
Declarative Assembler

Christopher Kumar Anand1 Jacques Carette1 Wolfram Kahl1

Cale Gibbard2 Ryan Lortie1

1 McMaster University, 1280 Main St. West, Hamilton, Ontario Canada L8S 4K1
2 University of Waterloo, Canada

October 5, 2004

Abstract

As part of a larger project, we have built a declarative assembly language.
This language enables us to specify multiple code paths to compute partic-
ular quantities, giving the instruction scheduler more flexibility in balancing
execution resources for superscalar execution. The instruction scheduler is
also innovative in that it includes aggressive pipelining, and exhaustive (but
lazy) search for optimal instruction schedules. We present some examples
where our approach has produced very promising results.

McMaster University

SQRL Report No. 20

2 CONTENTS

Contents

1 Introduction 3

2 Coconut 5

3 Code Graph Syntax and Semantics 6

3.1 Code Graph Syntax . 6

3.2 Code Graph Semantics . 8

3.3 Macro Assembly Language for Data-Flow Code Graphs 9

3.4 Assembly into Code Graphs . 10

4 The Pipeline Scheduler 11

4.1 Declarative Aspects of the Scheduler . 11

4.1.1 Example: Joins In Splines . 12

4.2 Adding Control Flow . 12

4.3 Example: Map of e iθ over a floating-point vector 13

5 Related Work 15

6 Conclusion and Future Work 16

A Macro Assembly Code Example 18

3

1 Introduction

While developing a Domain Specific Language (DSL) for an MRI application (Co-
conut – see next section), we encountered a need for a DSL of a wholly different
nature: we needed to specify choices amongst different “equivalent” computation
paths made up of low-level assembler. An intelligent instruction scheduler will
choose the best path, using built-in knowledge of the intricacies of a modern, vec-
torized and pipelined CPU architecture. Our collective experience told us that we
should be specifying our problem in a declarative manner, to give maximal freedom
to the scheduler. But we also knew that we could not schedule code that was not
made up of specific assembler instructions. We decided to see if we could get these
rather different paradigms (declarative and assembly) to coexist, and furthermore
to serve as the main language for our compiler’s back end. This paper reflects our
success to date.

It is important to justify our claim, mainly that it is possible to design a new
language which deserves the monicker of “declarative assembler”. The key design
points for our language were to

1. only describe dataflow

2. have built-in facilities for redundancies

3. have code that looks like assembler

4. control flow is, as much as possible, decided by the scheduler

5. be able to optimize (minimize) resource consumption

The first two criteria clearly indicate that a declarative language would be best;
with that in mind, the last two criteria suggested to us that we replace the usual
unification-driven language by an optimizing-scheduler driven language, but that
these algorithms would otherwise fulfill the same operational criterion.

To fulfill the criterion that the code looks like assembler, we re-interpreted all
non-branching instructions (of the PowerPC 745X and PowerPC 970) as “atomic”
dataflow equations. This was done in part to isolate at the pure dataflow subset
of the language from the control part, mainly because branching instructions on
these platforms are so much more expensive, and look to get even more expensive
on future architectures. For the target applications, we know from experience that
a lot of control flow can be eliminated by clever use of permute and select (logical)
instructions. We made the decision to eliminate branches from the declarative as-
sembly language, and express all control flow which cannot be eliminated by use of
permutation and selection in ‘combinators’. So the conflict between “declarative”
and “assembler” is solved by eliminating all of the problematic instructions.

4 1 INTRODUCTION

vmaddfp

vaddubm

vperm

vslw vand vctuxs 2

vspltw

vrfim xsvctuxs 2

vperm

vmaddfp

vperm

vctuxs 0 2-4

points

slopes

0to3

partialsplat

Constant
VFPU
VIU1
VPU

2
nodehyperedges

duplication

join +
duplicate

c4048

fours

Figure 1: Code graph for the calculation of uniform linear spline in two dimensions

The only dataflow equations that we would allow would be those that were given by
actual assembly instructions. In other words, instruction selection would already be
done by this stage of the compiler. However, we still have to contend with criterion
2: there would be alternatives paths to compute equivalent answers1 offered to the
scheduler.

We like to draw an analogy with the cut-free subset of Prolog: where Prolog speci-
fies facts and rules, we give dataflow equations, and instead of using unification for
realizing solutions for a query, we use a scheduler to jointly realize an input-output
relation and optimize its resource usage. Crucially, the fact that we are optimiz-
ing instead of solving, we can use redundant information in dataflow equations.
However, the issue of register allocation does complicate matters greatly.

1Our application often requires answers with, e.g., 16 bits of accuracy, and we could have two
different algorithms to compute this answer, one to 18 bits and the other to 20 bits of accuracy.
We would let the scheduler decide which is best.

5

Figure 1 shows a code graph that arises in an implementation of a non-uniform
Fourier transform. The nodes are labelled with machine instructions (with immedi-
ate constants) or a constant value. Arrows are in the direction of data flow and the
nodes are shaded to indicate the execution unit on the PowerPC 7455. The most
important aspect of this example is the triple join, which allows us to produce a
much better schedule (depending on the context of the code fragment) than current
compilers can achieve.

We were quite pleased to find that even on relatively short segments of code, we
can already achieve significant accelerations. In our second example, we show that
a near-optimal schedule of our implementation of map θ 7→ e iθ is 31 times faster
than standard library calls. Even if we do a “fairer” comparison by giving gcc the
same code and enable processor-specific optimizations, we are still 2.5 times faster.

The next section gives a quick overview of Coconut, including the application do-
main and our approach to the problem. This serves as motivation for the rest of the
paper, which concentrates on the declarative assembly language. We first describe
our main semantic tool, namely code graphs. We next describe the scheduler, which
gives our language its operational semantics; this section also includes additional
details on the above two examples, as well as explicit timing results. We review
some related work before drawing some general conclusions.

2 Coconut

Coconut addresses the needs of high-performance signal processing applications like
diagnostic medical imaging. These applications involve complex physical and math-
ematical models and tight performance requirements. Engineers are forced to make
low-level code optimizations which depend on high-level model characteristics which
are likely to change. Engineers and scientists using Coconut will use DSLs tuned to
their level of abstraction, and Coconut will use whole-program compilation to syn-
thesize these contributions into optimal parallel, vector code. At the lowest level,
engineers and programmers (sometimes called “DSP Gurus”), will apply optimiza-
tion rules to existing code, or translate MATLAB prototypes to efficient C code.
They will write rules for implementing high-level operations, and transformations
for combining high-level operations. Declarative assembler is the language they will
use to encode the most basic building blocks: efficient implementations for atomic
operations, such as matrix multiplication and trigonometric function evaluation.

The novel features of our declarative assembly language correspond to two tech-
niques used by hand-coders: clever instruction sequences implementing operations
common in the application domain, (easily expressed in declarative assembly), and
code transformations for implementing common higher-order functions.

6 3 CODE GRAPH SYNTAX AND SEMANTICS

Although by separating high-level specifications from architecture-specific imple-
mentations, we will be able to (relatively) rapidly retarget our code generation,
initially we will only implement code generation for one instruction set architec-
ture (PPC+Altivec) and two implementations (IBM 970 and Motorola 7455). We
chose PowerPC+Altivec because PowerPC has dominated the market for high-end
embedded signal processing in the recent past, and because, having a richer set of
instructions, Altivec provides the greatest scope for agressive optimization. Also,
the 970 and 7455 come from different generations of microprocessor design and
present different opportunities for optimization.

3 Code Graph Syntax and Semantics

Our code graphs are a kind of directed hypergraphs that can be seen as generalisa-
tion of the jungles of [6], which are essentially a hypergraph presentation of term
graphs with variables.

In this section, we first motivate the definition of our code graphs in detail; then
we present the macro assembly language that is used as input language of our
declarative assembler, and finally explain the translation from the macro assembly
language into code graphs.

3.1 Code Graph Syntax

Term graphs are usually represented by graphs where nodes are labelled with func-
tion sysmbols and edges connect function calls with their arguments. An alternative
representation was introduced with the name of jungle by Hoffmann and Plump [6]
for the purpose of efficient implementation of term rewriting systems (it is called
“term graph” in [10]).

A jungle is a directed hypergraph where nodes are only labelled with type infor-
mation (if applicable), function names are hyperedge labels, each hyperedge has
a sequence of input tentacles and exactly one output tentacle, and for each node,
there is at most one hyperedge that has its output tentacle incident with that node
(respectively exactly one such hyperedge in the absence of variables).

In our code graphs, hyperedge labels are either opcodes or constants, as can be
seen in Fig. 1, where nodes are drawn with type information omitted, output ten-
tacles are arrows from hyperedges to nodes, and input tentacles are arrows from
nodes to hyperedges — the ordering relation between in- resp. output tentacles
incident with the same hyperedge is not made explicit in the drawing, but is part
of the graph structure. In comparison with jungles, our code graphs introduce two
generalisations:

3.1 Code Graph Syntax 7

• Hyperedges can have a multiple output tentacles – this is necessary for opcodes
that produce more than one result.2

• Several output tentacles may be incident with any one node — we call such
tentacles joining.

Since joins are a novel feature in assembly languages, we need to justify their
inclusion. In short, they are used for results that can be obtained in different
ways, and also for situations where different intermediate values could be used
interchangeably. The following are typical applications:

• Multiple entry points: Many common math functions are implemented
(for the sake of efficiency) via algorithms with extra preconditions, and initial
code ensures that those preconditions are satisfied. For example,

– trigonometric functions are only calculated on a fundamental domain,
and modulo calculations are first performed to put arguments into the
fundamental domain;

– some functions have a standard interface (e.g. choice of units), but an
alternative interface is much more efficient, so the initial statements per-
form the necessary conversions.

In both cases, we can eliminate the respective initial instructions if we can
verify the stricter preconditions, or if we can rewrite the upstream calculation
to produce results matched to the more efficient interface.

• Instruction selection, For example merging disjoint bitfields by either log-
ical or or arithmetic add instructions uses different functional units on some
processors. In such cases, conventional optimizing compilers switch instruc-
tions to get better schedules; in our approach, we emit a join in the assembly
code and let the code graph scheduler select the better branch in each case.

• Multiple code paths beyond single-instruction alternatives: It is possible
to do some computations in different units, e.g., evaluating polynomials in the
scalar floating point unit or the vector floating point unit. Such alternative
code paths can be used in two ways:

– map f, where f is a simple function, can be unrolled and performed
simultaneously on different data in different execution units;

– the code can be in-lined in different contexts where relative demand on
execution units, register pressure, etc., vary enough to make one code
path more efficient than another.

2In all known examples, the second result is always a condition code, i.e. carry or overflow,
but we think it will be better to treat all results uniformly.

8 3 CODE GRAPH SYNTAX AND SEMANTICS

3.2 Code Graph Semantics

It is an established result that conventional term graphs, extended with sequencing
information for source (input) and sink (output) nodes, are obtained as arrows of
free gs-monoidal categories over conventional signatures [3]. GS-monoidal categories
can be obtained as a generalisation of cartesian categories3, where the naturality
conditions are weakened for the transformations of duplication (sharing) ∇α : α →
α×α and termination !α : α → 1l, where 1l denotes the unit of ×, which in concrete
set-based semantics is just any one-element set.

For accommodating the fact that hyperedges can have a multiple output tenta-
cles it is suficient to replace conventional signatures with signatures where function
symbols may have a vector of result types. For joins, we add an additional trans-
formation ∆α : α× α → α, together with appropriate laws.

The part of the graph in Fig. 1 from the input up to and including the first per-
mutation (and ignoring the long edge) will then be translated into the following
expression:

(vspltw ⊗ o4048⊗ fours);vmaddfp;∇;(∇⊗ I);
(((neg4⊗ vctucs 2);vand)⊗ (vrfirm xs;vctucs 2)⊗ ((vctucs 0⊗ 2);vslw)) ;

(∆⊗ I);∆;(∇⊗ partialsplat);vperm

The first line extends up to the upper duplication node and its three outgoing
tentacles, and the second line ends just before the three joining tentacles.

Formalising our code graphs in a simple extension of gs-monoidal categories has
the advantage that this provide us with a combinator language for our code graphs
that easily accommodates the macro mechanism, and the relational (multi-algebra)
semantics of [4, 5] also carries over without problems:

• ⊗ is parallel composition of relations;

• !α is the only total function from α to 1l;

• duplication ∇α is interpretated is the function that maps each x : α to the
pair (x , x);

• joining ∆α is interpretated as the relation [[∆α]] with

(x , y)[[∆α]]z ⇔ x = z ∨ y = z .

3The basic language of strict monoidal categories has identities Iα : α → α, sequential compo-
sition “;” such that (f ;g) : α → γ for f : α → β and g : β → γ, and parallel composition ⊗ such
that (f ⊗ g) : (α× β) → (γ × δ) for f : α → γ and g : β → δ.

3.3 Macro Assembly Language for Data-Flow Code Graphs 9

This way, if the semantics of each opcode can be given as a relation (typically
a function) from its inputs to its outputs, then each code graph G with types
〈α1, . . . , αm〉 of input nodes and types 〈β1, . . . , βn〉 of output nodes has as semantics
a relation between the corresponding cartesian products:

[[G]] : α1 × · · · × αm ↔ β1 × · · · × βn

This relation is interpreted as the set of total functions contained in it; the sched-
uler is permitted to implement any of these functions, and essentially does this by
choosing one alternative from each join.

With this semantics, proving that a code graph G satisfies a specification entails
showing that each each total function contained in [[G]] is correct with respect to
the specification under consideration. When the specification is also given as a
relation (see [7]), then this correctness condition boils down to a simple inclusion
of relations.

Equipped with this understanding, several improvements fit in without any prob-
lems. Amongst these are “non-deterministic constants”: Constants are represented
by hyperedges with typically one output tentacle and no input tentacles. Such
hyperedges can be labelled with expressions denoting a set of possible values.

3.3 Macro Assembly Language for Data-Flow Code Graphs

In concrete syntax, a code graph of the Coconut Assembler language is presented
in a way that is very similar to the equation systems used by Ariola and Klop [2]
to denote (cyclic) term graphs. This equational approach allows us to write down
sub-trees of a code graph in conventional expression notation, and expresses sharing
(and, in the case of [2], cycles) through references to node names.

In our language, the following additional features are present:

• Left-hand sides can be either single identifiers, or pairs of identifiers. The
latter will be used for opcodes that return two results.

• Joins are represented by identifiers that occur on several left-hand sides.

• Macro definitions encapsulate graphs with an arbitrary number of interface
nodes ; macro instantiations can be mixed with equations in graph definitions.
A macro instantiation is understood to connect a copy the encapsulated macro
graph via the interface node instantiations with nodes of the containing graph.
Macro instantiations are statements instead of as expressions since this adds
flexibility to potential reuse of macro components. All identifiers occurring in
a macro definition, including in its interface, are local.

10 3 CODE GRAPH SYNTAX AND SEMANTICS

• Statements can, besides equations, macro instantiations, and macro defini-
tions, also be just node declarations; this enables type declarations to be
attached to nodes that otherwise occur only in macro instantiations.

Complete assembly programs are passed to the scheduler as macro instantiations
of the shape foo(in1, . . . , inm , out1, . . . , outn) in an environment where all necessary
macro definitions are visible.

The resulting language has the following abstract syntax:

node → identifier :: type | identifier
expr → identifier | numeric constant

| opcode expr, ... , expr
statement → equation | node | macro-instantiation
macro-definition → identifier (identifier+) { statement∗ }
macro-instantiation → identifier (identifier = expr, ...)

equation → node = expr | (node, node) = expr

Type annotations on nodes can be used for documentation and are checked; type
checking mainly relies on the type information available for opcodes.

Type checking uses the typing of assembly instructions only at a very low level,
essentially only to distinguish the the kinds of registers that can be assigned to
nodes by the scheduler. The rationale behind this is that apparently inconsistent
use of the same value at different types may still be correct with respect to a
(typically relational, non-univalent) specification. In fact, in one of our examples
dual use of the same numeric constant both as a (redundant) bit mask and as a
floating point value saved a register and thus enabled a tighter schedule.

3.4 Assembly into Code Graphs

Macro assembly programs are first converted into direct code graph equation systems
by recursively performing the following steps:

• For each expression e that is not just an identifier, for each occurrence of
e as an argument of either an opcode or a macro instantiation, a new node
identifier n is generated, the occurrence is replaced by a reference to n, and
an equation n = e is inserted.

• Macro instantiations are expanded by

– for each argument assignment n = e in the argument list of the macro
instantiation, deriving an instance of the macro body by replacing each
occurrence of n with e, and deleting all equations that would have a
non-identifier on the left-hand side.

11

– obtaining the direct code graph equation systems from that instance of
the body, and

– including the resulting equations and declarations into the calling scopem
after renaming all clashing identifiers.

A direct code graph equation system defines a code graph as follows:

• Equations containing nodes on the right-hand side that occur in no other
equation on the left-hand side are deleted — this is used to eliminate potential
alternatives for which insufficient inputs have been provided.

• Numeric constants only occur as right-hand sides of equations; each numeric
constant corresponds to a no-input-single-output hyperedge incident with the
node on the left-hand side of its equation.

• Opcodes only occur top-level on right-hand sides, and have only identifiers as
arguments. Each equation with an opcode on the right-hand side corresponds
to a hyper-edge with output tentacles incident with the nodes corresponding
to the equation’s left-hand side, and with input tentacles incident with the
nodes corresponding to the opcode arguments.

In the process, some nodes may receive several output edges since their identifiers
occurred on the left-hand sides of several equations — these are the join nodes.

The top-most call induces a directed environment, from in1, . . . , inm to out1, . . . , outn ,
and we currently only consider cycle-free graphs, so we can perform garbage col-
lection after each macro expansion: Operations whose results are never used, and
operations that do not have all necessary inputs supplied to them can be deleted –
normally the latter will delete unused alternatives in joins. If this results in deletion
of any outi , this is of course an error.

4 The Pipeline Scheduler

4.1 Declarative Aspects of the Scheduler

Scheduling a pure data flow is equivalent to solving a constraint problem, where
the constraints arise from data dependency, latency of instructions, finite number of
physical and logical registers, limits on the number and types of instructions which
can be dispatched per cycle, other constraints whose form varies from processor to
processor (including size and organization of dispatch and completion queues).

We solve the problem using a greedy algorithm with backtracking, implemented in
Haskell using lazy list generation and pruning. Given our target applications, we set

12 4 THE PIPELINE SCHEDULER

two somewhat contradictory aims: given a maximum number of cycles, exhaustively
list the feasible schedules; find at least one such “quickly”.

The basic algorithm is to start with outputs and put them in a list of possible
instructions, and start scheduling the last machine cycle, working backwards in
time. At each step we try all possibilities of scheduling instructions, and we follow
the input tentacles of these instructions. If we encounter a join, we try adding each
of the hyperedges in turn to the schedule set. After scheduling, we solve a second
constraint system to assign physical registers to the hyperedges which represent
instructions, as well as loading the constants into registers. Some feasible schedules
may not have feasible register allocations.

The execution time of the basic algorithm would be exponential in the code graph
size, so we must prune partial schedules which we know cannot be completed to
feasible schedules. The pruning code is the main source of complexity in the sched-
uler.

4.1.1 Example: Joins In Splines

In Figure 1, we show the code graph for a fragment needed for efficiently computing
nonuniform Fourier Transforms as described in [1]. This operation requires the
evaluation of a function of two variables defined as the tensor product of two uniform
linear splines, on a 4x4 regular grid of points. This fragment evaluates the uniform
linear spline on 4 points with uniform separations known in advance. It occurs twice
in parallel in the complete routine. Within each of the spline calculations, there
is a three-way join, indicating multiple equivalent code paths. In this example,
the alternative code paths are each of the same length, with similar latencies, but
on the target processors one of the paths requires the same (vector floating-point
(VFPU)) execution unit for both instructions, while the other paths use different
units (the VFPU and vector simple integer unit). In the common case that the
vector-floating-point unit is the bottleneck, one of the other two execution paths
will always be picked, but if the complete code balances the execution unit usage,
it may be more efficient to use different alternative code paths in the left and right
instances. Which of these execution paths is more efficient may depend on which
constants are used elsewhere in the code graph, because one path requires a register
to be loaded with the value 2 and the other with the value −4. If either of these
constants can be shared, register pressure may be reduced, which could result in a
more efficient overall schedule.

4.2 Adding Control Flow

Of course, we are often interested in scheduling a program which does have con-
trol flow, for example a program which maps a function over an array of values.

4.3 Example: Map of e iθ over a floating-point vector 13

Wrapping a schedule for the declarative function in a loop would do this, but is
unlikely to be maximally efficient. While we could unroll the loop and gain perfor-
mance in this manner, we would also increase code size. An even better option is
to pipeline the loop body, so that in iteration n we are in the process of doing part
of calculations n, n + 1, ..., n + k , where k is the number of stages. This is the only
control flow pattern we currently recognize. Scheduling pipelined loop bodies is the
same as scheduling pure dataflow, except that we have to add extra constraints for
conflicts between different stages.

4.3 Example: Map of e iθ over a floating-point vector

As an example for this staged sheduling of consecutive incarnations of a loop body
we now present an example where we read in a vector of θ values and calculate
vectors of sin(θ) and cos(θ). We read the vector in 128 bit short vector chunks, and
process the four 32 bit floats in parallel.

The assembly source for the single macro defining the body of this calculation (with
several machine-generated constants) is listed in appendix A; an abstract view of
the result of scheduling the corresponding code graph for this is shown (in the
shape of the dual dependency graph) in Figure 2, with constants omitted, and each
hyperedge drawn as a node in the column corresponding to its stage of execution,
and the row corresponding to the cycle in which it is dispatched. Arrows extending
from one column to the next are carried forward to the next stage. Note that this
code graph is entirely declarative–with no control flow. Most instructions are not
dispatched in consecutive cycles, because of execution latency constraints. This
scheduled loop body executes in 19 cycles, which are separated in the diagram by
horizontal grey lines, and are labeled by the numbers 0 to 18. The code graph is
scheduled over 5 stages, indicated by shaded and unshaded columns, which means
that the value of θn loaded in cycle 15 of iteration n of the loop will be processed
during iterations n to n+4, and at the end of iteration n+4, sin(θn) and cos(θn) will
be stored. To be useful, loop mechanics (a branch and incrementing of the induction
variable and possible pointer arithmetic) must be added, but our scheduler finds
schedules to which these instructions can be added at zero cost.

Figure 3 gives the performance results of running this code on a floating-point array,
with the results being stored to separate floating-point arrays. The libc code is a
C loop containing calls to the standard math library (double precision, since it
was faster). The vecLib code uses short vector calls from the accelerate framework
installed with Mac OS X 10.3. The gcc code is the code graph from Figure 2,
written in C using the Altivec extensions built into gcc. The first three examples
were compiled with cc -O3 -mcpu=7450, to enable processor-specific scheduling.
The Coconut code uses the same code graph, written in our declarative assembly
language and scheduled with our current prototype compiler.

14 4 THE PIPELINE SCHEDULER

stage 1 stage 2 stage 3 stage 4 stage 5
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

theta

shifted

whole

normalised

frac2

intpart

frac1

fractional

segment

sinindexandsign

sinmap

sinmapsplat

sinindex

sinrot1

sinsign

sinrot

cosindexandsign

cosmap

cosmapsplat

cosindex

cosrot1

cossign

cosrot

square

costerm0

costerm

sinterm0

sinterm

cosine0

cosine

sine0

sine

storecosine

storesine

Figure 2: Dual dependency graph for the calculation of sine and cosine pairs

15

cycles/float versus libc versus Coconut
libc 74 - 31

vecLib 26.65 2.8 11
gcc 5.9 13 2.5

Coconut 2.4 31 -

Figure 3: Performance of θ 7→ e iθ applied to an array in L1 cache.

Figure 2 shows our schedule using 5 stages and 19 cycles, or 2.375 cycles per floating
point operation, which is very close to what we measure. Our current scheduler only
partially enumerates valid register allocations, so there may be a shorter schedule.
However this code contains 17 vector-floating point instructions, only one of each
can be dispatched per cycle, thus there is no schedule with fewer than 17 cycles.

5 Related Work

Somewhat to our amazement, a literature seach did not turn up any previous effort
at designing an assembler-level declarative language. There is clearly some related
work in the low-level code optimization literature (which is too vast to cite), but
a fundamentally different approach is taken there: existing, or recently generated,
assembler code is taken as a specification, passed through advanced and clever code
analysis, from which some candidate semantics-preserving code transformations are
derived and applied to find more efficient code sequences. To us, this resemble a
typical local optimization technique4, while our approach is in some sense global,
at least over a given code chunk. We feel that this is why we are able to obtain a
better schedule in the linear spline example.

Others have already given assembly language a more modern treatment. Of these,
the work on Typed Assembly Language (TAL) [8] and the “higher-level” assembler
of C-- [9] stand out. Like TAL, our assembler is typed, but as we strive for extreme
efficiency, we have had to abandon portability altogether.

It would of course be interesting to see if our ideas can be generalized to other
assembly languages than the PowerPC. The thorough information contained in [11]
about the design of machine-description languages is an excellent starting point.
The experience gathered with the SALTO system [12] is also quite relevant.

4where optimization here is taken in the sense of smooth optimization of an objective function

16 REFERENCES

6 Conclusion and Future Work

We are pleased that our initial idea of combining a declarative paradigm with a
low-level assembly language was not only realizable, but in fact gives results which
significantly outperform conventional compiler technology. Certainly our language
design has brought a tremendous amount of clarity to our own internal discussions
on instruction selection and on the development of our prototype scheduler. How-
ever, this is just a small step in the much larger design and implementation of
Coconut.

We expect to enrich our assembly language significantly in the next few months.
Our first order of business will be to investigate the expressive power of combinators
on code graphs. We hope to be able to use these combinators to express larger pat-
terns instead of control-flow based code fragments. The use of combinators should
allow us to continue to do very aggressive instruction scheduling and pipelining, by
making important semantic information available to the scheduler, thus obtaining
even larger performance gains on medium-sized code chunks. Currently we write
different schedulers for each combinator, because we don’t have enough experience
and examples to know how to abstract this into a scheduler-combinator language
to parallel the code graph combinators.

References

[1] C. K. Anand, T. Terlaky, and B. Wang. Rapid, embeddable design method for
spiral magnetic resonance image reconstruction resampling kernels. Optimiza-
tion and Engineering, 5(4):485–502, 2004.

[2] Zena M. Ariola and Jan Willem Klop. Cyclic lambda graph rewriting. In
Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science,
pages 416–425, Paris, France, 4–7 ‘jul’ 1994. IEEE Computer Society Press.

[3] A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via
gs-monoidal categories. Applied Categorical Structures, 1999.

[4] Andrea Corradini and Fabio Gadducci. Functorial semantics for multi-algebras.
In J. L. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques,
volume 1589 of LNCS, pages 78–90. Springer, 1999.

[5] Andrea Corradini, Fabio Gadducci, and Wolfram Kahl. Term Graph Syntax
for Multi-Algebras. Technical Report TR-00-04, Dipartimento di Informatica,
Università di Pisa, 2000.

[6] B. Hoffmann and D. Plump. Jungle evaluation for efficient term rewriting.
In J. Gabrowski, P. Lescanne, and Wolfgang Wechler, editors, International

REFERENCES 17

Workshop on Algebraic and Logic Programming, volume 49 of Mathematical
Research, pages 191–203. Akademie-Verlag, 1988.

[7] Wolfram Kahl. Refinement and development of programs from relational spec-
ifications. Electronic Notes in Computer Science, 44(3):4.1–4.43, 2003.

[8] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(3):527–568, 1999.

[9] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: A portable
assembly language that supports garbage collection. In Gopalan Nadathur,
editor, Principles and Practice of Declarative Programming, PPDP 1999, paris,
France, volume 1702 of LNCS, pages 1–28. Springer, ‘OCT’ 1999. Invited talk.

[10] Detlef Plump. Term graph rewriting. In Hartmut Ehrig, Gregor Engels, Hans-
Jörg Kreowski, and Grzegorz Rozenberg, editors, Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools, chapter 1, pages 3–61. World Scientific, Singapore, 1999.

[11] Norman Ramsey, Jack W. Davidson, and Mary F.
Fernández. Design principles for machine-description languages.
http://www.eecs.harvard.edu/˜nr/pubs/desprin.pdf, 2000.

[12] Erven Rohou, Francois Bodin, Andre Seznec, Gwendal Le Fol, Francois Charot,
and Frederic Raimbault. SALTO: System for assembly-language transforma-
tion and optimization. Technical Report RR-2980, INRIA, 1996.

18 A MACRO ASSEMBLY CODE EXAMPLE

A Macro Assembly Code Example
cossin (theta, sine, cosine) {

vu_28 = Constu32Splat 28;
vc_0to3 = Constu32Splat 0x00010203;
vu_31 = Constu32Splat 31;
vf_zero = Constu32Splat 0;
vf_1_2pi = Constf32Splat 1.5915494309189535e−1;
vf_1_56 = Constf32Splat 1.7857142857142856e−2;
vf_28 = Constf32Splat 28;
vf_1_2 = Constf32Splat 5e−1;
vf_sin1 = Constf32Splat 2.243993266e−1;
vf_sin3 = Constf32Splat −1.881409241e−3;
vf_cos2 = Constf32Splat −2.517754893e−2;
vf_cos4 = Constf32Splat 1.055622430e−4;
sinindices1 = Constu8 0,4,8,12,16,20,24,28,24,20,16,12,8,4,0,5;
sinindices2 = Constu8 9,13,17,21,25,29,25,21,17,13,9,5,0,4,8,12;
partialsplat = Constu8 3,3,3,3,7,7,7,7,11,11,11,11,15,15,15,15;
sinevalues1 = Constf32 0, 0.2225209340, 0.4338837393, 0.6234898020;
sinevalues2 = Constf32 0.7818314825,0.9009688678,0.9749279123,1.0;
cosindices1 = Constu8 28,24,20,16,12,8,4,0,5,9,13,17,21,25,29,25;
cosindices2 = Constu8 21,17,13,9,5,0,4,8,12,16,20,24,28,24,20,16;
partialsplat = Constu8 3,3,3,3,7,7,7,7,11,11,11,11,15,15,15,15;
vf_one = Constf32Splat 1;

shifted = vmaddfp theta, vf_1_2pi, vf_1_56;
whole = vrfim shifted;
normalised = vsubfp shifted, whole;
frac2 = vmaddfp normalised, vf_28, vf_zero;
intpart = vrfim frac2;
frac1 = vsubfp frac2, intpart;
fractional = vsubfp frac1, vf_1_2;
segment = vctuxs intpart, 0;
square = vmaddfp fractional, fractional, vf_zero;

sinindexandsign = vperm sinindices1, sinindices2, segment;
cosindexandsign = vperm cosindices1, cosindices2, segment;
sinmap = vand sinindexandsign, vu_28;
cosmap = vand cosindexandsign, vu_28;
sinmapsplat = vperm sinmap, sinmap, partialsplat;
cosmapsplat = vperm cosmap, cosmap, partialsplat;
sinindex = vaddubm sinmapsplat, vc_0to3;
cosindex = vaddubm cosmapsplat, vc_0to3;
sinrot1 = vperm sinevalues1, sinevalues2, sinindex;
cosrot1 = vperm sinevalues1, sinevalues2, cosindex;
sinsign = vslw sinindexandsign, vu_31;
cossign = vslw cosindexandsign, vu_31;
sinrot = vor sinrot1, sinsign;
cosrot = vor cosrot1, cossign;
sinterm0 = vmaddfp square, vf_sin3, vf_sin1;
costerm0 = vmaddfp square, vf_cos4, vf_cos2;
sinterm = vmaddfp fractional, sinterm0, vf_zero;
costerm = vmaddfp square, costerm0, vf_one;
sine0 = vmaddfp costerm, sinrot, vf_zero;
cosine0 = vmaddfp costerm, cosrot, vf_zero;
sine = vmaddfp sinterm, cosrot, sine0;
cosine = vnmsubfp sinterm, sinrot, cosine0;

}

