“Mouldable Code” for Correct-by-Construction SW
Needs Nested Theories —
~6 years running Agda at the limits of the machine. ..

WOoOLFRAM KAHL

McMaster University, Hamilton, Ontario, Canada

17 September 2015
AIM XXII — Leuven, Belgium

This research is supported by the National Science and Engineering Research
Council of Canada, NSERC.

“Mouldable Code”? — Background

1970s and 1980s at TU Munich: F.L. Bauer’s group: CIP
o “Computer-aided Intuition-guided Programming”
o CIP-L: Wide-spectrum language (functional — imperative)
o CIP-S: (second-order) transformation system

Gunther Schmidt’s reaction: Transform Graphs!
o Term graph transformation system HOPS (several versions)
e My PhD: second-order term graph transformation
(used relation-algebraic formalisation and proofs)

My Habilitation: Relation-Algebraic Approach to Graph
Transformation
o relation-algebraically amalgamated DPO and DPB

e can handle “DPO + graph variables”

Coconut (w. Christopher K. Anand): Software pipelining
implemented as code graph transformation
o generated “vector MASS” library shipped in IBM’s Cell BE SDK
e implemented in Haskell
o insufficient support by Haskell type system (no dependent types)

Software Pipelining as Nested Code Graph Transformation

v
: A
V . initialisation --—---m-mmmrmenmmT e g
TYYY| A . B
:&%7%7%@@ 5 ==
g pivves
z g 7YY
273 Jfl IL I
o i = www
g 8 l VVV“?VV YYYYYY|YYYYVY VVV‘?VV
" ¥ bt iy by v it by
7YY YYYYY T
e | B @M
$oyddd %Q T
parallel ®
loop body) '\ﬁ
-exitcode T [@

Transformation for Optimisation

@ Many transformation patterns
o are usefully explained as graph transformations

e are normally implemented as AST transformations

o Implementation as graph transformations requires:
o internal representation as graphs (not ASTs)
e correctness of transformation wrt. graph semantics

e sufficiently intuitive graph transformation concept

“Mouldable Code” [Gunther Schmidt, 1990s]

Programs conceptually structured as graphs
Program development is supported by a graph-based GUI

Programs are written in a programming language that facilitates
correctness proofs

Program development is supported by a powerful transformation
system that allows power-users to “turn the programs inside out”

o for the purpose of fusion and other efficiency-improving adaptations

e and also for systematically and without impacting correctness
adding what would later become known as “aspects”

The resulting programs are correct by construction

Nested Code Graph Transformation

Control-flow graphs: Kleene algebra
Kleene categories

Data-flow graphs: gs-monoidal categories
(tabular allegories)
Equations turn into transformation rules

Matching implemented as graph homomorphisms

Transformation via variant of DPO approach

o Correctness wrt. gs-monoidal categories: Zhao Yuhang

o Correctness wrt. Kleene categories: TBD

One-directional rules can be used for refinement
(demonic) Kleene categories

Getting Started — Essential Ingredients

o RATH-Agda (~#500 pages): Abstract formalisation of
semigroupoids, categories, allegories, Kleene categories, collagories,
action lattice categories

o Relatively fine-grained hierarchy of theories
e Many module splits for performance reasons
o Allegory and category combinators still slow (>9GB heap)

e SUList (~200 pages:) Sorted unique lists

Directly implement sets

Key-value-pairs: Finite maps

Set-valued maps: Finite relations

Invariant-carrying datatype, no irrelevance

Many correctness proofs involve large case analyses

~4GB heap

ListSetMap implements Kleene collagory; sub-category of mappings
equivalent to FinVecCat

— ~10GB heap

e JSON Parsing and Pretty-printing (¥100 pages)

It Calculates a Pushout! — in 6 seconds...

A single top-level module brings the three strands together
Can read and write graphs in JSON format

Calculates a small (6 node) pushout

MAlonzo:

Compilation to Haskell (after typechecking): 40min, >4GB heap
GHC call: 40min, >7GB heap

Binary size 160MB ; run-time: ~6s

Probable problem: No compromises:

Invariant-carrying datatypes, no abstract, no irrelevance

UHC (March): Binary size 60MB; segfaults

UHC whole-program optimisation (-02,2,2, March):
Binary size 7TMB; run-time: >5min

Term Graph Decomposition

@ Yuhang Zhao implements term graph decomposition into
gs-monoidal category expressions |Corradini, Gadducci 1998]

e Concrete model: 2-Category of Term Graphs on top of FinVecCat:
o Correctness proof involves three levels of categories: Holes unusable

e This is an essential ingredient to proving correctness of DPO term
graph rewriting wrt. functorial semantics

Side-Show: AContext

Abstract formalisation of FCA context categories
only needs OCC with powers, residuals, and symmetric quotients

Agda used as “just a mechanised mathematical notation”

that lets me write the mathematics in a natural way
The abstract algebraic style plays to the strengths of Agda
189 pages

Final chapter: Finishing off categoric duality between FCA
contexts and complete lower semilattices:

e Duality proof runs out of 52GB heap
o One-line definition of the back-and-forth functors takes hours to
type-check
o Issue 1625
o Andrea Vezzosi supplied experimental patch
o Will try this week: Does this also help me elsewhere?

Ceterum Censeo ...

...cum grano salis ...

Agda got many important things right, and has been improving
tremendously

e but even from Agda-dev, I don’t get a feeling where Agda is headed
We need a roadmap towards a trusted kernel

We need an “Agda report”, perhaps initially limited to the trusted
kernel

We need a roadmap towards self-hosting — Agda in Agda

o AIM as “Agda hackathon” would profit from the confidence of
producing Agda code!

We need efficient compiled code
o We need whole-program optimisation
o We may need semantics-preserving pragmas to guide optimisation
— not extensions like irrelevance

Ceterum Censeo ... (ctd.)

e First-order sharing is probably not sufficient for efficient
type-checking of level-polymorphic code?

o Agda’s module system is wonderful to use!

o Am I the only one using it in certain ways?

o Documentation of performance implications is needed

o Nested parameterised modules probably still have problems (Issue
1396)
— who else besides Ulf understands the implementation of the
module system?
What would it take for me to understand it?

e Sometimes I look at Agda implementation modules, and lack
(pointers to) documentation. . .

oI O Agda

