
“Mouldable Code” for Correct-by-Construction SW
Needs Nested Theories —

≈6 years running Agda at the limits of the machine. . .

Wolfram Kahl

McMaster University, Hamilton, Ontario, Canada

17 September 2015

AIM XXII — Leuven, Belgium

This research is supported by the National Science and Engineering Research
Council of Canada, NSERC.



“Mouldable Code”? — Background

1970s and 1980s at TU Munich: F.L. Bauer’s group: CIP
“Computer-aided Intuition-guided Programming”
CIP-L: Wide-spectrum language (functional — imperative)
CIP-S: (second-order) transformation system

Gunther Schmidt’s reaction: Transform Graphs!
Term graph transformation system HOPS (several versions)
My PhD: second-order term graph transformation

(used relation-algebraic formalisation and proofs)

My Habilitation: Relation-Algebraic Approach to Graph
Transformation

relation-algebraically amalgamated DPO and DPB

can handle “DPO + graph variables”

Coconut (w. Christopher K. Anand): Software pipelining
implemented as code graph transformation

generated “vector MASS” library shipped in IBM’s Cell BE SDK
implemented in Haskell
insufficient support by Haskell type system (no dependent types)



Software Pipelining as Nested Code Graph Transformation

[ARGS]

[RESULTS]

1

[I1,M1,I2,I3,C]

[I1,I3,M1,I2]

[I1,I3,M1,I2]

[I1,M1,I2,M2,I3,C]
[I1,M1,I2,M2,I3,C]

[I1,M2,I3,M1,I2] [I1,M2,I3,M1,I2]

1

1 2 3 4 5

I2

4

I3

2

M1

3

I1

1

C

bi_A

1 23 4 5

I2

4

I3

2

M1

3

I1

1

C

bi_B

1 2 3 45 6

I2

5

M1

4

I1

1

C

bi_A

I3

3

M2

2

1 2 3 45 6

I2

5

M1

4

I1

1

C

bi_B

I3

3

M2

2

12 3 45

I2

4

I3

2

M1

3

I1

1

I3

S3

1

M2
0

1 2 34 56

I2

5

M1

4

I1

1

C

bi_A

I3

3

M2

2

1 2 3 45 6

I2

5

M1

4

I1

1

C

bi_B

I3

3

M2

2

1 234

I2

S2

1

I3

5

M1
0

M2

4

I1

S1

I2

3

M1

2

I1

1

C

6

010
1
2

1 2 3 4

I2

S2
1

I3

S3

1

M1
0

M2

0

I1

Exit

0

I2

1
I3
2

RESULTS

1

0 1

1 2 3 4 5

I2

S2
1

I3

5

M1
0

I1

S1

I3

S3

1

M2
0

M2

4

I2

3

M1

2

I1

1

C

6

0 10
1 2

1

ARGS

Init

I1

S1

I2

3

I3

4

M1

2

I1

1

C

5

0
1 2

0 1
2

[ARGS]

[I1,I2,I3]

[I1,I2,I3]

[RESULTS]

1

[I1,I2,I3,C]

1

1

ARGS

Init

I1

1

I2

2

I3

3

0 1 2

1 2 3

I1

Exit

0
I2
1

I3

2

RESULTS

1

1 2 3 4

I1

1

I2

2

I3

3

C

bi_A

1 2 3 4

I1

1

I2

2

I3

3

C

bi_B

1 2 3

I3

S3
1

M2
0

I1

1

I2

2

I3

3

C

4

I1

S1

I2

S2

1
M1
0

1 2 0

01

initialisation

exit code

p
re

lu
d
e

p
ostlu

d
e

se
q
u
e
n
ti

a
l

lo
o
p
 b

o
d
y

parallel
loop body



Transformation for Optimisation

Many transformation patterns
are usefully explained as graph transformations

are normally implemented as AST transformations

Implementation as graph transformations requires:
internal representation as graphs (not ASTs)

correctness of transformation wrt. graph semantics

sufficiently intuitive graph transformation concept



“Mouldable Code” [Gunther Schmidt, 1990s]

Programs conceptually structured as graphs

Program development is supported by a graph-based GUI

Programs are written in a programming language that facilitates
correctness proofs

Program development is supported by a powerful transformation
system that allows power-users to “turn the programs inside out”

for the purpose of fusion and other efficiency-improving adaptations

and also for systematically and without impacting correctness
adding what would later become known as “aspects”

The resulting programs are correct by construction



Nested Code Graph Transformation

Control-flow graphs: Kleene algebra
Kleene categories

Data-flow graphs: gs-monoidal categories
(tabular allegories)

Equations turn into transformation rules

Matching implemented as graph homomorphisms

Transformation via variant of DPO approach

Correctness wrt. gs-monoidal categories: Zhao Yuhang

Correctness wrt. Kleene categories: TBD

One-directional rules can be used for refinement
(demonic) Kleene categories



Getting Started — Essential Ingredients

RATH-Agda (≈500 pages): Abstract formalisation of
semigroupoids, categories, allegories, Kleene categories, collagories,
action lattice categories

Relatively fine-grained hierarchy of theories
Many module splits for performance reasons
Allegory and category combinators still slow (>9GB heap)

SUList (≈200 pages:) Sorted unique lists
Directly implement sets
Key-value-pairs: Finite maps
Set-valued maps: Finite relations
Invariant-carrying datatype, no irrelevance
Many correctness proofs involve large case analyses
≈4GB heap
ListSetMap implements Kleene collagory; sub-category of mappings
equivalent to FinVecCat
— ≈10GB heap

JSON Parsing and Pretty-printing (≈100 pages)



It Calculates a Pushout! — in 6 seconds. . .

A single top-level module brings the three strands together

Can read and write graphs in JSON format

Calculates a small (6 node) pushout

MAlonzo:
Compilation to Haskell (after typechecking): 40min, >4GB heap
GHC call: 40min, >7GB heap
Binary size 160MB ; run-time: ≈6s
Probable problem: No compromises:
Invariant-carrying datatypes, no abstract, no irrelevance

UHC (March): Binary size 60MB; segfaults

UHC whole-program optimisation (-O2,2,2, March):
Binary size 7MB; run-time: >5min



Term Graph Decomposition

Yuhang Zhao implements term graph decomposition into
gs-monoidal category expressions [Corradini, Gadducci 1998]

Concrete model: 2-Category of Term Graphs on top of FinVecCat:
Correctness proof involves three levels of categories: Holes unusable

This is an essential ingredient to proving correctness of DPO term
graph rewriting wrt. functorial semantics



Side-Show: AContext

Abstract formalisation of FCA context categories
only needs OCC with powers, residuals, and symmetric quotients

Agda used as “just a mechanised mathematical notation”

that lets me write the mathematics in a natural way

The abstract algebraic style plays to the strengths of Agda

189 pages

Final chapter: Finishing off categoric duality between FCA
contexts and complete lower semilattices:

Duality proof runs out of 52GB heap
One-line definition of the back-and-forth functors takes hours to
type-check

Issue 1625
Andrea Vezzosi supplied experimental patch
Will try this week: Does this also help me elsewhere?



Ceterum Censeo . . .

. . . cum grano salis . . .

Agda got many important things right, and has been improving
tremendously

but even from Agda-dev, I don’t get a feeling where Agda is headed

We need a roadmap towards a trusted kernel

We need an “Agda report”, perhaps initially limited to the trusted
kernel

We need a roadmap towards self-hosting — Agda in Agda
AIM as “Agda hackathon” would profit from the confidence of
producing Agda code!

We need efficient compiled code
We need whole-program optimisation
We may need semantics-preserving pragmas to guide optimisation
— not extensions like irrelevance



Ceterum Censeo . . . (ctd.)

First-order sharing is probably not sufficient for efficient
type-checking of level-polymorphic code?

Agda’s module system is wonderful to use!
Am I the only one using it in certain ways?
Documentation of performance implications is needed
Nested parameterised modules probably still have problems (Issue
1396)
— who else besides Ulf understands the implementation of the
module system?
What would it take for me to understand it?

Sometimes I look at Agda implementation modules, and lack
(pointers to) documentation. . .

I ♡ Agda


