C, apushout isan
object D together with two arrows h:B—D and j:C—D with f;h=g,j, suchthatfor A — B
every object D’ together with two arrows h:B—D’ and j':C—+D' with fih'=g;5'
thereisaunique arrow »:D — D' such that h;u=h' and j;u=5'. For an introduction lg hl
to the use of the pushout concept in graph rewriting see [5]. C _J, D



4 2 MOTIVATION

0
o \ow 050
WiC“C CiW” C:V C V™ C
o o . CT
(2) C (u2)
W T o—-Y.0

For both ruleswe have explicitely drawn only theright hand side; theleft hand sides
are the subgraphs induced by the boldened edges — as long as the rule morphism
isinjective, this abbreviating method of representation is possible. (The different
layout of thetwo ruleshas been chosenfor better fittinginto their application below.
Furthermore notethat thefirst rule could also havebeenread C; W™ C W75 C —
the rules are valid no matter which orientation of the left-hand side is considered.)

Now, for aderivationof T,(C N V:W) E Ty(C N V:W);C, first these
two rules are applied in order and then we restrict the result to a subgraph that is
sufficient for our purposes:

1-.L.,.0 1-L,.0 1-.L.0 1-.L.0
C w c w c ‘% c
0o—-Yro0 0—-Yr0 0—Yr0 0
\Tc c \WTC c ‘W
w
0 00 0-Y>0
A standard inclusion chain for the same proof takes considerably more steps:
T(CNV:W) (1) T
C T:V(WnNvVc) modal rule 50
C TV nw:.c:C T:VE T, moda rule Cy ‘\Wl
C TV nc:w:C 2: () 0O %) 0
C T:Ccy(wnc:v):C modal rule
C T(WRvV~c):C T:C"C T, @) (i) Cs ‘\WZTCZ
C T:vienviw):c modal rule V3
C Ty{Ccnv:iw):C TV CET 0 0

(Ontheright we have shown adifferent way to present the diagrammatic proof: we
draw just one graph and additionally annotate the edges with their “generation”;
we &l so boldened the edges needed in the result.)
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Obvioudly, the diagram proof is smpler and more intuitive than the linear
(term) proof. The main reason for this are the frequent “ changes of point of view”
that are reflected most typically in applications of modal rules. These “changes of
point of view” together with references to many previously introduced nodes are
the main effects that make the kind of diagram proofs as seen so far (i.e, in the
manner of [10]) shorter and easier to read than linear proofs.

2.2. Extensionto Relational Matching

Within theframework presentedin [10], however, the following desirable rewriting
step isimpossible:

39,5 9,5 39,3 9,5
©
‘1\\% - ‘1\\BI\I®
a a—l-ﬁ
| ’ | 5
4 P
3.9, - 39,3706, 5
/[D BT /[D BT D[
v B, . C a v R, s C 6 Oy

Here the edge labelled with the relation variable A is itself considered to be a
variable, and it is matched so-to-speak to the whole gray sub-diagram consisting
of the two edgeslabelled C and D.

For emulating such arewriting step, in the absence of the R-edge the following
intermediate steps would be sufficient:

o Contraction of the sub-diagram into one C'; D edge
¢ Ruleapplication
¢ Expansion of now two C'; D edges

In the presence of the R-edge, however, even more care has to be taken: the
sub-diagram would not be contracted but instead an additional C'; D edge created,
which would have to be removed again after rule application — in more complex
situations quite some bookkeeping would be involved in order to properly undo
all temporary modifications. Obviously an approach alowing to do all thisin one
step would be much more satisfying.
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A possible direct solution to this problem might be to define relational match-
ings with several edges in the image of one edge, and then to find an appropriate
category where composition of such relational matchingsiswell-defined and well-
behaving; finally several correctness proofswould have to be redone for being able
to substitute relational matchingsfor functional matchingsin the approach of [10].

Thisdirect solutionlooksrather nontrivial, and aconcept of relational matching
where one pattern edge is related to several (contiguous) edges in the application
graph whilethe nodesin-between are not rel ated to anything isnot very satisfactory.

Instead we shall adopt anindirect solution: We shall definehierarchical graphs
with whole sub-diagramsinside edgelabel sof other diagrams— such sub-diagrams
can beflattened via double-pushout rewriting steps. Since matchingsare only used
in the vertical arrows, we can employ a heterogeneous rewriting square (related to
thoseof [1, 11]), and relational matchingsthen do not need to giveriseto acategory,
i.e., we need not make sure that composition of two relational matchingsis again
arelational matching. For rewriting we shall introduce a stacked single pushout
rewriting step, so on the whole our approach is very modular, fitting together small
pieces, that are themselves not too complicated, into a very powerful diagram
rewriting concept.

Before we get to do this, however, we have to review the basics of [10].

3. Basics

In this section we recapitul ate the basic definitions and results of [10]. We do this
in considerable detail and also provide key motivations for facilitating the access
to the remainder of the paper.

First we recapitul ate the relation algebraic notation in 3.1, then we start with
simpletermsin 3.2. These are then brought into the labels of relational diagrams
in 3.3, where the concepts of rulesand rewriting areintroduced, too. In 3.4, finaly,
we deal with the correctness of our graphical calculus.

3.1. Notation

The structure we expl it in our diagram proofsisthat of alocally complete unitary
pretabular allegory (LCUPA) [7], which is essentially an abstract relation algebra
inthe sense of [16] (without negation), equippedwith al relational products (which
are the direct products in the underlying category of total functions).

For improving understandability we shall use the morewidely accepted nomen-
clature of abstract relation algebra (rather than that of LCUPAS, which isemployed
by [3]) and alsoits notation asagreed uponin [2]. A relation algebrahas at its core
a (self-dual) category with objects 4, B, ... and morphisms R, S, . . .; wecal the
morphismsrelations. Composition of tworelationsR: A« BandS : B « C
is written R;S; the converse of arelation R : A <+ BisR™ : B <« A; the
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complement (or negation) of arelation R : A < B isR : A « B; intersection
of tworelations R, S : A «+» BisRM S, and their union is R LI B; for any object
A, the identity relation is 1 4; for two objects A and B the universal relation is
T 4.8, andthe empty relationis L 4 5. Inclusionof R: A« BinS: A& B,
i.e.thefactthat RM S = R,isdenotedby R C S.

Among the binary operators, relational composition“;” has higher priority than
union “UJ" and intersection “r”.

For the relational product A x B of two objects A and B, 7, , andp, .
denote the first resp. second projection mapping. For two products A x B
and C x D and two relations R : A «& C and S : B < D, the product

(R[|S) : (Ax B) & (Cx D) of Rand Sisdefinedas(R|[|S) = m, g Rim, Tl

Pax B ;S;pCXD.

The lawsthat are required to hold are the usual laws of relation calculus which
we do not restate here.

For aset A wedenotethe set of finite sequencesof elementsof A with A*. Fora
functionf : X — Y, wedenotethe mapping of f to sequencesby f* : X* — Y*.

A sequence (A, ..., A,) of objects that is itself considered as an object is
understood to be the corresponding finite product (A; x - - x A,).

We write set-comprehensions according to the Z-notation [17], which uses
the pattern “{ signature| predicate o term}” instead of the otherwise frequently
observed pattern “{ term| predicate}”. So we have, for example, {n : N | n <
4en?} ={0,1,4,9} .

3.2. Typeand Relation Terms

We first introduce type terms and relation terms as the syntactic basis of our
calculus. We reuse the operator symbols introduced above, but we shall employ
“=" for syntactical equality of terms.

Definition 3.1 A typeterm can be a type constant, including 1 for the unit type,
atypevariable (o, 3,7, ...), aproduct type 7' x U of two typeterms 7' and U,
or a constructor type C(T1,..., Tn) created from n type terms T4,..., T, by
application of an n-ary type termconstructor C. O

Obvioudly, the product type could be considered as just another constructor
type, but since it has a special status here, we rather treat it separately.

A type substitution is a finite domain partial function from type variables to
type terms. Application of atype substitution is defined as usual.

Definition 3.2 A relation term of type A «+» B for two typeterms A and B can
be

e arelation constant, including T (if A = B), T, 1L, = (if thereisatypeterm C

suchthat A = B x (), and p (if thereisatypeterm C suchthat A = C x B),
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arelation variable,
the converse R™ of arelationterm R of type B <+ A (written R : B « A),
the negation R of arelationterm R : A & B,
the composition R; S of tworelationterms R : A < Cand S : C < B,
theintersection R M S or theunion R U S of two relationterms R : A « B
and S : A & B,
e aconstructor terme(Ry, . .., R,) created from n relation terms R; by appli-
cation of an n-ary relation term constructor ¢, with type constraints on the
R; depending on c.
Additionally, in any composite term, all occurrences of arelation variable must be
of the sametype. O

A relation substitution is afinite domain partia function from relation vari-
ablesto relation terms. Application of asubstitution is again defined as usual.

Finally, an atomic relational formula is either an equality R = S or an
inclusion R C S for two relational terms R and .S of the sametype.

3.3.  Syntax of Relational Diagrams

We now introduce relational diagrams as a special kind of labelled graphs or
hypergraphs. Although hypergraphs are of course more general, we include the
graph case for offering the reader a smoother access:

Definition 3.3 A relational diagram is a labelled directed (hyper-)graph
(N, &,s,t,n,e) with node set N, edge set £, source mapping s : & — N
(resp. s : £ = N*), target mappingt : £ = N (resp. t : £ — N™*); furthermore
n is the node labelling, assigning every node a type term, and e is the edge
labelling, assigning every edge arelation term of typen(s(e)) <> n(t(e)) (resp.
n*(s(e)) < n*(t(e)))-

All occurrences of a relation variable in the range of e must be of the same
type. O

For any relational diagram G = (N, €, s, t,n, e) we define its emptied dia-
gram as the corresponding discrete graph: G° := (N, 0,0, 0, n, ).

Homomorphisms between relational diagrams are defined as homomorphisms
of labelled graphs with the additional possibility of substitutionsin the labels:

Definition 3.4 A simple relational diagram homomorphism f from one

relational diagram G to another G, isapair (fn, fe) of functions, with
o fmiNL—= N, fe: &L= &,
e sy(fe(a)) = f(si(a)), t2(fe(a)) = Mm(ti(a)), or, in the case of hyper-
graphs, sa(fe(a)) = f(si(a)), tao(fe(a)) = fa(ts(a)),
o thereisatypesubstitution 7 such that ny(fn (v)) = 7(n1(v)) for al nodes v,

v
o thereisarelation substitution o with ex(fe(a)) = o(e1(a)) for al edges a.
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f iscdled plain if 7 and o can be set to empty substitutions. O

For graph rules, we have an inclusion semantics“Z C R” in mind. Since it
isusually advisable to preserve previously established information, we arrive at a
useful rule concept with just a plain homomaorphism between the rule sides:

Definition 3.5 A rule (L—=R) consists of two relational diagrams L and R
together with aplain homomorphism r from L to R. O

According to the definition of rules as single homomorphisms, rewriting is
defined by a single pushout construction — the difference to the single-pushout
approach of [13, 14] isthat here we still consider total homomorphisms:

Definition 3.6 A rewrite step for arule (L— R) and arelational diagram G
together with ahomomorphism f from L to G isthe pushout

L—L+R

S
G—2+H

of r and f; theresult diagram isthe pushout object H.
A derivation of H := G,, from G := Gy is a seguence of rewrite steps

Li—lis R,

K

Gi-1-24 G,

and we let the derivation morphism be sy;. . .:s,. O

3.4. Relative Correctness of the Graphical Calculus

When considering the meaning of adiagram, a“direction” hasto beimposed from
the outside, and we use interfaces for this purpose:

Definition 3.7 An interface (7, j) for arelationa diagram G consists of arela
tional diagram 7 and a homomorphism ; from 7° to G, where I has no isolated
nodes and exactly one edge (|€;| = 1), which hasto be labelled with a variable.
Aninterface (I, j) for G can be composed with a homomorphism & from G
to H,yielding theinterface (I, )k := (I,j:k) for H. O
For keeping the whol e approach as simple and as modular as possible, we only
concern ourselves with correctness of the graphical calculus of relations relatively
to the conventional calculus of relations. Therefore, the* semantics’ of arelational
diagram when seen through aninterfaceisarel ation term of appropriatetypewhich
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appropriately assembles the relation terms to be found as the edge labels of the
diagramin question.

Our aim isto construct such arelational expression in acanonic way — using
the laws of relational calculus with products, it always may be transformed into
equivalent expressions that may be more appealing for one or the other reason.

Below, for an example, to the left a relational diagram G consisting of four
hyperedges is shown together with a three-input, one-output interface Z. To the
right, we have drawn an intermediate diagram that will serve as guideline to
the construction of the semantics of G under the interface Z, which we call the
“readout” of G along Z and which we denote Gi;1. All simple edges there are
labelled with the identity I. Collapsing those edges returns the original diagram
G, s0 the two should obviously considered as equivalent.

NP
B ‘»

6

Assuming an appropriately nested input product and using the nested-pair isomor-
phism PAass : a x (8 x v) — (a x f) x «, the readout obviously has to be
equivalent to

(T]|A); B M PAass;(C|1): D .
For abbreviating the formal treatment, we consider a sequence (T4, ..., T),) of
type terms as denoting the product term T3 x - -+ x T,. For the image of a set
S :P(A)under afunctionf : A — B wejust write f(S) : P(B).
Definition 3.8 (Readout) Let arelational diagram G and aninterfaceZ = (1, 5)
for G withtheone hyperedge az begiven. Let (my, . . ., me) beasequentialisation
of the nodes of G outsidetherange of j. Thenlet 74 7 bethe following type term
representing al nodes of the interface together with all other nodes of G:

T 1= n*(§" (s(az)) x 0° (5" (t(az))) x n*(ma, ..., me)

Furthermore, let i © Toz — n*(j*(s(az))) ad mow : Taz — n*(j*(t(az)))
be the projections onto the source and target of theinterfaceimage. For every node
z € N of theinterface diagram, let 7, : Tz — n(j(z)) bethe projection onto
the component of z, and for every node sequence s € N*, let 7, : Tz — n*(s)
be a projection onto the components of 7 z corresponding to s.

Thereadout of G viaZ isnow arelation term Gy, with thetyping

G (7 (s(az))) & 0" (" (b(ar)) -
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The readout is defined as:

G = ( [Ha: € e (ms(ar)ie(a) M ﬁt(ar));T} ‘
MRz, y: Nile#yAj(z)=5(y) o (r2 Mmy): T}
ﬂ7rout) O

(See[10] for adiscussion of the irrelevance of the choicesinvolved.)

In the example above, the three main layers of nodes in the right diagram
obviously correspond to the input typen* (5*(s(az))), the all-nodestype 7« 7 and
the output type n*(5*(t(az))) respectively. The nodes ending the hyperedges can
be regarded asthe input of T in the first set component of Gr,q; the readout is

T10g((723: AMme) s T M (716 BMrg): T M (w12 CMrs) s T M (ws3s DMarg) s T Mirg)
Thisisequivalent to

Tiog((m1im 1M magi A g)imies BM (m12: Cim s Mwgim 3)imsg: D) ima
and again (modulo nesting of the input product) to the relation term initially
proposed as readout of the example diagram. The second set component from the

readout definition is empty here, since the interface is injective; otherwise there
would be additional T-edgesbetween nodes of the middle layer.

We now start considering an arbitrary set R of additional axioms besidesthose
for relation algebras with products, mainly for additional relation constants and
relation term constructors. Since we have reserved the symbol “=" for syntactic
equality of terms, we can use“=" and “C" freely for forming formulae. We shall
write“R F R = S”" resp. “R = R C S” if therespective equality or inclusion can
be derived using the axioms in R and those of relation algebras with products.

Animportant result about the readout constructionisthat plain homomorphisms
can only decrease the semantics.

Theorem39 Rk Giz;, C Kjp holdsfor every interface 7 for K and every
plain homomorphism & from K to G.
Accordingly, for every interface Z for G and every subgraph K of G with
natural injection k, whenever j(1°) C k(K) thenR  Giy C Kiz: -1 O
Based on the readout, the appropriate concept of admissibility of rules is the
following:

Definition 3.10 A rule (L——R) iscorrect if for al interfaces (1, j) for L,
RE Ly = B i - .

It is not difficult to construct concrete rules where this equality holds for some
interfaces, but not for others, and where application of these rules leadsto invalid
proofs. This equality is, however, guaranteed to hold for all interfaces for L
whenever it holds for any interface (7, j) for L where j is surjective on the nodes.
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Thecentral result of [10] isthat application of correct rulesyieldsderivationswhich
preserve the semantics of the readout of any interface into the starting diagram:

Theorem 3.11 Letaninterface(I, j) for arelational diagram G and (L— R) with
a matching homomorphism f from L to G be given, and consider the rewriting
step yielding the pushout object H and the homomorphism s from G to H, then
we have R Gf([,j)] = Hf(I,j;s)]'

Accordingly, for every interface (7, j) for the starting diagram G of aderivation
from G to H with derivation morphismo, wehave R = G, vy = Hy; ;100 O

With all this, the natural strategy for finding a proof of the inclusion formula
R C S as agraph derivation on relational diagrams, as aready applied in the
examplein 2.1, isthefollowing:

i) Construct adiagram G with an interface (1, j) suchthat R = R = Gy, -
i) Suitably derive H from G with derivation morphism o-.

iii) Factorise ¢ into plain homomorphisms ¢’ from G to a suitable diagram H'
and k from H' to H

iv) Recognise H' asadiagramwithR + S = H’[(M,)] wherej’ = jio'.
Only inrare casesthefull derivationresult A will be needed (yielding an equality);
usually only an inclusion is required anyway.

4. Hierarchical Diagrams and Relational Matching

The idea of relational matching for our diagrams is that variable-labelled hyper-
edges in the rule can be matched not only to single hyperedges in the application
diagram, but to whole sub-diagrams.

For being able to properly define relational matching and rewriting based
on relational matching, we use the trick to employ hierarchical diagrams as an
intermediate structure. For this purpose, the generality of our previous definitions
comes in extremely handy, and more of the repertoire of algebraic graph rewriting
can be employed in avery natural manner.

Definition 4.1 A pointed diagram of type A «+» B isapair (G, (I, 7)) consisting
of adiagram G together with an interface (7, j) for G (with the one hyperedge

ar), if A = n*(5*(s(ez))) and B = n*(5*(t(az))). O
As an example we show the |eft-hand side of the rule from Sect. 2 as a pointed
diagram:
) )

s [ °

g

(07 L 2
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Here I consists of the wholegraph induced by theedge labelled“ I in thedrawing;
the dotted arrows represent ;.

From now on we consider the definition 3.2 of relation termsof type A <> B to
be extended to include pointed diagrams of type A <+ B. We call arelation term
that may contain pointed diagrams as some subterms an extended relation term
while the origina version will be called simplerelation term.

Asan example extended rel ation term weinsert the pointed diagram from above
into some context:

p-E.5-9,p
(AN AT B [/ )7 C

-

a”

Here we have drawn the interface edge directly into the diagram; this is more
conciseand— aslong asj isinjective— doesnot obscureany relevant information.
This gives of course rise to a mutual recursion between relation terms and the
relational diagrams of Def. 3.3, which are now hierarchical diagrams.
In the next example, a pointed diagram occurs inside arelation term labelling
an edge of the diagram under consideration:

5-9.53-2.5
(An|A B/,/[/ )i C
1
8 é @ €

The readout of Def. 3.8 now in general only yields an extended relation term;
therefore we introduce another concept that maps any extended relation term to a
corresponding simple relation term:

Definition 4.2  The unfolding of an extended relation term ¢, denoted [¢], is
defined as follows:

e if t isarelation constant or relation variable, then [¢] := ¢,

[t]:=[t]"and [ 7] := [1],
foro e {;,M,U} welet [t o u] := [t] o [u],
o if c isan n-ary relation term constructor, then

le(ta, .- tn)] i= e[t - - -, [Ea])
for every pointed diagram (G, Z) welet [(G,Z)] := [Gip].
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We extend the concept to arbitrary hierarchical diagrams by letting the vector
interface for G, written Vs, be defined as the interface consisting of all nodes
of G' and one hyperedge with empty source and all nodes as targets, and we let
the unfolding of an arbitrary diagram be the unfolding along its vector interface:
[G]:=1(G,Ve)]. O

Actualy, in the definition 3.8 of the readout, the first factor of the intersection
exactly correspondsto [ G]™, afact that we shall use below for Theorem 4.3.

The substitution concept for relational diagrams need not be adapted at all, and
the homomorphism concept can be carried over, too, without any adjustment. One
might have theimpression that it woul d be sufficient to have sub-diagramsat deeper
levelsin the hierarchy only related with homomorphismsinstead of with substitu-
tions, but since this would make strong assumptions about the monatonicity of the
operators involved in constructing relation terms containing such sub-diagrams,
which are obvioudly violated already by negation, we cannot in general allow this.
So we use the homomorphism definition 3.4 without any change.

The importance of the unfolding of diagrams as defined viathe vector interface
liesin the following fact:

Theorem 43  For every two hierarchical relation diagrams G and H with a
plain homomorphism £ in-between, if R F [G] = [(H, Vs k)], then for every
interface? for G wehaveR + [(G,Z)] = [(H,Z:k)].

Proof: The proof relies on the fact that 7 corresponds to two projections =7 and
pz from the all-nodes-type to the respective input and output types of Z. Then the
central line of reasoning can sloppily be summarised asfollows (let Z’ := Z ; k):
R F [(G,T)] (7ZN TG ipz = (7L M TH(H,Va:k)]):pz
[(#,7)] = [(H,Z:k)] O

In simple cases, the hierarchical structure introduced above can be flattened imme-
diately:
Definition 4.4 Let arelational diagram G with an edge e |abelled with the pointed
diagram (H, (I, 7)) be given, and let a7 bethe single hyperedge of .
Let G’ be the pushout-complement of the embed- J 70 J I
ding i of 7%into 7 and of the injective homomorphism
k from I to G mapping az onto e. G’ isjust G without k‘l Z'l ll
theedge e, and r isthereforetheidentity on nodes, and , s
re isanatural injection on edges. G—G'——G"
Thedirect flattening G” of e isthen the pushout of 7 and of the morphism
from 1° to G’ resulting from the pushout-complement construction above.
In one word, G” results from G by a double-pushout rewriting step with

the rule 7 <—7°—+ 7 and with the matching k. The direct flattening pair
f = (fn, fe) for G and e consists of fn := . sn, Whichisatotal function from
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the nodes of G tothoseof G, and fe := rgise L {e} x {a : £y o le(a)}, which
isarelation relating edgesin G apart from e to the corresponding edgesin G and
relating e to all edgesin the flattened image of H.

A direct flattening is called trivial if fe isafunction, too. O

The double-pushout rewriting step that is so-to-speak “remembered” in edges that
are labelled with pointed diagrams makes our hierarchic diagrams quite similar
to the multi-level graphs of [15]. There arbitrary interfaces are possible, while
here we have restricted the interfaces to single hyperedges. The advantage of our
approach, however, is that the application morphisms for the rules need not be
remembered separately sincethey are “built-in” into the labelling.

Below we show a full-blown example of the double-pushout rewriting step in
adirect flattening:

Q
L J

—
™
|~

5.5 O 5. . p_90,5_9,3
K L] e

vZ o Q
v

R B

i g B — l
- . i
8 ¥

Definition 4.5 A diagram G; isageneral flattening of adiagram G, if thereis
adiagram G} resulting from G» by a series of direct non-trivial flattenings, such
that there is a surjective plain homomorphism s from G} to G;. The composi-
tion fi:---ifx s of theindividua direct flattening pairs fi, . . ., fx with s iscalled
the flattening pair for the genera flattening of G, to Gi; the surjective plain
homomorphism s is aso called the suffix of the genera flattening.

G, isaso called ageneral unflattening of Gj. O

The role of s here is to make sharing of previously hierarchical parts possible.
More precisely, it allows to use parts of the original graph G; in more than one
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placein an unflattening G,, for example once in its top-level structure and one or
moretimesin lower levels.

In the following example, after the direct flattening from above a suffix homo-
morphism identifies the two B-edges:

39,3 9.3. . 88,59,
o

TA/; A . ’% B8-8.3 9.5

o o« dir. flat. M Q suffix T%‘ Nl
[0 ,8 lB o ol
lB Ql 8 R v

R

B ¥

While any sequence of direct flattenings preserves semantics, a genera flattening
needs not do so because of the identifications of nodes resulting from the overlay
s tucked onto the end. Nevertheless, we shall have a use for general flattenings.

Definition 4.6 A relational matching from a relational diagram G to another
diagram H isapar f = (fn, fe) consisting of atotal function fn : N¢ — Ny
between the node sets and arelation fe : £5 < £y between the edge sets of G
and H, such that there exist a general unflattening H' of H with flattening pair h
and a simple homomorphism g from G to H' with f = g:h.

If H' isthelimit of al such factorisations, then (g, k) is called the canonical
factorisation of F.

To be precise, for this limit to exist we have to restrict ¢ ,

the flattenings considered to those that can be regarded M

as “induced” by the edge relation fe. i
We now shall use this canonical factorisation of

relational matchings for defining a rewrite step for a

functional rule (as before) with a relational matching R

from the left-hand side into the application diagram:

Definition 4.7 A relational rewrite step for a rule (I—R) and a relational
diagram G together with a relational matching f from Lto G is constructed as
follows: Let (f’, k) be the canonical factorisation of f via G’, and let H’ be the
result of the simple rewrite step for (L—— R) and f’ with rewrite morphism s. Let
k = k’; q the factorisation of % into direct flattenings ¥’ : G’ — G’ and the final
overlay q . G — @G, then construct H" as the result of transferring the direct
flattenings &’ to H' — this meansto re-flatten the redex — and finally construct H,

theresult of the rewriting step, asthe pushout of ¢ and the appropriately transferred
rewritemorphism s’ — thismeansto re-introduce the sharing between intermediate
sub-diagrams and other nodes. O
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~— L r R

matching homomorphism f'| pushout
G —>—H

direct flattenings fl ok | transfer
Gr—

plain surjective suffix ¢| pushout

\» G 5// H

Correctness of this rewriting step relies essentially on the fact that rules are just
plain homomorphisms and rule application viatotal single pushouts can only add
and identify items, but never delete items. Neverthelessit is interesting that this
rewrite step is still correct although there are two overlays involved — the crucial
point isthat exactly the original sharing is re-established by the final pushout.

Theorem 4.8 Intherelational rewriting step described above, we have

REIGI=1(H,Veais")] -

Proof: Thekey to the proof liesin thefact that the unfolding of thediagram G (with
all the sharing) can be written in the shape of an intersection, R + [G] = L' C,
where L' corresponds to an instance of the unfolding of the rule's left-hand side
and C isthe remaining context. We have for a suitable product with projections =
and p that

RELUNC=(L 7 NCip NTix Mp))im .

For the unfolding of the unshared diagram G’ we then have (informally and sim-
plifyingly assuming that the vector interfaces make all the unfoldings compatible)

RE[G"=[GT= (/7" Cip)im
(for the sake of simplicity we also assume an unsharing tearing off the image of
L at all nodes). The conventional rewrite step uses R + L = R for obtaining
R F L' = R’ and therewith:

REIG=1[GT=(L:im"NCip)im=(Rim NCip)im=[H]=[H"]



18 REFERENCES

The construction of H from H" viareinstating the sharing lets the unfolding of H
be (still with the simplifying assumption about the vector interfaces)

REH, Vg:s)]=(Rim " NCip NTir Mp))im=RNC .
ThusR + L' = R’ alsojustifiesthe whole relational rewrite step. O

In the usual caseit will probably useful to flatten any newly created flattenable
hyperedges in the final rewriting result — this obviously does not influence the
correctness. Only then we would obtain the example rewriting step in 2.2 directly
as arelational rewriting step.

This formalisation of a relationa rewrite step may at first look somewhat
involved, but its advantage is that we did not have to introduce many new concepts
in order to arrive at thisformalisation. It isalso pretty close to the stepsthat would
have to be taken by an interactive proof assistant anyway.

5. Outlook and Conclusion

In this paper, we have extended the graphical calculus of relations in the shape
introduced in [10] to the ability to cope with relational matchings for applying
rules, or equivalently, to the possibility to have variable edge labels in rule sides
match to whole sub-diagrams. This brings about a considerable shortening and
simplification of proofs by hiding the technicalities. Thus a stronger emphasis on
the key steps of a proof is reached.

We have so far only considered rather simple unflattening for the purpose of
making rules applicable— just enough to yield a reasonabl e concept of derivations
with relational matching.

It would of course be interesting what other operations — in a loose analogy
to for example AC-matching — would make sense in order to get an even more
general grip on derivation steps, and how that would bring us closer to the goal of
freeing proofs from technicalities and concentrate on the essential ideas instead.

Another question that arises in this context is how to present proofs that have
been arrived at in such a powerful graphical calculus. For this, and aso for
making the procedure of finding proofs more reliable, some tool support would be
extremely helpful.
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