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Abstract


Parnas together with a number of colleagues established the systematic use of certain kinds
of tables as a useful tool in software documentation and inspection with an accessible, multi-
dimensional syntax and intuitive semantics.


Previous approaches to formalisation of table semantics based their definitions on the
multi-dimensional array structure of tables and thus achieved close correspondence with the
intuitive understanding of tables.


In this paper, we argue that a different view, supporting a compositional semantics, is
more advantageous for tool support and for reasoning about tables. For this purpose, we also
need a compositional table syntax, and we perform an analysis of table syntax that leads us
to a particular compositional view of table structure.


This simple, inductive view of the structure of tables allows us to provide highly flexible
tools for defining the semantics of tabular expressions. The straight-forward compositional
formalisation of table semantics on the one hand yields very general table transformation
theorems and enables us to perform fully formal proofs for these theorems in a mechanised
theorem prover, and on the other hand also may serve as basis for the implementation of
semantics-aware table support tools.
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1 Introduction


Starting 1977, Parnas et al. introduced the use of two-dimensional expressions called tables
into software requirements specification documents as a means of organising the presentation of
complex relations [HKPS78, HPU81, PAM91, Par94]. While in the beginning, the meaning of
these tables was simple and intuitively clear, over time, more table kinds were introduced and
the need of a more formal definition of their meaning was felt.


Parnas formally defined the meaning of ten different kinds of tables in [Par92], using separate
definitions to assign relations, functions, or predicates as meaning to tables of each kind. Al-
though he does not discuss syntactic composition of tables, Parnas’ definitions of table semantics
are compositional in the sense that he first defines the meaning of a cell under the influence of
the relevant headers as a relation, (partial) function, or predicate, and then lets the meaning of
the table be the union, or disjunction, of all the meanings of the cells of the table’s grid. Parnas
called his tables also tabular expressions to emphasise that they still should be considered as
mathematical expressions, which justifies their use for example in recursive definitions. Parnas’
disjunctive definitions for normal and inverted tables were reformulated in a conjunctive shape
by Zucker for discussing table transformation [Zuc96, ZS98].


Janicki proposed a first unified framework for table semantics [Jan95, JK01]; the term tabular
expression was now defined to mean a table together with a semantic rule that defines how the
relational meaning of the table is derived from its entries, and semantic rules were provided for
the table kinds of [Par92].


Abstracting this approach to a more algebraic flavour, Desharnais, Khedri, and Mili, starting
from understanding grids and headers as separate arrays of relations [DKM01], proposed to in-
terpret tables using relation algebraic operations mixed with array reduction operations inspired
by the programming language APL. This results in a very elegant formalism that offers an al-
ternative, much more concise way to define semantic rules for tables — it is not demonstrated
how the separate definitions for the different table kinds can be systematically derived from the
semantics rules of tabular expressions á la [JK01].


In some sense, we may consider the approaches to table semantics by Parnas, Janicki, and Zucker
[Par92, Jan95, Zuc96, JPZ97, JK01] as geared towards “table users”, in particular, (software)
engineers writing, reading, or inspecting such tables and needing to understand exactly what
the tables they interact with mean.


The relation-algebraic semantics of [DKM01] can be seen as geared more towards facilitation of
algebraic manipulation and mechanised reasoning about tables.


In this paper, we present a new framework of defining semantic rules for tables in a general and
flexible way. This new table semantics framework is explicitly motivated by the desire to have an
understanding of tables that can be used for reasoning about tables and table transformation,
and also as a basis for machine-support of table manipulation and transformation. It may
therefore appear less “direct” to the table user, but the compositional approach we take has
advantages for reasoning and mechanisation. To demonstrate this we include in the appendices
the basics of a table library in the purely functional programming language Haskell [PJ+03];
along the same lines, a theory has been developed in the mechanised theorem proving system
Isabelle/HOL [NPW02], including proofs of the presented table transformation theorems.1


In the remainder of this section, we provide some guidance to the theoretical principles behind
our analysis of tables and an overview of the body of this paper.


1The Haskell library and Isabelle theories are available at URL: http://www.cas.mcmaster.ca/˜kahl/Tables/.







4 1 INTRODUCTION


A typical table, as for example the table Tf drawn in Fig. 1 (taken from [JPZ97]), consists
of a two-dimensional grid and headers; these are subdivided into cells containing (predicate)
expressions.


y = 10 y > 10 y < 10 H1


H2
x ≥ 0


x < 0


0 y2 −y2


x x + y x − y
G


Figure 1: The table Tf


The whole table can again be used as an expression, and frequently its meaning is, at least
intuitively, explained as a conventional expression — the following two presentations for the
meaning of Tf may be found in [JPZ97], first one in liberal mathematical notation:


f (x , y) =













































































0 if x ≥ 0 ∧ y = 10


x if x < 0 ∧ y = 10


y2 if x ≥ 0 ∧ y > 10


−y2 if x ≥ 0 ∧ y < 10


x + y if x < 0 ∧ y > 10


x − y if x < 0 ∧ y < 10


Then one in classical predicate logic notation:


(∀ x .(∀ y .((x ≥ 0 ∧ y = 10) ⇒ f (x , y) = 0) ∧ ((x < 0 ∧ y = 10) ⇒ f (x , y) = x ) ∧


((x ≥ 0 ∧ y > 10) ⇒ f (x , y) = y2) ∧ ((x ≥ 0 ∧ y < 10) ⇒ f (x , y) = −y2) ∧


((x < 0 ∧ y > 10) ⇒ f (x , y) = x + y) ∧ ((x < 0 ∧ y < 10) ⇒ f (x , y) = x − y))).


With this expression-building nature, tables are a syntactic device that is in a certain sense
similar to the syntactic devices of infix operators like “ + ”, mix-fix operators like “( , )”, or
“arrangement operators” like subscripts or superscripts.


All these syntactic devices by themselves are essentially meaningless, but only acquire meaning
when some semantic rule is provided. Nevertheless, we may still discuss the structure of the
syntactic constructions produced by these syntactic devices. For example, for infix operator
application, this structure is that of an ordered pair. We analyse the structure of tables in
Sect. 2, and arrive at a simple, compositional structure of a generalised class of tables. This
table structure is equipped with an intuitive typing system in Sect. 3.


The structure of syntactic constructions induces the ways how semantics may be defined for
such a syntactic device. For example, since an infix operator application results in an ordered
pair, the semantics of an infix operator is given by a function that has an ordered pair as
arguments, usually presented as a binary function. Some operators, like the pairing operator
“( , )”, are only intended for structure building (in this case, for building pair structures), and
thus induce container data types (in this case Cartesian product types). In fact, Cartesian
products are the container data type associated with the structure of binary infix operator
applications, so knowledge about ways to define functions over Cartesian products is necessary
for being able to define the semantics of binary infix operators. In Sect. 4, we define the general
mechanisms of structure-oriented table processing, and thus show how to define functions over
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tables considered as container data types, exploiting the inductive structure elicited in Sect. 2.
In particular, we propose a homogeneous treatment of all dimensions in tables with arbitrary
dimensionality, and do not limit ourselves to relations as results of such functions, but permit
arbitrary interpretations.


Some infix operators are considered as “derived” — they are defined by rules that allow rewriting
any expression containing them into an equivalent expression not containing them. To a large
extent, this is also perceived to be the case for tables. For example, in the context of permitting
tables for defining recursive functions, Parnas writes [Par92]: “Each such table will be equivalent
to a more conventional mathematical expression; the rules governing recursive definitions are
unchanged.” The rules defining the translation of a table into a conventional mathematical
expression can of course be defined using the mechanisms introduced in Sect. 4; in Sect. 5 we
discuss how this view affects the organisation of tabular expressions and their semantics. Finally,
we present a collection of table transformation theorems in Sect. 6.


2 A Compositional View of Table Syntax


The attractiveness of tables is due in large part to their two-dimensional concrete syntax, which
has proven to be a very intuitive and accessible device for stringent documentation.


For most conventional programming and specification languages, the concrete syntax is one-
dimensional — such a language is a set of character strings over some alphabet, and the concrete
syntax of such languages is defined by string grammars. The definition of the semantics of such
languages, however, usually does not start from the productions of the concrete syntax, but from
the abstract syntax, which defines the abstract view of such a language as a set of terms which
are essentially a certain kind of labelled directed trees — these can be understood as parse trees
liberated from details such as white space or parentheses. As such, these trees represent a direct
view of how larger, more complex language elements (e.g., programs) are composed from simpler
language elements. The characteristic feature of semantics defined in this way is compositionality,
i.e., the property that the semantics of a larger program depends only on the semantics of its
immediate constituents and on the way it has been composed from these. Powerful algebraic
properties of the semantic rules associated with simple syntactic composition mechanisms are
particularly useful in supporting reasoning about programs and program transformation.


Previous approaches to table semantics [Par92, Jan95, Zuc96, DKM01, JK01] all started from
the multi-dimensional structure of the concrete syntax, and from there defined a more or less
monolithic semantics. Proving table transformation theorems as contained in [ZS98] (see also
[Zuc96, SZP96]) is therefore always burdened (at least notationally) with the full semantics over
all dimensions, even if the transformation itself only affects one or two dimensions.


In order to achieve more modular table transformation theorems and proofs, we need compo-
sitionally defined table semantics. For this, however, we first of all need a compositional view
of table syntax, i.e., we need to investigate how larger tables can be constructed from smaller
tables. The remainder of this section develops such a compositional view of table syntax.


In all previous formalisations of table semantics, tables of arbitrary dimensionality are allowed:
an n-dimensional table has, as its central component, a grid, which is an n-dimensional array
of cells, and it also has n headers, which are one-dimensional arrays of header cells; the length
of each header is the same as that of the corresponding dimension of the grid.


This system of arrays is used in the previous literature as the abstract syntax of a table, and
table semantics and transformation involve the use of sometimes quite sophisticated indexing
mechanisms. Although such mechanisms allow us to talk about, e.g., “table slices”, it appears
that no considerations of table composition and decomposition have been published so far.
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One possible reason behind this is that in most of the literature, attention is focused on “com-
plete” tables, i.e., tables that, in different ways for different table kinds, completely cover a
relevant domain. Since fragments of a “complete” table will typically not be “complete”, table
decomposition is not natural in such contexts.


However, “completeness” is a semantic aspect, and we decided to find a compositional syntax of
tables in order to be able to define compositional semantics. Therefore, no semantic inhibitions
can keep us from syntactically decomposing tables, and we shall do so in the framework of the
traditional abstract syntax, which considers tables as systems of arrays, and we illustrate our
efforts using the traditional concrete syntax, which depicts tables as boxed grid arrangements.


One natural approach to answering the question “what is a table” is to investigate what the
simplest tables are, and how more complex tables can be built from simpler tables.


However, it turns out that there are several problems with determining the precise nature of the
simplest tables. Therefore, we first investigate how known tables can be considered as composed
from constituent structures.


2.1 Horizontal Table Concatenation


Let us first consider again the table Tf drawn in Fig. 1. This table is two-dimensional, as made
obvious by its graphical presentation. It has two headers, H1 and H2, and the grid G .


Such a table can be split along any grid line — for the time being we consider only those splits
that split the first header, H1, for example into the tables Tf ,a and Tf ,b drawn in Fig. 2.


y = 10 y > 10 H1a y < 10 H1b


H2
x ≥ 0


x < 0


0 y2


x x + y
Ga H2


x ≥ 0


x < 0


−y2


x − y
Gb


Figure 2: The tables Tf ,a and Tf ,b


Both of these tables are still two-dimensional, and both have the same header in the second
dimension. We call the operation that joins Tf ,a and Tf ,b into Tf table concatenation:


Notation 1 We use the infix operator ||| for concatenation of tables of the same dimension.


Therefore we have:


Tf = Tf ,a |||Tf ,b


The sequencing of the dimensions of graphically displayed tables will usually be indicated by
header labels such as H1, H2; in addition, the first header will usually be at the top, such
that the first dimension will be arranged in a horizontal way, so we also call ||| horizontal table
concatenation.


There is only one further obvious decomposition via |||, namely Tf ,a = Tf ,aa |||Tf ,ab, with the
two component tables drawn in Fig. 3.


Substituting this new decomposition in the above decomposition of Tf , we obtain


Tf = (Tf ,aa |||Tf ,ab) |||Tf ,b .
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y = 10 H1aa y > 10 H1ab


H2
x ≥ 0


x < 0


0


x
Gaa H2


x ≥ 0


x < 0


y2


x + y
Gab


Figure 3: The tables Tf ,aa and Tf ,ab


However, there is nothing in the displayed or perceived table structure of Tf that indicates that
this decomposition is preferable to the differently parenthesised alternative


Tf = Tf ,aa |||(Tf ,ab |||Tf ,b) .


Therefore, it is natural to demand the following:


Requirement 1 Table concatenation ||| is associative,


(t1 ||| t2) ||| t3 = t1 |||(t2 ||| t3) ,


and if one of the two sides is defined, then so is the other.


Table concatenation ||| is not commutative, since, for example, the table Tf ,a′ := Tf ,ab |||Tf ,aa,
drawn in Fig. 4, is obviously “graphically” different from the table Tf ,a = Tf ,aa |||Tf ,ab from
Fig. 2.


y > 10 y = 10 H1a′


H2
x ≥ 0


x < 0


y2 0


x + y x
Ga′


Figure 4: The table Tf ,a′ := Tf ,ab |||Tf ,aa


This derives from the fact that the sequence of the presentation is an important part of tabular
notation — swapping columns obviously produces a different (albeit possibly equivalent) table.


Note that the only argument for this non-commutativity is that it appears as natural considering
the standard graphical presentation of tables. If one decides to consider ||| as commutative, then
its interpretations (see Def. 4.1.1) need to be commutative, too. In fact, from a semantic point
of view, demanding commutativity of the interpretations of ||| appears to be preferable.


An important question is whether further decomposition of Tf ,aa, Tf ,ab, and Tf ,b via ||| is possible
— this would yield empty tables that are (partial) units for concatenation.


• In [Par92, Zuc96], dimensions are explicitly restricted to length at least one, so empty
tables are not allowed.


• In [JK01], empty tables are not explicitly forbidden, but seem to be not intended.


• In [DKM01], empty tables are explicitly allowed, but not motivated. Since in that paper,
only relational meet and join are used for array reduction, and these operations have unit
elements, empty tables do not lead to any problems.
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Since it appears that the only motivation for allowing empty tables would be to obtain, in some
sense, a “nicer algebra”, we will disallow empty tables, but remember this as a design decision:


Issue 1 Should there be empty tables, i.e., (partial) units for |||?


2.2 Adding New Dimensions


What is the further decomposition of Tf ,aa? Its obvious components are the header “y = 10”
(let’s call it H1aa) and another, one-dimensional table that we call Tj , drawn in Fig. 5.


x ≥ 0 x < 0 H2


0 x GJ


Figure 5: The one-dimensional table Tj


We have “turned this table around”, since now H2 is the header in its first dimension. To obtain
the two-dimensional table Tf ,aa from the header H1aa and the one-dimensional table Tj , we need
a new operation for equipping a table with a header in a new dimension:


Notation 2 The infix operator . combines a header h and an n-dimensional table t into an
(n + 1)-dimensional table h . t .


In h . t , the header h will be the single header of the first dimension; dimensions of t will
accordingly be shifted in h . t .


Then we have Tf ,aa = H1aa .Tj , and H1aa is the only header of Tf ,aa in its first dimension, while
the first dimension of Tj is the second dimension of Tf ,aa.


2.3 Cells


We can decompose Tj , too, yielding Tj = Tj ,a |||Tj ,b with the components drawn in Fig. 6.


x ≥ 0 H2a x < 0 H2b


0 GJa x GJb


Figure 6: The one-dimensional tables Tj ,a and Tj ,b


If we decompose Tj ,a via ., we obtain a header Hj ,a and the object drawn in Fig. 7, which, by
analogy to the above, has to be a zero-dimensional table.


0 GJa


Figure 7: The cell [ 0 ]


Since this table is constructed from an expression in a single grid cell, we need a way to produce
a zero-dimensional table from such an expression:


Notation 3 For some cell content element e, the zero-dimensional table consisting of a single
cell containing e is written [ e ].


For most conventional tables, decomposition by ||| and . finally leads to such single-cell grids.
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2.4 A Short Detour: Indexed Tables


The definition of table syntax by Janicki et al. starts from table skeletons that are defined using
“cell connection graphs” [Jan95, JPZ97, JK01]. Under the assumption that there are no empty
tables, we also arrive at cells as the simplest tables via an argument based on this structure:
Since the simplest non-empty cell connection graph consists only of the grid, and since the
simplest non-empty grid has one element, the simplest table has to be a single cell, i.e., a simple
one-element grid containing an expression. Furthermore, tables have dimensions, and with
conventional table skeletons, the dimension of a table is the number of header nodes connected
to the grid in the cell connection graph. Since a cell has no headers, it is a zero-dimensional
table.


This argument does not contribute to the converse implication:


Issue 2 Are all zero-dimensional tables cells?


At first sight, the literature seems to be unanimous: An n-dimensional grid is a indexed set,
indexed by an n-dimensional Cartesian product; since there is only one zero-dimensional Carte-
sian product, and this contains only a single element, namely the zero-tuple, a zero-dimensional
grid contains exactly one element.


However, if we consider zero-dimensional tables to be any “grids without headers” according to
the approach to table decomposition we followed above, then we encounter some tables where,
after decomposition and stripping of all headers, the remaining grids contain more than one cell.


For example, in some applications, so-called indexed tables have been used. There, single-cell
headers appear to belong to a multi-cell grid, and the interpretation of the headers provides
indices (starting at zero) into the grid for retrieval of the result, as for example in the table
drawn in Fig. 8 (“%” stands for the “modulo” operation producing the remainder of integer
division).


x % 3 H1


H2 y %2
0 y2 −y2


x x + y x − y
G


Figure 8: An “indexed table”


Note that this indexed table is still considered as a two-dimensional table, and that even the grid
G without the headers would have to be considered as being two-dimensional, and decomposable
via special “grid concatenation” operators that would be different from the table concatenation
operators like |||.


In our opinion, however, it appears more natural to consider a tabular expression based on an
indexed table to be an abbreviation:


• It could be seen as abbreviating a tabular expression that contains the index-generating
functions in its semantic rule (we show later how to present this). The table would then
be composed from single cells with headers containing just the indices, as can be seen in
Fig. 9 — for indexed tables with more than about five elements in any one dimension, this
also greatly improves readability.


• Alternatively, the “indexed table” itself could be seen as abbreviating a conventional table
where every header cell explicitly relates its index with the contents of the corresponding
“long header” of the indexed table, as in Fig. 10.
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0 1 2 H1


H2
0


1


0 y2 −y2


x x + y x − y
G


Figure 9: The table Ti underlying the “indexed table” of Fig. 8


x%3 = 0 x%3 = 1 x%3 = 2 H1


H2
y%2 = 0


y%2 = 1


0 y2 −y2


x x + y x − y
G


Figure 10: The “indexed table” of Fig. 8 made explicit


(This can be seen as the result of expanding “abbreviated grids”, see 4.7.)


For either view of indexed tables, no grid concatenation operations are required.


One might argue also for other reasons that a grid without headers need not be a singleton
grid. However, whenever the table composition rule takes into account grid positions, then the
coordinates of these positions can be considered as implicit headers, and we would demand them
to be made explicit, as in the above discussion of indexed tables.


Therefore, we take the stance that header-less grids should be singleton expressions.


2.5 Regular Tables and Table Skeletons


Given an n-dimensional table, the next dimension is reached by adding a header element using
“.”. A table h . t therefore has one dimension more than t , and in that dimension only the
single header h.


Conventionally, two tables can be concatenated into a single table only if they coincide in their
lower dimensions, i.e., in all dimensions except the first. This ensures that in the concatenated
table, every dimension is described by a single system of headers. Tables where this is the case
will be called regular tables.


For the time being let us ignore nested headers (see 4.7); the system of headers for any dimension
can then adequately be described as a list of headers. Therefore, the whole table structure of a
regular table can be described by a list containing one header list for every dimension. We will
call such a list of header lists a regular table skeleton.


For example, the table Tf from Fig. 1 on page 4 has the following skeleton:2


regSkel Tf = 〈 〈y = 10, y > 10, y < 10〉, 〈x ≥ 0, x < 0〉 〉


If concatenation of two regular tables T1 and T2 is to yield a regular table T1 |||T2, then the
tails of the skeletons of T1 and T2 have to coincide.


Assuming regSkel T1 = d1 :: ds1 and regSkel T2 = d2 :: ds2, then T1 and T2 are called compatible
iff ds1 = ds2.


2 We display a list with elements x1, . . . , xn using the notation 〈x1, . . . , xn〉; we use the infix operator a for


list concatenation, and also employ the ML list construction notation x :: xs := 〈x 〉 a xs. The usage of variable
names like “xs” for lists is best understood by reading such names as plurals, in this case the plural of “x”. The
operator “::” associates to the right: x :: y :: ys = x ::(y :: ys).
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Concatenation of T1 and T2 to a regular table T1 |||T2 is only possible if they are compatible,
and then we have:


regSkel (T1 |||T2) = (d1
a d2) :: ds1


So concatenation of compatible regular tables produces a regular table that shares all lower
dimensions with the arguments, and the highest dimension is the concatenation of the highest
dimensions of the arguments.


Recently, Parnas suggested to consider “ragged tables”, too; for these, concatenation would
be restricted only to tables of the same dimension. (Dropping even that restriction would be
possible, but would make typing much more complicated.)


If one wanted to define skeletons for ragged tables, too, these would be tree-shaped. However,
since the main use of regular table skeletons is for determining legality of concatenation, skeletons
are not so important for possibly ragged tables.


Issue 3 Should attention be restricted to regular tables?


In this paper, we shall allow ragged tables, but we keep the requirement that only tables of equal
dimension can be concatenated, and we consider regular tables as a special case of our general
table concept. Accordingly, we consider regSkel as a partial function from tables into regular
table skeletons; regSkel T is defined if and only if T is regular.


3 Table Types as Initial Algebras


The compositional table syntax we elaborated in the previous section will be used in sections
4 and 5 to define compositional semantics; the central step in such a development is replacing
syntactic constructors with semantic operators. In the case of tables, this means that we replace
the table constructors with functions operating on the domains chosen for semantics of tables.
Since those semantic operators will be parameters of the overall semantics functions, we will be
dealing with higher-order functions, i.e., functions that accept functions as arguments. We also
will want to “partially apply” multiple-argument functions to only selected arguments, and use
the result as a function again.


For all this, a typed setting is useful in order to avoid confusion, and a functional mathematical
language eases presentation considerably. Such languages are for example polymorphic simple
type theory, or polymorphic simply-typed λ-calculus, which is the basis of Higher-Order Logic
(HOL) [GM93, NPW02], and typed set theories such as those used in the specification languages
Z [Spi89, ISO02] and B [Abr96]. The essential equivalence of the two approaches is shown in
[San98]; see also for example [Far03] for arguments in support of using such a language for
mathematical exposition. The syntax and type system of these mathematical languages is
closely mirrored in functional programming languages like ML [MT91] and Haskell [PJ+03].


In 3.1 we give a short introduction to the polymorphic simply typed λ-calculus we shall be using
as our mathematical language.


Both as semantics of tables, and, later, in the formalism defining semantics of tabular expressions,
we shall also use relations. Therefore, we include as 3.2 an overview of the relational operators
we shall be using; this may be skipped on a first reading.


For more information about typed λ-calculi see for example [Mit96]; for relations, [SS93, BKS97].


Finally, in 3.3, we show how to use the typing framework of 3.1 to give a formal definition of
table types as initial algebras in such a way that all grid cells have to have the same type, and
for each dimension, all header entries have to have the same type, but the type of grid cells and
the types of headers cells in the different dimensions may all be different.
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3.1 Functions and Types


In standard polymorphic simply typed λ-calculus, types can be


• base types, such as N for the natural numbers, Z for the integers, R for the real numbers,
or B for the truth values,


• type variables α, β, βi , . . .


• constructed types, using type constructors with fixed arity, including


– function types constructed using the binary infix type constructor “→”,


– product types constructed using the binary infix type constructor “×”, and


– sum types constructed using the binary infix type constructor “+”.


If C is an n-ary type constructor without any special fixity, and t1, . . . , tn are types, then the
resulting constructed type will be written “C t1 . . . tn”.


The function type constructor associates to the right, i.e., the type of functions with two ar-
guments of types t1 and t2 and results of type t3 may be written in either of the following two
ways:


t1 → t2 → t3 = t1 → (t2 → t3) .


If τ is a type substitution, i.e., a partial function from type variables to types, then we write
application of τ to some type t as τ t .


Well-typed terms are formed in the following ways:


• Variables x , y , z , . . . may be used at arbitrary types x : t , . . ., but in a common scope only
at one type. (Formally, typing of variables should be handled using so-called contexts,
which we omit for the sake of simplicity.)


• For a constant c defined with type t , i.e., for c : t , any instance c : τ t is a well-typed
term.


• For two well-typed terms f : t1 → t2 and a : t1, function application (f a) : t2 is a
well-typed term again.


• For a well-typed term b : t2 and a variable x , that, if it occurs in b, occurs there at type
t1, the λ-abstraction (λ x : t1 . b) : t1 → t2 is a well-typed term again.


λ-abstractions will be needed only occasionally in this paper. They are used to denote “nameless
functions”; they also enable conversion of implicit definitions such as “f (x ) = 3 · x + 1” into
explicit definitions “f = λ x : R . 3 ·x+1”. The parentheses around λ-abstractions are frequently
omitted; by convention, the scope of the variable bound by λ extends “as far right as possible”,
that is, usually to the end of the term or to a closing parenthesis for which the opening parenthesis
preceded the λ. Where it is clear from the context, we may omit the type of the bound variable
in λ-abstractions.


The parentheses around function applications may be omitted, too; the convention is that func-
tion application associates to the left, i.e., the application of a function f : t1 → t2 → t3 to two
arguments a : t1 and b : t2 may be written in either of the following two ways:


f a b = (f a) b .
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The type t1 → t2 → t3 of functions that take their two arguments separately is the curried
version of the type of functions that take two arguments in a pair. The two isomorphisms
between these types are:


curry : (t1 × t2 → t3) → (t1 → t2 → t3)


uncurry : (t1 → t2 → t3) → (t1 × t2 → t3)


with
curry = λ f : t1 × t2 → t3 . λ x : t1 . λ y : t2 . f (x , y)


uncurry = λ f : t1 → t2 → t3 . λ p : t1 × t2 . f (fst p) (snd p)


where fst : α× β → α and snd : α× β → β are the product projections.


Infix operators will have curried types: For an operator


⊗ : α→ β → γ ,


and terms e1 : α, and e2 : β, we write e1 ⊗ e2 for the application (⊗) e1 e2 of the operator
(turned into a function by the parentheses) to its two arguments.


Function application has higher priority than any infix operator, i.e., for arbitrary infix operators
⊗,


g a ⊗ h b = (g a)⊗ (h b) .


The central calculation rule of λ-calculi defines how to simplify application of a λ-abstraction:


(λ x . b) a = b[x ← a] ,


where b[x ← a] means the result of substituting a for x in b — substitution may need to rename
bound variables in b. (This rule, as a directed rewriting rule, is traditionally called β-reduction.)


Function composition is the infix operator


◦ : (β → γ)→ (α→ β)→ (α→ γ)


with (f ◦ g) x = f (g x ).


For table typing in 3.3, we shall need an extension to this standard calculus: We add the
syntactic category of type lists, where


• a type list variable bs, bsi , . . . is a type list,


• 〈 〉 is a type list, and


• if t is a type, and ts is a type list, then t :: ts is a type list,


and we also use list display notation like for object-level lists, for example:


〈t1, t2, t3〉 = t1 :: t2 :: t3 ::〈 〉


Then, we allow arguments to type constructors in selected positions to be such type lists, instead
of just types. Information about which argument positions take lists of types and not types is
part of the extended arity information, which, instead of just a natural number, now is a list of
flags, either t for types, or l for type lists.


The arity of the function type constructor “→” therefore is 〈t, t〉.
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3.2 Relations and Set Comprehensions


Besides → as the function type constructor, we also admit ↔ as the relation type constructor.
A relation R : A↔ B can also be seen as a subset of A×B , so set operations become available
for relations, and we shall use intersection ∩ and union ∪ in this way.


For a relation R : A↔ B , we use the conventional relational infix notation


xRy :⇔ (x , y) ∈ R ,


and for pairs that are elements of relations, we often use an alternative pair notation:


x 7→ y := (x , y) .


Since the identity relation BA : A↔ A with BA := {x : A • x 7→ x} is total and univalent, it can
also be used as a function BA : A→ A.


For relation construction, we shall frequently use set comprehension, denoted following the
pattern


{ declaration | predicate • term } ,


meaning the set of all values of term under bindings for the locally bound variables from decla-
ration that satisfy the predicate, for example,


{k : N | k < 4 • k2} = {0, 1, 4, 9}


There are two short forms for special cases: If the predicate is true, it can be omitted:


{ declaration • term } = { declaration | true • term } ,


and if the term is just the tuple of all variables in the same sequence as introduced in the
declaration, then the term may be omitted, for example:


{ k : N | k < 4 } = {0, 1, 2, 3}


{ k : N, q : Z | q2 + k = 1 } = {(0,−1), (0, 1), (1, 0)}


Quantifiers are used with the same pattern as set comprehensions:


∀ declaration | predicate1 • predicate2 ⇔ ∀ declaration • predicate1 ⇒ predicate2


∃ declaration | predicate1 • predicate2 ⇔ ∃ declaration • predicate1 ∧ predicate2


We will be using the following additional relational operations:


• Conversion: every relation R : A↔ B has a converse R` : B ↔ A, with


R
`
= {x : A; y : B | xRy • y 7→ x} .


• (Sequential) composition: For two relations R : A↔ B and S : B ↔ C , their composition
R ; S : A↔ C is defined as follows:


R ; S := {x : A; z : C | (∃ y : B • xRy ∧ ySz )}


• Range: For a relation R : A ↔ B , its range ran R is the set of second components of the
pairs in R:


ran R = {y : B | (∃ x : A • xRy)}


• Parallel composition: For two relations R : A ↔ B and S : C ↔ D , their parallel
composition (R ‖ S ) : A× C ↔ B ×D is defined as follows:


(R ‖ S ) := {x1 : A; y1 : B ; x2 : C ; y2 : D | x1Ry1 ∧ x2Sy2 • (x1, x2) 7→ (y1, y2)}
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3.3 Formal Definition and Typing of Tables and Table Constructors


When considering typing for tables, many different approaches are possible.


Here, we propose a very simple typing scheme for tables that is intended first of all to serve
as a clarifying instrument for the development of our approach towards table evaluation and
semantics in the next few sections.


For a first, intuitive table typing it is rather obvious that for every dimension, all header elements
of that dimension should have the same type. Since every cell of the grid is, at the lowest level,
combined with a header element of the lowest dimension, all grid cells should have the same
type, too.


Therefore, the type of n-dimensional tables may be parameterised by n + 1 types: one for the
grid cells, and, for each dimension, one for the headers of that dimension.


We organise the header types into a type list:


Definition 3.3.1 The table type constructor is written T and has arity 〈l, t〉.


For each type α, the type T 〈 〉 α of zero-dimensional tables, or cells, with content type α is the
isomorphic image of α via the cell constructor


[ ] : α → T 〈 〉 α .


(I.e., T 〈 〉 α is the free algebra over the signature containing only the one constructor [ ].)


For each type T bs α of n-dimensional tables and each type β, the type T (β :: bs) α of (n + 1)-
dimensional tables with header types β :: bs and cell type α is the initial algebra generated by the
two constructors


. : β → T bs α → T (β :: bs) α


||| : T (β :: bs) α → T (β :: bs) α → T (β :: bs) α


and the associativity law for |||.


This definition introduces the table constructors as constants of the indicated types.


For |||, one might consider to choose the simpler type T bs α→ T bs α→ T bs α; however, with
that choice, a legal instance of that type would be T 〈 〉 α → T 〈 〉 α → T bs α, and therewith
horizontal concatenation of cells would become possible. For this reason we reject this for the
body of this paper.


As a result of the above definition, we denote the type of n-dimensional tables with grid cells of
type α and headers in the i -th dimension of type βi for every i ∈ {1, . . . ,n} as


T 〈β1, . . . , βn〉 α ,


and have the following bidirectional typing rules for the table constructors:


c : α ⇔ [ c ] : T 〈 〉 α


h : β1 ∧ t : T 〈β2, . . . , βn〉 α ⇔ (h . t) : T 〈β1, . . . , βn〉 α


n > 0 ∧ t1, t2 : T 〈β1, . . . , βn〉 α ⇔ (t1 ||| t2) : T 〈β1, . . . , βn〉 α


Since in most programming languages, parameterisation by a list of types is not possible, we
show in the appendix a way to achieve a strongly-typed interface to tables in the functional
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programming language Haskell that is closely guided by the exposition in this section, but has
to accommodate the restrictions of Haskell’s type system. Our Isabelle/HOL formalisation uses
essentially the same approach.


In the approach followed in the appendix, greater technical elegance is achieved by treating cells
as headers over “no information”. This makes cells naturally concatenable, but essentially the
same method as above can be used to prevent this: imposing a stronger-than-principal typing
on operations such as table concatenation easily can restrict those operations to at least one-
dimensional tables. However, since there are technical advantages to a homogeneous treatment
of cells, we adopt these restrictions neither in the Haskell formalisation in the appendix, nor in
the Isabelle/HOL formalisation.


4 Tables as Container Data Structures


The discussion in Sect. 2 showed that n-dimensional tables with n > 0 can be seen as non-
empty lists of header-subtable pairs, constructed from singletons built via . and the associative
concatenation operator |||. In the following, we use this view of a table dimension as the basis
for defining functions with tables as domain by structural induction.


A different view would consider non-empty lists as constructed from singletons and a “cons”
operation adding a single element to a non-empty list. Defining structural induction based on
this view would have the advantage that operations replacing “cons” need not be associative,
but it would also have the disadvantage that in most cases, the effort for composing the two
components of singletons would have to be duplicated for the first-element component of the
treatment of the “cons”.


That disadvantage would disappear if we started from empty tables, i.e., from empty lists in
the individual dimensions. However, the necessity to provide an image for the empty list would
exclude (or make unsafe) some functions that can safely be defined on non-empty lists, for
example maximum of natural or real numbers. Since we consider this as an important argument
against introducing empty tables, we shall stick with the restriction to non-empty tables for the
remainder of this paper.


It is actually not hard to convert between the “cons view” of tables and the view starting
from . and |||, see the appendix section A.2.2 for conversions in the Haskell implementation;
the corresponding development has also been performed in the Isabelle formalisation, with all
proofs. In terms of expressivity, the two views are therefore completely equivalent. Since the
view starting from . and ||| is technically simpler and more elegant, we shall not consider the
“cons view” any further.


We now consider tables with the structure based on . and the associative concatenation ||| as
elicited in Sect. 2 and with the typing as defined in Sect. 3 as inductively defined container data
structures. So a table of type T 〈β1, . . . , βn〉 α contains cell elements of type α in the grid and
header elements of type βi in the header of the i -th dimension, just as a list of type seqα contains
list elements of type α and is inductively defined over the empty list and list construction “::”.


This perspective allows us to define functions over tables by structural induction similar to the
way list folding functions (formerly often called “reduce” functions) are defined over lists.


In 4.1 we show how to define such table folding functions for single dimensions, and then give
some example applications in 4.2. In 4.3 we introduce table evaluation structures that allow
folding whole tables. In 4.4 and 4.5 we discuss different ways to define table evaluation structures
for the semantics of normal tables; both ways are transferred to inverted tables in 4.6. Finally,
in 4.7, we discuss the integration of “abbreviated grids”, or nested headers, into our framework.
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4.1 Defining Functions over Tables


Functions mapping tables to values are most naturally defined via structural induction over
the structure of tables (this may also be called primitive recursion; in APL and other early
functional programming languages, primitive recursion functions over recursive data structures
are frequently called “reduce”, while in current functional programming languages, “fold” is
more common). For now, we consider only the case of n-dimensional tables with n > 0: Such a
table t : T (β :: bs) α is constructed from headers of type β and (n − 1)-dimensional subtables of
type T bs α using the constructors . and ||| at their original types


. : β → T bs α → T (β :: bs) α and


||| : T (β :: bs) α → T (β :: bs) α → T (β :: bs) α .


For structural induction, the subtable type T bs α is replaced by a type σ of subtable results,
and the table type T (β :: bs) α is replaced by the result type γ; the constructors are replaced by
arbitrary functions ⊗ and ⊕ of appropriate types, where, since ||| is associative, ⊕ needs to be
associative, too. The gap between (n − 1)-dimensional subtables and subtable results is bridged
by an additional function q :


Definition 4.1.1 Table folding is a second order function


z : (β → σ → γ)× (γ → γ → γ)→ (T bs α→ σ)→ (T (β :: bs) α→ γ) .


Given three functions


• ⊗ : β → σ → γ, the header combinator,


• ⊕ : γ → γ → γ, the combining function, which has to be associative, and


• q : T bs α→ σ, the subtable mapping,


the table folding function (z (⊗,⊕) q) : T (β :: bs) α→ γ is defined by


• z (⊗,⊕) q (h . t) = h ⊗ q t ,


• z (⊗,⊕) q (t1 ||| t2) = z (⊗,⊕) q t1 ⊕z (⊗,⊕) q t2.


The pair (⊗,⊕) will also be called the combinator pair of this folding.


Associativity of ⊕ is necessary to make F := z (⊗,⊕) q well-defined, since the second clause of
the definition of z (⊗,⊕) q and associativity of ||| imply:


(F t1 ⊕ F t2)⊕ F t3 = F (t1 ||| t2)⊕ F t3 = F ((t1 ||| t2) ||| t3)


= F (t1 |||(t2 ||| t3)) = F t1 ⊕ F (t2 ||| t3) = F t1 ⊕ (F t2 ⊕ F t3)


4.2 Example Applications of Table Folding


As a first example of the use of table folding, we define a single combinator pair (⊗c,⊕c) for
checking both completeness and absence of overlap in the headers of the first dimension of a
table where these are Boolean conditions:


⊗c : B→ σ → (B× B) h ⊗c t := (h, false)


⊕c : (B× B)→ (B× B)→ (B× B) (d1, o1)⊕c(d2, o2) := (d1 ∨ d2, o1 ∨ o2 ∨ (d1 ∧ d2))


One easily checks that ⊕c is associative; the folding z (⊗c,⊕c) B calculates a pair (d , o) where
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• d is the disjunction of all headers of the first dimension; if d is equivalent to true, then the
headers of the first dimension are complete;


• o is a Boolean expression that is true for every overlap between headers; if o is equivalent
to false, then the headers of the first dimension are non-overlapping.


Results of this folding depend only on the headers of the first dimension and are completely
independent of other headers and the cells, which is reflected in the fact that h ⊗c t does not
depend on t .


Many useful auxiliary functions can be defined directly as table folding functions:


• headers returning the header list of the first dimension of a table:


headers := z ((λ h . λ t . 〈h〉), (a)) B


• hMap and tMap are second-order functions that apply their argument functions to each
header, respectively to each n-dimensional subtable, of their (n+1)-dimensional argument
tables:


hMap : (β → β′)→ T (β :: bs) α→ T (β′ :: bs) α


hMap f = z ( (λ h t . f h . t) , ||| ) B = z (., |||) f


tMap : (T bs α→ T bs ′ α′)→ T (β :: bs) α→ T (β :: bs ′) α′


tMap g = z ( (λ h t . h . g t) , ||| ) B


Using tMap, we can lift many functions that act on the first table dimension to higher table
dimensions, for example:


• addH2 for adding a single second-dimension header to an (n+1)-dimensional table, yielding
an (n + 2)-dimensional table, and corresponding functions for adding headers at deeper
dimensions:


addH2 : β2 → T (β1 :: bs) α → T (β1 ::β2 :: bs) α addH2 := tMap ◦ (.)


addH3 : β3 → T (β1 ::β2 :: bs) α → T (β1 ::β2 ::β3 :: bs) α addH3 := tMap ◦ addH2


For examples, we continue to follow the convention (adhered to throughout Sect. 2) that
the first-dimension header is drawn on the top of the table, and the second-dimension
header to the left. We show an example application of addH2 in Fig. 11 — compare this
to Tf ,aa = (y = 10) . Tj in Fig. 3.


x ≥ 0 x < 0 x ≥ 0 x < 0


y + x y − x y > 5 y + x y − x


Figure 11: The tables Tk and addH2 (y > 5) Tk


• delH1 : T (β :: bs) α → T bs α for deleting the first-dimension headers from an (n + 1)-
dimensional table, returning only the first n-dimensional subtable:


delH1 := z ((λ h . λ t . t), (λ t1 . λ t2 . t1)) B


The corresponding functions for higher dimensions are easily defined from this:


delH2 : T (β1 ::β2 :: bs) α → T (β1 :: bs) α delH2 := tMap delH1


delH3 : T (β1 ::β2 ::β3 :: bs) α → T (β1 ::β2 :: bs) α delH3 := tMap delH2


delH4 : T (β1 ::β2 ::β3 ::β4 :: bs) α → T (β1 ::β2 ::β3 :: bs) α delH4 := tMap delH3
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• updC0 : α′ → T 〈 〉 α→ T 〈 〉 α′ updates cells in zero-dimensional tables:


updC0 u [ c ] = u


For higher dimensions, the corresponding functions are again obtained via tMap:


updC1 : α′ → T 〈β1〉 α → T 〈β1〉 α
′ updC1 := tMap ◦ updC0


updC2 : α′ → T 〈β1, β2〉 α → T 〈β1, β2〉 α
′ updC2 := tMap ◦ updC1


updC3 : α′ → T 〈β1, β2, β3〉 α → T 〈β1, β2, β3〉 α
′ updC3 := tMap ◦ updC2


In the appendix A.2 we also show how, among others, the following functions can be implemented
using standard functional programming techniques in addition to table folding:


• regSkeli returns a regular table skeleton for the i outer dimensions of tables that are
regular at least in their i outer dimensions — we have regSkel1 t = 〈 headers t 〉,


• Vertical concatenation /// accepts two regular (n + 2)-dimensional tables coinciding in
the headers of the first dimension, and produces a regular result table with the same first-
dimension headers, and in the second dimension the concatenation of the second-dimension
headers of the argument tables — an example is given in Fig. 12.


x ≥ 0 x < 0 x ≥ 0 x < 0


y ≤ 5 0 x y ≤ 5


y > 5


0 x


y + x y − x


Figure 12: The tables addH2 (y ≤ 5) Tj and (addH2 (y ≤ 5) Tj ) ///(addH2 (y > 5) Tk )


The two functions addH2 and /// can be used as a combinator pair for the table folding function
that directly defines table transposition for at least two-dimensional tables that are regular in
their two outer dimensions:


transpose : T (β1 ::β2 :: bs) α→ T (β2 ::β1 :: bs) α


transpose := z (addH2, (///)) B


Using the formalisation in Isabelle/HOL, we have performed a fully formalised proof of the
following:


Lemma 4.2.1 If T is regular in two dimensions with regSkel2 T = 〈hs1, hs2〉, then transpose T
is regular, too, and regSkel2 (transpose T ) = 〈hs2, hs1〉.


Higher-dimensional transpositions are easily obtained with the help of tMap:


transpose3 : T (β1 ::β2 ::β3 :: bs) α→ T (β3 ::β2 ::β1 :: bs) α


transpose3 := transpose ◦ tMap transpose ◦ transpose


transpose4 : T (β1 ::β2 ::β3 ::β4 :: bs) α→ T (β4 ::β2 ::β3 ::β1 :: bs) α


transpose4 := transpose ◦ tMap transpose3 ◦ transpose
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4.3 Table Evaluation Structures


For evaluating a whole table, we usually need to replace the subtable mapping q with another
table evaluation function; for zero-dimensional tables, that could be induced by an arbitrary
function f : α→ σ taking cells, and for higher dimensions we would use table folding again.


For example, for fully evaluating a two-dimensional table t : T 〈β1, β2〉 α, we need:


f : α→ γ3 ⊗2 : β2 → γ3 → γ2 ⊗1 : β1 → γ2 → γ1


⊕2 : γ2 → γ2 → γ2 ⊕1 : γ1 → γ1 → γ1


to define z (⊗1,⊕1) (z (⊗2,⊕2) f
′) t , where f ′ [ c ] = f c.


We organise this material into table evaluation structures:


Definition 4.3.1 A table evaluation structure (TES) for tables of type T 〈β1, . . . , βn〉 α is
written


w 〈| 〈(⊗1,⊕1), . . . , (⊗n ,⊕n)〉 |〉 f


and consists of


• a sequence 〈γ0, γ1, . . . , γn+1〉 (not explicitly listed, but left implicit) of types,


• a wrapper function w : γ1 → γ0,


• a cell embedding function f : α→ γn+1, and


• a sequence 〈(⊗1,⊕1), . . . , (⊗n ,⊕n)〉 of combinator pairs, with


⊗i : βi → γi+1 → γi


⊕i : γi → γi → γi


⊕i associative


for every i ∈ {1, . . . ,n}.


The type constructor S for table evaluation structures has arity 〈l, t, t〉; the type of all ta-
ble evaluation structures for tables of type T 〈β1, . . . , βn〉 α and with final result type γ0 is
S 〈β1, . . . , βn〉 α γ0.


TES application zz has the following type:


zz :: S bs α γ0 → T bs α→ γ0 ,


and is defined by the following:


• For S : S 〈 〉 α γ0 and a table t : T 〈 〉 α, S is of the shape S = w 〈| 〈 〉 |〉 f for some f : α→ γ1


and some w : γ1 → γ0, and t is of the shape t = [ c ], and we have


zz (w 〈| 〈 〉 |〉 f ) [ c ] = w (f c)


• For n > 0, a TES S : S 〈β1, . . . , βn〉 α γ0 and a table t : T 〈β1, . . . , βn〉 α, S is of the shape
S = w 〈| (⊗1,⊕1) :: ps |〉 f , and we define:


zz (w 〈| (⊗1,⊕1) :: ps |〉 f ) t = w (z (⊗1,⊕1) (zz (B 〈| ps |〉 f ) t))
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One might be tempted to achieve a simpler definition by omitting f , i.e., replacing it with the
identity on α. However, this would frequently require special treatment for the last ⊗ (in the
two-dimensional case this would be ⊗2), and such special treatment would make the structure
of the whole evaluation function less transparent.


This is nicely demonstrated by a TES for the completeness test for two-dimensional “normal”
tables:


Scomplete := B 〈| 〈(∧,∨), (∧,∨)〉 |〉 (λ x . true)


Here we used a constant function for defining the cell embedding to always return true, which
is the neutral element for the header attachment function ∧. Application of Scomplete to a two-
dimensional table with Boolean expressions in all headers therefore returns a Boolean expression
denoting the coverage of the whole table — if this is equivalent to true, the table is complete.


Besides the cell embedding f , also the wrapper w could be seen as superfluous in the definition
of TESs, but, as we shall see below, it is frequently convenient to think about top-level table
composition as separate from whole-table semantics.


4.4 Table Evaluation Structures for Semantics of Normal Tables


As a first exploration of the issues involved in defining table semantics, we now discuss TESs
for calculating the meaning of normal tables. Normal tables contain predicate expressions in all
headers, and terms (“value expressions”) in all grid cells. A normal table denotes a function,
composed from one partially defined function for every cell, where the domain of that latter
function is defined by all the headers governing that cell, and the values in that domain are
defined by the cell expression.


The predicate logic formula given for Tf in the introduction can be considered as derived from
the table Tf via application of the following TES:


SN := (∀ x . (∀ y . )) 〈| 〈 (⇒,∧), (⇒,∧) 〉 |〉 (f (x , y) = ) .


Here, we used the underscore “ ” in an informal way to let “(f (x , y) = )” denote a function
that maps any expression “E ” to the formula (i.e., expression of Boolean type) “f (x , y) = E ”,
and similarly for the wrapper: “(∀ x . (∀ y . ))” denotes a function that maps any formula “F ”
to the formula “(∀ x . (∀ y . F ))”.


However, zz SN Tf is just a formula equivalent to that shown in the introduction; it can be used
to define a function, but it does not denote a function, nor a relation.


For obtaining a function (or relation) from table evaluation, we obviously have to change at
least the wrapper. For improved flexibility, we also replace the cell mapping function and define
the TES SNC, where “NC” stands for normal tables with conjunctive composition; the wrapper
wNC will be defined below:


SNC := wNC 〈| 〈 (⇒,∧), (⇒,∧) 〉 |〉 (z = ) .


There is also a different, disjunctive interpretation of normal tables:


SND := wND 〈| 〈 (∧,∨), (∧,∨) 〉 |〉 (z = ) .


This is equivalent to SNC for complete tables with non-overlapping headers. If this condition is
not satisfied, the two interpretations produce different results — for simplicity, assume wrapper
and cell mapping as in SN:


• For incomplete tables, the second version could be understood to specify undefinedness
outside the coverage of the headers, while the first version makes no statement about the
value of f there.
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• In the case of ambiguously overlapping tables, i.e., existence of differently-valued cell entries
for overlaps between headers, the first version gives rise to a contradiction, while the second
allows both results.


In either case, one still needs to be careful how the relation induced by the table Tf really is
defined, since, when setting the wrapper wNC to the identity, the result of applying the TES SNC


to a table like Tf is just a formula F involving the free variables x , y , and z .


Therefore, the task of the wrapper is to convert this formula into a relation. Note that the
different wrapper functions wi defined below are to be understood as functions on first-order
syntax, which implies that F may be instantiated by an arbitrary formula that may contain free
variables, and no bound variables will be renamed on the right-hand sides when F is instantiated.
The different wrapper functions given in the following in particular allow us to formalise the
discussion of the problematic of giving semantics to “improper” tables in [Zuc96]:


i) w1(F ) = {x , y , z : R | F • (x , y) 7→ z}


(a) With SNC: If T is incomplete, then the result is not univalent; if T is ambiguously
overlapping, the result is not total.


(b) With SND: If T is incomplete, then the result is not total; if T is ambiguously
overlapping, the result is not univalent.


ii) w2(F ) = any{f : R× R→ R | (∀ x , y , z : R | F • f (x , y) = z )}


(a) With SNC: If T is incomplete or ambiguously overlapping, then several such f exist.


(b) With SND: If T is incomplete, then several such f exist; if T is ambiguously overlap-
ping, no such f exists.


iii) w3(F ) = any{f : R× R→ R | ∀ x , y : R • (∃ z : R | F • f (x , y) = z )}


(a) With SNC: If T is incomplete, then several such f exist; if T is ambiguously overlap-
ping, no such f exists.


(b) With SND: If T is incomplete, then no such f exists (since f is specified to be total);
if T is ambiguously overlapping, then several such f exist.


More variants can be considered, including allowing f to be a partial function, or replacing the
cell embedding function (z = ) with (f (x , y) = ).


This wide array of different possibilities for interpreting incomplete and overlapping tables on
the one hand reinforces the old observation that it is safer to restrict oneself to complete and
non-overlapping tables; on the other hand it also shows that the function of the wrapper as the
final mapping from some formula to the real meaning of the table is important and deserves to
be made explicit.


Finally, we would suggest to use w1 for both wNC and wND — this way, both SNC and SND, when
applied, always return a relation.


4.5 Table Evaluation Structures for Relational Semantics


In the previous section, all TESs first produced, as result of their folding functions, linear
expressions (or formulae) that would then be used by the wrappers to define the “real” semantics
of normal tables.
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As an alternative, we may follow [DKM01] and directly provide a relational interpretation, for
example using the following TES:


SR1 := B 〈| 〈 ((R ) ∩ , ∪), ((R ) ∩ , ∪) 〉 |〉 {x , y : R • (x , y) 7→ } ,


where R E := {x , y , z : R | E • (x , y) 7→ z}, and the notation “(R )∩ ” stands for the function
that maps two arguments h and t to (R h) ∩ t .


It is immediately obvious how this corresponds to the version given in [DKM01]; our version
profits from the homogeneous treatment of both dimensions (and both versions illustrate the
need for meta-level function abstraction).


Note that in this version, the variables x and y (and z ) are different locally bound variables
in every header and grid cell, and the intermediate return types γi of the TES SR1 all are the
relation type R × R ↔ R. Furthermore, in the absence of ambiguous overlaps, this produces
univalent relations, and for complete tables also total relations — this semantics is equivalent
to case (i)(b) from 4.4.


For reconstructing case (i)(a) from 4.4 in the relational semantics, we just have to translate
SNC into relational operations, using Boolean implication, which can be defined using relational
complement: R→ S := R ∪ S .,


SR2 := B 〈| 〈 ((R )→ , ∩), ((R )→ , ∩) 〉 |〉 {x , y : R • (x , y) 7→ } ,


With this TES, the defined relation is exactly as in (i)(a) in 4.4.


4.6 Table Evaluation Structures for Semantics of Inverted Tables


In some applications, a table describes a function with only a few different result terms, each
valid under different combinations of conditions. For such cases, inverted tables have been
introduced.


x + y x − y y − x H1


H2
y ≥ 0


y < 0


x < 0 0 ≤ x < y x ≥ y


x < y y ≤ x < 0 x ≥ 0
G


Figure 13: The inverted table Tg


For example, [JPZ97] explains the inverted table Tg drawn in Fig. 13 as corresponding to the
following conventional definition:


g(x , y) =























x + y if (x < 0 ∧ y ≥ 0) ∨ (x < y ∧ y < 0)


x − y if (0 ≤ x < y ∧ y ≥ 0) ∨ (y ≤ x < 0 ∧ y < 0)


y − x if (x ≥ y ∧ y ≥ 0) ∨ (x ≥ 0 ∧ y < 0)


Comparing this with the semantics of normal tables, we see that, what is inverted here, is
the relation between grid and first header in the implication of the first combinator pair (the
λ-abstraction here is meta-level, binding variables h and t standing for syntactic expressions):


SIC := w1 〈| 〈 ((λ h t . t ⇒ (z = h)),∧), (∧,∨) 〉 |〉 B .


The combinator pair of the second dimension, however, appears to be taken not from SNC, but
from SND — it is easy to see that this closely corresponds to the above interpretation.
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The disjunctive interpretation turns out to be much more naturally related to its version for
normal tables — only the position of result extraction changes:


SID := w1 〈| 〈 (((z = ) ∧ ),∨), (∧,∨) 〉 |〉 B .


It is possible to achieve a purely conjunctive interpretation, but this involves second-order func-
tions ⊗1 and ⊕2, and γ2 is the type of functions from formulae to formulae:


SICC := w1 〈| 〈 (⊗1,⊕1), (⊗2,⊕2) 〉 |〉 B ,


with the following combinators:


e⊗1 c = c(z = e) h⊗2 g = λ r . h ⇒ (g ⇒ r)


⊕1 = ∧ p⊕2 q = λ r . p r ∧ q r


For obtaining a direct relation-algebraic interpretation, it is easiest to convert the disjunctive
interpretation:


SIR := B 〈| 〈 (({x , y : R • (x , y) 7→ } ∩ ), ∪), ((R ) ∩ , ∪) 〉 |〉R .


In comparison with SR1, the structure is again unchanged, as in [DKM01], but in our approach
we had to make it explicit that the result extraction is now in the first header, and the grid cells
are interpreted by the vector-building meta-function R.


4.7 Nested Headers


From practical use, tables emerged in which some headers are not just sequences of header
elements, but nested, tree-like structures, where only the leaves are associated with indexes into
the grid. Such headers are called abbreviated grids in [Par92, Sect. 5]; it appears that abbreviated
grids have not yet been discussed in any of the other approaches to table semantics.


In this section, we discuss two ways how abbreviated grids could be treated as extensions to our
table typing and table folding systems. The first way is inflexible in several respects and does
not fit in easily with our typing system, but achieves a clean separation between syntax and
semantics. In the second way, semantic information is moved into the headers, but the resulting
construction fits easily into our typing and folding systems and will be useful as an extension of
table syntax at the user interface.


The structure of a table header constructed using abbreviated grids is that of a node-labelled
ordered forest, i.e., a sequence of node-labelled trees where outgoing edges are linearly ordered.
We shall use the name nested headers for table headers that are potentially constructed from
“abbreviated grids”.


Among other uses, nested headers provide a simple and intuitive explanation for “indexed tables”
— the example of Fig. 8 can be considered as abbreviating the nested-header table from Fig. 14.


This, in turn, can be seen as an abbreviation of the conventional table of Fig. 10.


From Parnas’ explanation we can derive the following degrees of freedom for headers constructed
using abbreviated grids:


i) Obviously, the tree structure resulting from grid abbreviation need not be balanced. This
is extensively used in practice in the shape of “decision tree headers”.


ii) Less obviously, different abbreviation mechanisms appear to be allowed within a single
header.
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x%3 =


0 1 2
H1


H2 y %2 =
0


1


0 y2 −y2


x x + y x − y
G


Figure 14: A nested-header table corresponding to the “indexed table” of Fig. 8


The first item is unproblematic — in fact, enforcing balanced trees would require additional
technical effort.


To realise (ii), however, it is necessary to equip each branch in the tree with information about
the abbreviation mechanisms used. This means that information about table interpretation has
to be part of the table itself, and can no longer be kept separately.


Abbreviated grids fit well into the traditional view that considers a table to consist of n headers
and an n-dimensional array of cells. They are, however, not compatible with our inductive view
of table construction from cells and header elements via . and |||. Therefore, we need a different
way to construct tables with nested headers.


Let us first consider free homogeneously abbreviated grids, i.e., header forests without any
balancing requirement, and with the same abbreviation mechanism for every branch — this
rules out the substitution grids described in [Par92, Sect. 5.3]. Also, let us assume that tables
constructed via . and ||| are considered as special cases of tables with nested headers.


Then, a table h . t has the simplest shape of abbreviated grid header, namely a one-node forest.
Concatenation of such tables creates headers that are forests consisting only of one-node trees.


For moving to a second level of trees, we introduce a new table constructor, the header nesting
constructor, with the following first attempt of a type:


.| : η1 → T 〈β1, . . . , βn〉 α→ T 〈β1, . . . , βn〉 α


Obviously, η1 should be part of the result table type — one possibility is to generalise table
types accordingly. If we allow two type parameters to be included for dimensions with nested
headers; then the typing is as follows:


.| : η1 → T 〈β1, . . . , βn〉 α→ T 〈(β1, η1), . . . , βn〉 α


This allows a first level of branching. However, it does not allow further levels — for those we
need to be able to use .| at a different type:


.| : η1 → T 〈(β1, η1), . . . , βn〉 α→ T 〈(β1, η1), . . . , βn〉 α


If we restricted .| to this last type, then the first level of branching can never be achieved,
because of the typing of .:


. : β1 → T 〈β2, . . . , βn〉 α→ T 〈β1, β2 . . . , βn〉 α


So either a further constructor needs to be introduced, or at least one of the constructors . and
.| needs to be overloaded.


Another possibility is to demand η1 = β1; this would resolve the typing problems, but would
also be quite a strong restriction.
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With respect to table folding and table evaluation, this second possibility does not save any
effort: in general, no combination of the already supplied functions has the right type to serve as
interpretation of .| , so for dimensions with nested headers, combinator pairs turn into combinator
triples. For direct interpretation of .| , we would need a new element of type ηi → γi → γi .


However, this direct interpretation does not correspond to the original intuition and construction
of abbreviated grids. Achieving that structure requires complete redefinition of table folding:


Definition 4.7.1 Given five functions


• q : T bs α→ σ, the subtable mapping,


• ⊗ : β → σ → γ, the header combinator,


• ® : η → β → β, the header nesting combinator,


• ⊕ : γ → γ → γ, the combining function, which has to be associative, and


• f : β → β, the header modification accumulator function,


the nested-header table folding function tFoldNf (®,⊗,⊕, q) : T ((β, η) :: bs) α→ γ is defined by


• tFoldNf (®,⊗,⊕, q) (h . t) = f (h)⊗ q(t),


• tFoldNf (®,⊗,⊕, q) (e .| t) = tFoldNλ b . f (e®b)(®,⊗,⊕, q) t ,


• tFoldNf (®,⊗,⊕, q) (t1 ||| t2) = tFoldNf (®,⊗,⊕, q) (t1)⊕ tFoldNf (®,⊗,⊕, q) (t2).


The triple (®,⊗,⊕) will also be called the combinator triple of this folding.


For table evaluation, tFoldN would be invoked with f = B at every new dimension, and the
adaptation of the definition is straightforward.


Summarising, we see that, although we started out with rather restrictive assumptions about
nested headers constructed with .| , this combinator still requires very unsatisfactory kludges
in the typing system, and adaptations of the whole folding machinery. Its advantage is that it
allows a complete separation of syntax and semantics — header nesting in any dimension has
an interpretation that is provided by the TES and constant over the whole table.


As indicated above, a different approach would be to let every branch come equipped with
information how to combine the headers. This would allow, for instance, to combine conjunction
grids with substitution grids within a single header — a very plausible application of that
possibility.


In this case, we have a parameterised header nesting constructor — the first argument will be
written as a subscript:


.| : (β′1 → β′′1 → β1)→ β′1 → T 〈β′′1 , . . . , βn〉 α→ T 〈β1, . . . , βn〉 α


For folding over tables constructed with .| , the original combinator pairs are sufficient again,
but we still need the accumulator function:


Definition 4.7.2 Given five functions


• q : T bs α→ σ, the subtable mapping,


• ⊗ : β → σ → γ, the header combinator,


• ⊕ : γ → γ → γ, the combining function, which has to be associative, and


• f : β′ → β, the header modification accumulator function,


the nested-header table folding function tFoldHf (⊗,⊕, q) : T (β′ :: bs) α→ γ is defined by
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• tFoldHf (⊗,⊕, q) (h . t) = f (h)⊗ q(t),


• tFoldHf (⊗,⊕, q) (e .|g t) = tFoldHλ b . f (g e b)(⊗,⊕, q) t ,


• tFoldHf (⊗,⊕, q) (t1 ||| t2) = tFoldHf (⊗,⊕, q) (t1)⊕ tFoldHf (⊗,⊕, q) (t2).


With this approach, table evaluation needs no adaptation at all, since we may regain the original
table folding interface by defining


z (⊗,⊕) q := tFoldHB(⊗,⊕, q) .


However, it is not hard to see that this equation can also be guaranteed by defining .| as a
derived table constructor from the other table constructors via the following equations:


e .|g (h . t) = g e h . t


e .|g (t1 ||| t2) = (e .|g t1) |||(e .|g t2)


This obviously is an instance of header mapping:


e .|g t = hMap (g e) t (∗)


This also clarifies that the decomposition of the function g e into g and e is at least technically
completely arbitrary — pragmatically, it will be prudent to choose g from a small set of functions
that are easily denoted at branching points in tables.


Instead of considering .| as a derived table constructor, the definition (∗) can also be considered
as basis for the definition of a table translation function from tables with nested headers into
tables without. This point of view is important when considering tool support and reasoning
about tables:


• Tool support for tables should also provide support for abbreviated grids, since these are
a widely accepted tool for intuitive table organisation and presentation. Table storage
formats and table presentation interfaces therefore need to work with a table data type
that provides a separate, primitive header nesting constructor.


• For reasoning about and with tables, and also for inspections that move from grid cell to
grid cell, the header nesting structure is irrelevant, and only the expanded headers in each
dimension need to be known. Tools supporting these activities will therefore usually work
on a table data structure without nested headers.


• Table transformation will usually either work only within an abbreviated grid, or it will
consider the abbreviated grid as expanded and will then work over larger parts of the table
including the expanded grid. Translation between the two formats makes transformation
algorithms easier to formulate.


5 Tabular Expressions


Usually, tables are considered not as data structures containing data elements, but as containing
expressions. In addition, a table together with a semantic rule is considered to be an expression
again, called tabular expression.


The view that tabular expressions sometimes have to be considered as equivalent to expanded
conventional expressions requires attention to fine nuances in the ways how semantics of tabular
expressions is defined; this will be discussed in 5.1. In 5.2, we show how the functional table
folding definitions of 4.1 and 4.3 can be generalised to a relational setting. We then introduce
two different kinds of tabular expressions in 5.3, employing for one the functional, and for the
other the relational table folding mechanisms.







28 5 TABULAR EXPRESSIONS


5.1 Tables as Syntactic Devices


Sometimes, tabular expressions are considered to directly denote some semantic object, usually a
relation, obtained via a TES S : S 〈β1, . . . , βn〉 α γ0 where the intermediate types γ0, . . . , γn+1 are
all semantic domains (for example, domains of relations) and the combinators ⊕i : γi → γi → γi


are associative.


Sometimes, however, tabular expressions are considered as expanding to equivalent expressions.
Let us assume typed expressions, and let Tα denote the set of terms (or expressions) of type
α. The table contained in such a tabular expression then has to be considered as of type
T 〈Tβ1


, . . . , Tβn
〉 Tα. The expansion of such a tabular expression would also most naturally be


defined via a TES, now of type S 〈Tβ1
, . . . , Tβn


〉 Tα Tγ0
, with combinators ⊕i : Tγi → Tγi → Tγi .


For example, consider the TES SN (from 4.4) for normal tables. There, ⊕1 = ⊕2 = ∧. If we
consider ∧ as binary operator on expressions of Boolean type, then it is not associative, since
(x ∧ y) ∧ z and x ∧ (y ∧ z ) are obviously different expressions. Although this difference disap-
pears in the semantics, it is relevant on the syntactic level: for software tools, truly associative
binary operators, such that e.g. (x ∧ y) ∧ z = x ∧ y ∧ z = x ∧ (y ∧ z ), need to be supported by
list structures. However, mechanised syntax frequently only supports operators with fixed arity,
and these, as constructors of (usually free) expression types, are by definition not associative.


Therefore, tabular expressions that expand into conventional expressions need the following:


• a semantics of the expression language,


• a relaxed table folding definition that allows combinators that are only semantically asso-
ciative,


• an accordingly relaxed TES that defines the expansion into equivalent expressions.


In some sense one might consider the semantics as only a part of the wrapper of the TES.
However, since the semantics justifies the combinators on all levels of the TES, its rôle is more
pervasive.


Since the semantics is usually “understood” throughout any particular context of table use, this
issue can be ignored by most table users, and tabular expressions only need to indicate the TES
(and, for TESs with different combinator pairs for different dimensions, the sequence of the
headers).


Such tabular expressions then can be used as subexpressions inside larger expressions, as for
example in Fig. 15 — note that the tabular expression there denotes a universally quantified
formula since it uses the TES SN (page 21), and not one of the TESs SNC (page 21) or SR2 (page
23) that would make it denote a relation.


¨


§


¥


¦
SN y = 10 y > 10 y < 10 H1


H2
x ≥ 0


x < 0


0 y2 −y2


x x + y x − y


⇒ f (−3, 45) = 42


Figure 15: A tabular expression involving Tf and the TES SN in context


The universally quantified formula quoted from [JPZ97] on page 4 as one presentation of the
meaning of Tf uses ∧ as a “syntactically associative” operator, without parentheses around any
parts of the six-element conjunction there.
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5.2 Relational Table Folding


If we wish to provide mechanisations of tables supported by tools that do not provide syntacti-
cally associative operators, we have two options:


• We could prefer one structuring into binary operator applications over all others. As
essentially an instance of this, we might switch to the “cons view” discussed on page 16.


• We can leave open the choice of structuring into binary operator applications.


Since it is less restrictive, we adapt the latter approach; this turns the folding functions of Def.
4.1.1 into folding relations relating each table with possibly multiple results, according to the
different ways to decompose it via |||. In the relation algebraic formulae in the following, we use
the uncurried versions of the table constructors which are functions (i.e., total and univalent
relations) of the following types:


uncurry (.) =: addH : β × T bs α → T (β :: bs) α


uncurry (|||) =: hConc : T (β :: bs) α × T (β :: bs) α → T (β :: bs) α


We also know that addH is injective, but hConc is not, because of its associativity, and the two
constructors are jointly surjective, but with non-overlapping ranges, i.e.,


ran addH ∩ ran hConc = ∅ and ran addH ∪ ran hConc = T (β :: bs) α .


Definition 5.2.1 Given three relations


• Q : T bs α↔ σ, the subtable interpretation,


• H : β × σ ↔ γ, the header combinator, and


• C : γ × γ ↔ γ, the combining relation, which has to be total,


the table folding relation tFoldR (H ,C ) Q : T (β :: bs) α↔ γ is defined by


• (h . t , v) ∈ tFoldR (H ,C ) Q iff there exist a s : σ and a c : γ such that (t , s) ∈ Q and
((h, s), v) ∈ H , or, equivalently,


addH ; tFoldR (H ,C ) Q = (B ‖ Q) ;H


• (t1 ||| t2, v) ∈ tFoldR (H ,C ) Q iff there exist t ′1, t
′
2 : T (β :: bs) α and v1, v2 : γ such that


(t1 ||| t2) = (t ′1 ||| t
′
2) and (t ′1, v1) ∈ tFoldR (H ,C ) Q and (t ′2, v2) ∈ tFoldR (H ,C ) Q and


((v1, v2), v) ∈ C , or, equivalently,


hConc ; tFoldR (H ,C ) Q = hConc ; hConc
`


; (tFoldR (H ,C ) Q ‖ tFoldR (H ,C ) Q) ;C


The pair (H ,C ) will also be called the combinator pair of this folding.


Due to the above-mentioned properties of addH and hConc, the two equations can be merged
into the following:


tFoldR (H ,C ) Q = addH
`


; (B ‖ Q) ;H ∪


hConc
`


; (tFoldR (H ,C ) Q ‖ tFoldR (H ,C ) Q) ;C


Standard reasoning, using the facts that C is total and that hConc
`


; fst and hConc
`


; snd are
both Noetherian, shows that the equation


X = addH
`


; (B ‖ Q) ;H ∪ hConc
`


; (X ‖ X ) ;C
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has a unique solution, so tFoldR (H ,C ) Q is well-defined as the solution to this equation. (If
we allowed C to be non-total, we would use the least solution.)


Note that by allowing H , C , and Q to be possibly non-univalent relations we only performed
a natural generalisation; the move to relations is motivated by the necessity to allow non-
associative C , which, in general, destroys univalence of folding over the associative table con-
catenation |||.


Lemma 5.2.2 If H , C , and Q are univalent and C is associative, then tFoldR (H ,C ) Q is
univalent.


This relational approach is easily extended to TESs:


Definition 5.2.3 A relational table evaluation structure (RTES) for n-dimensional tables of
type T 〈β1, . . . , βn〉 α is written


W 〈| 〈(H1,C1), . . . , (Hn ,Cn)〉 |〉F


and consists of


• a sequence 〈γ0, γ1, . . . , γn+1〉 (not explicitly listed, but left implicit) of types,


• a wrapper relation W : γ1 ↔ γ0,


• a cell embedding relation F : α↔ γn+1, and


• a sequence 〈(H1,C1), . . . , (Hn ,Cn)〉 of relational combinator pairs, with


Hi : βi × γi+1 ↔ γi


Ci : γi × γi ↔ γi


for every i ∈ {1, . . . ,n}.


The set of all relational table evaluation structures for tables of type T 〈β1, . . . , βn〉 α and with
first result type γ0 is written SR 〈β1, . . . , βn〉 α γ0.


Application of an RTES S : SR 〈β1, . . . , βn〉 α γ0 is written RTeval S and is a relation from tables
to results:


(RTeval S ) : T 〈β1, . . . , βn〉 α↔ γ0 .


RTES application is defined by the following:


• For S : SR 〈 〉 α γ0, S is of the shape S = W 〈| 〈 〉 |〉F for some F : α ↔ γ1 and some
W : γ1 ↔ γ0; defining cell : α→ T 〈 〉 α, by cell(c) = [ c ], we have


RTeval (W 〈| 〈 〉 |〉F ) = cell
`


;F ;W


• For n > 0, a TES S : SR 〈β1, . . . , βn〉 α γ0 and a table t : T 〈β1, . . . , βn〉 α, S is of the
shape S = W 〈| (H1,C1) :: ps |〉F , and we define:


RTeval (W 〈| (H1,C1) :: ps |〉F ) = (tFoldR (H1,C1) (RTeval (B 〈| ps |〉F )) ;W


An RTES W 〈| 〈(H1,C1), . . . , (Hn ,Cn)〉 |〉F is called associative if all the Ci are associative, and
univalent if in addition W and F and all Hi and Ci are univalent relations; it is called total if
W and F and all Hi and Ci are total relations.


Here we see that allowing Q to be non-univalent in tFoldR (H ,C ) Q is actually essential to
enable multi-dimensional relational table folding.
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5.3 Tabular Expressions


Motivated by the discussion in 5.1, we introduce two kinds of tabular expressions, which will be
defined formally below:


• An expanding tabular expression ¨


§


¥


¦
S ,V p


xT
q
y


consists of an RTES S , a “semantics” V , and a table T . Such an expanding tabular
expression has to be understood as standing for any one of the elements associated with
T by RTeval S — this usually will be a syntactic expression — in a context where this
element will be interpreted via the semantics V , which ensures that all those elements are
equivalent.


• A tabular expression with direct semantics


S p
xT


q
y


consists of a TES S and a table T . Such a tabular expression directly stands for zz S T ,
which normally will be an abstract mathematical object and not a syntactic expression,
since otherwise the necessary associativity of the combining functions in the TES S can
usually not be guaranteed.


To illustrate the difference, let FV(E ) denote the set of free variables of the expression E , and
consider the following:


FV


(¨


§


¥


¦
SN,(|= ) p


xTf
q
y


)


= {f }


since the argument of FV here is (a rearranged and more parenthesised version of) the formula
on page 4.


The tabular expression here is expected to be used in a context that ultimately views this formulae
as argument of a validity judgement via the provided semantics function (|= ); Fig. 15 should
be understood to contain this tabular expression in such a context. The context it occurs in
here, however, is FV( ), so for the statement above it is necessary to show that each formula
related with Tf via RTeval SN has the same set of free variables.


With a different RTES, we obtain:


FV


(¨


§


¥


¦
SNC,[[ ]] p


xTf
q
y


)


= {} ,


since the set comprehension expressions resulting from applying SNC (considered as an RTES
producing expressions) to the table Tf have no free variables.


With respect to FV and the supplied semantics, the same applies as above — here, we supplied
a “standard semantics” [[ ]] that will map each set comprehension expression to a set (which
would be, in this case, a relation).


Finally,


FV
(


SNC
p
xTf


q
y


)


is nonsense, since here, SNC is understood as a TES producing a relation, not an RTES producing
expressions, and therefore FV is applied to a relation, and not an expression.


For evaluation structures S that, like SNC, can be interpreted both as TES and as RTES, with
the two views linked by the supplied standard semantics, this standard semantics also establishes
the link between the two kinds of tabular expressions:


S p
xT


q
y = [[


¨


§


¥


¦
S ,[[ ]] p


xT
q
y ]]
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Definition 5.3.1 A tabular expression with direct semantics


S p
xT


q
y


consists of:


• a TES S : S 〈β1, . . . , βn〉 α γ0, and


• a table T : T 〈β1, . . . , βn〉 α.


Its value is zz S T , and it is of type γ0.


As an example of an occurrence of a tabular expression with direct semantics in tabular notation
we show the table Tf together with the TES SNC for standard normal table semantics in Fig. 16.


f :=


SNC y = 10 y > 10 y < 10 H1


H2
x ≥ 0


x < 0


0 y2 −y2


x x + y x − y


Figure 16: Using a tabular expression with direct semantics


Definition 5.3.2 An expanding tabular expression
¨


§


¥


¦
S ,V p


xT
q
y


consists of:


• an RTES S : SR 〈β1, . . . , βn〉 α γ0,


• a total semantics function V : γ0 → γ such that RTeval S ;V is univalent, and


• a table T : T 〈β1, . . . , βn〉 α.


Such an expanding tabular expression should only occur in contexts where it is intended to be
interpreted by V .


It is of type γ0 and can be replaced by any E : γ0 for which (T ,E ) ∈ RTeval S .


Its canonic value is (RTeval S ;V ) (T ).


Where V is understood from the context, we just write
¨


§


¥


¦S p
xT


q
y .


An expanding tabular expression in tabular notation has already been shown in Fig. 15.


6 Table Transformation


Transformations of tabular expressions can now be proven correct by showing equations about
values of tabular expressions involving tables related by syntactic transformation functions.


For all theorems in this section we have performed fully formal proofs of the corresponding
statements in our Isabelle formalisation. In fact, we used the interactive theorem prover Isabelle
to extract the preconditions for the combinators in each case by incremental proof attempts.


For each of the three cases transposition, collapsing, and inversion we first present a general
theorem that contains very weak assumptions about the combinator pairs for the TESs before
and after transformation, and then a more restricted theorem with stronger assumptions, in-
cluding stronger typing assumptions. The table transformation theorems from the literature
are special cases of those restricted theorems, instantiated with appropriate TESs for, mostly,
normal and inverted tables.







6.1 Table Transposition 33


6.1 Table Transposition


The function transpose : T (β1 ::β2 :: bs) α → T (β2 ::β1 :: bs) α for transposition of the top two
dimensions of regular tables has been introduced on page 19. We first show


Theorem 6.1.1 (Transposition of Tabular Expressions)
Let an identity-wrapped table evaluation structure (Bγ3


〈| ps |〉 q) : S γ3 bs α, and combinators
with the following types be given:


⊗1 : β1 → γ2 → γ1 ⊗2 : β2 → γ3 → γ2


w1 : γ1 → γ0 ⊕1 : γ1 → γ1 → γ1 ⊕2 : γ2 → γ2 → γ2


⊗4 : α→ γ5 → γ4 ⊗5 : β2 → γ6 → γ5


w2 : γ4 → γ0 ⊕4 : γ4 → γ4 → γ4 ⊕5 : γ5 → γ5 → γ5


Assume further that there exists an associative operation ¯ : γ0 → γ0 → γ0, and that the follow-
ing laws are satisfied (for all h1 : β1; h2 : β2; x1, x2 : γ1; y1, y2 : γ2; z : γ3; u1, u2 : γ3; v1, v2 : γ4;
r1, r2, r3, r4 : γ0):


w1 (h1⊗1(h2⊗2 z )) = w2 (h2⊗3(h1⊗4 z ))


w1 (x1⊕1 x2) = (w1 x1)¯ (w1 x2)


w2 (u1⊕1 u2) = (w2 u1)¯ (w2 u2)


w1 (h1⊗1(y1⊕2 y2)) = (w1 (h1⊗1 y1))¯ (w1 (h1⊗1 y2))


w2 (h2⊗3(v1⊕4 v2)) = (w2 (h2⊗3 v1))¯ (w2 (h2⊗3 v2))


(r1 ¯ r2)¯ (r3 ¯ r4) = (r1 ¯ r3)¯ (r2 ¯ r4)


Then for every table T : T (β1 ::β2 :: bs) α, transposition is value-preserving in the following way:


w1 〈| (⊗1,⊕1) ::(⊗2,⊕2) :: ps |〉 q
p
xT


q
y = w2 〈| (⊗3,⊕3) ::(⊗4,⊕4) :: ps |〉 q


p
xtranspose T


q
y


If transposition is expected to be reflected directly in the TESs before and after evaluation, i.e.,
if only the top two combinator pairs should be swapped, then the top three intermediate types
coincide and the relationship between the two combinator pairs needs to be very close:


Theorem 6.1.2 (Restricted Transposition of Tabular Expressions)
Let a TES (w 〈| 〈 (⊗1,⊕1), (⊗2,⊕2) 〉 |〉 f ) : S γ0 〈β1, β2〉 α, consisting of the following combina-
tors and functions be given:


⊗1 : β1 → γ1 → γ1 ⊗2 : β2 → γ1 → γ1 w : γ1 → γ0


⊕1 : γ1 → γ1 → γ1 ⊕2 : γ1 → γ1 → γ1 f : α→ γ1


If these combinators satisfy the following laws:


x ⊗1(y ⊗2 z ) = y ⊗2(x ⊗1 z )


x ⊗1(y ⊕2 z ) = (x ⊗1 y)⊕2(x ⊗1 z )


x ⊗2(y ⊕1 z ) = (x ⊗2 y)⊕1(x ⊗2 z )


(x1⊕1 y1)⊕2(x2⊕1 y2) = (x1⊕2 x2)⊕1(y1⊕2 y2)
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then transposition of tabular expressions built from tables T : T 〈β1, β2〉 α and this TES is
value-preserving in the following way:


w 〈| 〈 (⊗1,⊕1), (⊗2,⊕2) 〉 |〉 f
p
xT


q
y = w 〈| 〈 (⊗2,⊕2), (⊗1,⊕1) 〉 |〉 f


p
xtranspose T


q
y


6.2 Collapsing of Table Dimensions


We define another primitive table transformation collapse that collapses the two outermost
dimensions of its argument table, combining the two headers associated with each sub-subtable
together into a single header using a given combining function f :


collapse : (β1 → β2 → β)→ T (β1 ::β2 :: bs) α→ T (β :: bs) α


collapse f = z (hMap ◦ f , |||) B


This gives again rise to a value-preserving table transformation:


Theorem 6.2.1 (Collapsing two Dimensions of Tabular Expressions)
Let an identity-wrapped table evaluation structure B 〈| ps |〉 q : S γ3 bs α and combinators with
the following types be given:


⊗1 : β1 → γ2 → γ1 ⊗2 : β2 → γ3 → γ2 ⊗3 : β → γ3 → δ1


⊕1 : γ1 → γ1 → γ1 ⊕2 : γ2 → γ2 → γ2 ⊕3 : δ1 → δ1 → δ1


w1 : γ1 → γ0 w2 : δ1 → γ0 ¯ : β1 → β2 → β


Assume further that there exist additional combinators


⊕4 : γ0 → γ0 → γ0 ⊕5 : γ0 → γ0 → γ0


and that the following laws are satisfied:


w1(h1⊗1(h2⊗2 x )) = w2((h1 ¯ h2)⊗3 x )


w1(h ⊗1(x ⊕2 y)) = (w1(h ⊗1 x ))⊕4(w1(h ⊗1 y))


w1(x ⊕1 y) = (w1 x )⊕5(w1 y)


w2(x ⊕3 y) = (w2 x )⊕4(w2 y)


w2(x ⊕3 y) = (w2 x )⊕5(w2 y)


(The last two laws strongly suggest that ⊕4 and ⊕5 will coincide in most cases, but technically
this is not necessary.)


Then for every table T : T (β1 ::β2 :: bs) α, collapsing is value-preserving in the following way:


w1 〈| (⊗1,⊕1) ::(⊗2,⊕2) :: ps |〉 q
p
xT


q
y = w2 〈| (⊗3,⊕3) :: ps |〉 q


p
xcollapse (¯) Tq


y


With identity wrappers, the outer combinations ⊕1 and ⊕3 have to coincide; the following
theorem is further simplified by considering, for the table that is to be collapsed. an only
two-dimensional TES with identity as cell embedding:
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Theorem 6.2.2 (Collapsing two Dimensions of Id-Wrapped Tabular Expressions)
Let combinators with the following types be given:


⊗1 : β1 → γ2 → γ1 ⊗2 : β2 → T bs α→ γ2 ⊗3 : β → T bs α→ γ1


⊕1 : γ1 → γ1 → γ1 ⊕2 : γ2 → γ2 → γ2 ¯ : β1 → β2 → β


If these combinators satisfy the following laws:


h1⊗1(h2⊗2 x ) = (h1 ¯ h2)⊗3 x


h ⊗1(x ⊕2 y) = (h ⊗1 x )⊕1(h ⊗1 y)


then for every table T : T (β1 ::β2 :: bs) α, collapsing is value-preserving in the following way:


B 〈| 〈(⊗1,⊕1), (⊗2,⊕2)〉 |〉 B p
xT


q
y = B 〈| 〈(⊗3,⊕1)〉 |〉 B p


xcollapse (¯) Tq
y


6.3 Table Inversion


Table inversion is a transformation that converts normal tables into inverted tables; for a nice
motivational example see [SZP96].


On the type level, inversion functions swap some header type with the cell type; without loss of
generality, we restrict ourselves here to swapping the first header type:


inverse1 : T 〈β1〉 α → T 〈α〉 β1


inverse2 : β1 → T 〈β1, β2〉 α → T 〈α, β2〉 β1


inverse3 : β1 → T 〈β1, β2, β3〉 α → T 〈α, β2, β3〉 β1


inverse4 : β1 → T 〈β1, β2, β3, β4〉 α → T 〈α, β2, β3, β4〉 β1


... :


Since in previous work, only regular tables are considered, the result of inversion as considered
in the literature is also “automatically” constrained to be regular. With the usual semantics
of normal and inverted tables, an inversion producing regular tables can only be semantics-
preserving for arbitrary regular normal tables if for each original grid cell from the normal table,
the subtable governed by the contents of that cell in the inverted table has only a single entry
corresponding to its original first-dimension header cell, and all other entries are “empty” in
a semantic sense to be made precise below. With the usual semantics of normal and inverted
tables, these “empty” cells are filled with “false”. Since we define the syntactic transformation
of inversion independent of semantics, we need to supply those “empty” entries as an explicit
argument to the inversion functions, except for inversion of one-dimensional tables, where the
respective subtables contain only a one-element grid.


These first-header inversion functions can be transformed into the other cases by composition
with table transpositions, for example:


inverse2 2 : β2 → T 〈β1, β2〉 α → T 〈β1, α〉 β2


inverse3 2 : β2 → T 〈β1, β2, β3〉 α → T 〈β1, α, β3〉 β2


inverse3 3 : β3 → T 〈β1, β2, β3〉 α → T 〈β1, β2, α〉 β3


inverse4 2 : β2 → T 〈β1, β2, β3, β4〉 α → T 〈β1, α, β3, β4〉 β2


inverse4 3 : β3 → T 〈β1, β2, β3, β4〉 α → T 〈β1, β2, α, β4〉 β3


inverse4 4 : β4 → T 〈β1, β2, β3, β4〉 α → T 〈β1, β2, β3, α〉 β4
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with
inverse2 2 := λ u . transpose ◦ inverse2 u ◦ transpose


inverse3 2 := λ u . transpose ◦ inverse3 u ◦ transpose


inverse3 3 := λ u . transpose3 ◦ inverse3 u ◦ transpose3


inverse4 2 := λ u . transpose ◦ inverse4 u ◦ transpose


inverse4 3 := λ u . transpose3 ◦ inverse4 u ◦ transpose3


inverse4 4 := λ u . transpose4 ◦ inverse4 u ◦ transpose4


Inversion of one-dimensional tables is easily defined:


inverse1 := z (addH2, |||) B


For two-dimensional tables, let us first consider the case where there is a single header in the first
dimension, for example Tf ,b, which can be considered as resulting from vertical concatenation
of two two-dimensional one-cell tables Tf ,b = Tf ,ba ///Tf ,bb, see Fig. 17.


y < 10 H1b y < 10 H1b y < 10 H1b


H2
x ≥ 0


x < 0


−y2


x − y
Gb


H2a x ≥ 0 −y2 Gba H2b x < 0 x − y Gbb


Figure 17: The tables Tf ,b, Tf ,ba, and Tf ,bb


According to the explanation above, the inverses of these one-cell tables are obtained by swapping
their cell contents with their first header entries; the results are shown in Fig. 18.


−y2 H1bai x − y H1bbi


H2a x ≥ 0 y < 10 Gbai H2b x < 0 y < 10 Gbbi


Figure 18: The tables Tf ,bai, and Tf ,bbi


It is easy to check that these are inverted tables with preserved semantics, i.e.,


SND
p
xTf ,ba


q
y = SID


p
xTf ,bai


q
y and SND


p
xTf ,bb


q
y = SID


p
xTf ,bbi


q
y .


Combining these two tables via horizontal concatenation produces the ragged table Tf ,bai |||Tf ,bbi;
it is an inverted table equivalent to Tf ,b, i.e.,


SND
p
xTf ,b


q
y = SID


p
xTf ,bai |||Tf ,bbi


q
y .


If one accepts ragged tables as results of inversion, then


z ((λ h1 . z (addH2, |||) (addH2 h1)), |||) B


can be used as inversion function for two-dimensional tables. With this “ragged inversion”, the
theorems below still hold, and can be stripped from the requirements regarding the existence
of units e0, e1 and “empty values” u — for systematic lifting of “ragged inversion” to higher
dimensions see A.3.
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If a regular table is desired as result of inversion, as is the case throughout the literature, then
Tf ,bai and Tf ,bbi need to be combined via diagonal concatenation \ to form the inverted table
corresponding to Tf ,b, shown in Fig. 19; for this diagonal concatenation, the non-diagonal blocks
need to be filled with the “empty” element mentioned above, which in this case is false — this
is supplied to \ as a subscript.


−y2 x − y H1bi


H2
x ≥ 0


x < 0


y < 10 false


false y < 10
Gbi


Figure 19: The table inverse2 false Tf ,b


From these drawings, it is easily seen that


SND
p
xTf ,b


q
y = SID


p
xinverse2 false Tf ,b


q
y .


Furthermore, vertical concatenation of two-dimensional tables with a single header in the first
dimension (like Tf ,b) translates into diagonal concatenation of larger blocks, and horizontal
concatenation translates into horizontal concatenation, so inversion of two-dimensional tables is
defined by the following:


inverse2 u (h1 . (h2 . c)) = c . (h2 . h1)


inverse2 u ((h1 . u1) ///(h1 . u2)) = inverse2 u (h1 . u1) \u inverse2 u (h1 . u2)


inverse2 u (t1 ||| t2) = inverse2 u t1 ||| inverse2 u t2


Diagonal concatenation of regular tables is defined quite directly; if regSkel2 (t1) = (h1, h2) and
regSkel2 (t2) = (k1, k2), then tMap (λ t . updC1 u (delH1 t2)) t1 produces a table v1 filled with
empty cells u and with regSkel2 (v1) = (h1, k2), and vice versa for the opposite corner:


t1 \u t2 := (t1 /// fill u t1 t2) |||(fill u t2 t1 /// t2)


We used an auxiliary function


fill :: α→ T 〈β1, β
′
2〉 α


′ → T 〈β′1, β2〉 α
′′ → T 〈β1, β2〉 α


fill u t1 t2 := tMap (λ t . updC1 u (delH1 t2)) t1


that produces a table where all cells are filled with u and the headers are appropriate for the
concatenation in the diagonal concatenation:


regSkel2 (fill u t1 t2) = (fst (regSkel2 t1), snd (regSkel2 t2))


In comparison with the definition of table inversion used in [SZP96], our definition produces a
permutation of the top-level concatenations of the result table, since our definition groups by
original cell, while that of [SZP96] groups by what are the entries of the second header in our
setting. However, this permutation is semantically justified by the laws that need to hold for
inversion to be applicable, see below.


In the appendix we show how parameterising diagonal concatenations with updC1 u instead of
with u leads to a definition that can equally be used for higher-dimensional table inversions.
Further parameterisation of the definition of inverse2 leads to an “inversion lifting combina-
tor” that allows the sequence inverse2, inverse3, inverse4, . . . to be constructed in a simple and
systematic way, see page 52.
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For these formal definitions we then obtain the following general theorem about semantics-
preservation of syntactic inversion:


Theorem 6.3.1 (Inversion of Two-Dimensional Tabular Expressions)
Let two table evaluation structures


S = (w1 〈| 〈(⊗1,⊕1), (⊗2,⊕2)〉 |〉 f3) : S 〈β1, β2〉 α γ0 and


Sinv = (w2 〈| 〈(⊗4,⊕4), (⊗5,⊕5)〉 |〉 f6) : S 〈α, β2〉 β1 γ0


be given, with the following combinator types:


⊗1 : β1 → γ2 → γ1 ⊗2 : β2 → γ3 → γ2 f3 : α→ γ3


w1 : γ1 → γ0 ⊕1 : γ1 → γ1 → γ1 ⊕2 : γ2 → γ2 → γ2


⊗4 : α→ γ5 → γ4 ⊗5 : β2 → γ6 → γ5 f6 : β1 → γ6


w2 : γ4 → γ0 ⊕4 : γ4 → γ4 → γ4 ⊕5 : γ5 → γ5 → γ5


In addition, let γ0 have a monoid structure, that is, there is an associative operation
¯ : γ0 → γ0 → γ0 together with a neutral element e0 : γ0.


Assume further an “empty element” u : β1, and the following laws (for all c : α; h1 : β1; h2 : β2;
x1, x2 : γ1; y , y1, y2 : γ2; z2, z2, z3, z4 : γ4; v1, v2 : γ5):


w1 (u ⊗1 y) = e0


w1 (x1⊕1 x2) = (w1 x1)¯ (w1 x2)


w1 (h1⊗1(y1⊕2 y2)) = (w1 (h1⊗1 y1))¯ (w1 (h1⊗1 y2))


w1 (h1⊗1(h2⊗2(f3 c))) = w2 (c⊗4(h2⊗5(f6 h1)))


w2 (z1⊕4 z2) = (w2 z1)¯ (w2 z2)


w2 (c⊗4(v1⊕5 v2)) = (w2 (c⊗4 v1))¯ (w2 (c⊗4 v2))


w2 (z1⊕4 z2)⊕4(z3⊕4 z4) = (w2 (z1⊕4 z3))¯ (w2 (z2⊕4 z4))


Then for every table T : T 〈β1, β2〉 α, inversion is value-preserving in the following way:


w1 〈| 〈(⊗1,⊕1), (⊗2,⊕2)〉 |〉 f3
p
xT


q
y = w2 〈| 〈(⊗4,⊕4), (⊗5,⊕5)〉 |〉 f6


p
xinverse2 u Tq


y


In the identity-wrapped case, γ1 and γ4 coincide with γ0, and, by the wrapper distributivity
laws, ⊕1 and ⊕4 have to coincide with ¯.


Theorem 6.3.2 (Inversion of Id-Wrapped Two-Dimensional Tabular Expressions)
Let two identity-wrapped table evaluation structures


S = (B 〈| 〈(⊗1,⊕1), (⊗2,⊕2)〉 |〉 f3) : S 〈β1, β2〉 α γ0 and


Sinv = (B 〈| 〈(⊗4,⊕1), (⊗5,⊕5)〉 |〉 f6) : S 〈α, β2〉 β1 γ0


be given, with the following combinator types:


⊗1 : β1 → γ2 → γ1 ⊗2 : β2 → γ3 → γ2 f3 : α→ γ3


⊕1 : γ1 → γ1 → γ1 ⊕2 : γ2 → γ2 → γ2


⊗4 : α→ γ5 → γ1 ⊗5 : β2 → γ6 → γ5 f6 : β1 → γ6


⊕5 : γ5 → γ5 → γ5
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In addition, assume a neutral element e1 : γ0 for ⊕1, an “empty element” u : β1, and the
following laws (for all c : α; h1 : β1; h2 : β2; x1, x2, x3, x4 : γ1; y , y1, y2 : γ2; z1, z2 : γ5):


u ⊗1 y = e1


h1⊗1(y1⊕2 y2) = (h1⊗1 y1)⊕1(h1⊗1 y2)


h1⊗1(h2⊗2(f3 c)) = c⊗4(h2⊗5(f6 h1))


c⊗4(z1⊕5 z2) = (c⊗4 z1)⊕1(c⊗4 z2)


(x1⊕1 x2)⊕1(x3⊕1 x4) = (x1⊕1 x3)⊕1(x2⊕1 x4)


Then for every table T : T 〈β1, β2〉 α, inversion is value-preserving in the following way:


B 〈| 〈(⊗1,⊕1), (⊗2,⊕2)〉 |〉 f3
p
xT


q
y = B 〈| 〈(⊗4,⊕1), (⊗5,⊕5)〉 |〉 f6


p
xinverse2 u Tq


y


7 Conclusion


Starting with an investigation how tables can be considered as produced by a compositional
syntax, we identified a small number of combinators that can be used as basis of arbitrary table
construction, and that form a rich table algebra.


Constructing an intuitively accessible type system on this table algebra helped us to design table
folding as a natural way to perform calculations on the first-dimension structure of a table, and
extend this to table evaluation structures (TESs), the application of which allows evaluation of
the whole table in full depth.


These mechanisms enable modular and transparent definitions of table semantics, and are sim-
pler and more homogenous than previous approaches.


The fact that tables are not always used to denote some semantic value, but often just as
subexpressions, abbreviating large syntactic expressions, prompted us to carefully look into this
distinction, and accordingly design two different concepts of tabular expressions that embody
the two different uses in a clear and consistent manner.


Furthermore, by performing the Haskell formalisation given in the appendix, we have shown how
the compositional view can be used to obtain a simple and comprehensible basis for implementa-
tion, that is in addition supported by the correctness proofs in the Isabelle/HOL formalisation,
all available from http://www.cas.mcmaster.ca/˜kahl/Tables/.


In our investigation of table structure in Sect. 2, we identified several issues; let us now revisit
those:


1. Empty tables as (partial) units for horizontal concatenation?


Throughout our whole development, we have not encountered any strong motivation for
permitting empty tables.


One possible use would be, in the presence of concatenable cells as in the appendix, to
use empty zero-dimensional tables instead of the externally supplied “empty entry” u for
table inversion.


However, since the presence of empty tables would make an additional argument to table
folding necessary, and thus would slightly complicate the evaluation machinery, we propose
to work without empty tables as far as possible, until a stronger case is made, in particular
since folding with unit does not eliminate the need for folding without unit.
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2. Are all zero-dimensional tables cells?


From a technical point of view, answering a qualified “no” and allowing one-dimensional
concatenation of cells (as in the appendix) makes table evaluation more homogenous.
However, we are not yet aware of any practical uses.


3. Should ragged tables be allowed?


From the point of view of table evaluation and semantics, ragged tables introduce no
problems. In fact, with our compositional approach to table syntax, ragged tables arise
naturally as results of horizontal concatenation with no restrictions imposed except well-
typedness.


We have shown how regular tables can be considered as a (useful) special case, and some
transformations, for example transposition, are only available for regular tables.


On the other hand, inversion becomes much simpler if ragged tables are allowed as results.


Therefore, we propose that for tools based on our framework, ragged tables should be
permitted as naturally arising, and special support for regular tables added where appro-
priate.


As exemplified by the discussions throughout this paper, our systematic view of compositional
table syntax and semantics is a useful basis for investigating and solving problems involving
structure and meaning of tables.


Our next endeavour will be to base a new generation of table manipulation and transformation
tools on this theoretical foundation.
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A Haskell Modules for Tables and Tabular Expressions


This appendix presents a formalisation of tables in the purely functional programming language
Haskell [PJ+03]. Haskell notation is mostly quite intuitive and largely similar to the notation
used in the body of this paper, so we will not explain Haskell features here; tutorials, language
definition, and implementations can be found on the Haskell web site http://haskell.org/.


We present the essential data types of tables, TESs, and tabular expressions, and also the cen-
tral table transformation functions, but concentrate on the generic table framework that is com-
pletely free of any decision about the contents of grid and header cells. In the future, we plan to
continue this “HTables” project, available at http://www.cas.mcmaster.ca/˜kahl/Tables/HTables/,
to build user-friendly table tools on top of the framework presented here.


The Haskell code is presented as a literate program [Knu84, Knu92], with code interspersed
between explanatory documentation, just like in traditional mathematical presentations. The
code seen by the Haskell system is typeset as complete paragraphs in normal typewriter font,
while tentative code, alternative versions, laws, etc. are typeset in slanted typewriter font.


Haskell is statically strongly typed with a type system encompassing that of HOL, but lacking
parameterisation by type lists. Due mainly to this limitation in the type system, some aspects
of tables and tabular expression receive a slightly different treatment here than in the body of
this paper. We took a rather conservative approach to Haskell extensions — the basic table
modules, up to inversion, are all in the standardised Haskell version “Haskell98” [PJ+03]. For
obtaining an elegant but still very general treatment of TESs (and tabular expressions), we
employ multi-parameter type classes, a widely supported Haskell extension.


An additional use of the Haskell formalisation presented here is as an introduction to and
executable experimentation tool for our formalisation in the mechanised proof assistant Is-
abelle/HOL [NPW02]. That formalisation closely follows the Haskell version, but has to pay
additional attention to issues such as the use of non-empty lists, making it technically more
involved and less accessible. Therefore, we chose to include only the Haskell code here, but
in a presentation that can also serve as a guide to the formalisation in Isabelle/HOL, which is
available at http://www.cas.mcmaster.ca/˜kahl/Tables/Isabelle/.


For an efficient table system implementation, some data type and function implementations
would be organised differently — the Isabelle/HOL theories include theorems justifying such
more efficient choices.


For simplicity, we restrict ourselves to a single table data type with no nested headers.


A.1 Tables as Abstract Data Type


This module exports the following items:


• The binary table type constructor T as an abstract (i.e., not supporting pattern matching)
type constructor of kind * -> * -> *, further explained below.


• The table construction function cell and the infix table construction operators >|| and
||| (the latter is associative):


cell :: c -> T c ()


(>||) :: h -> t -> T h t


(|||) :: T h t -> T h t -> T h t


This typing allows horizontal composition of cells, but has the advantage that many defi-
nitions become simpler and more homogeneous.
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A way to ensure statically that cells are never horizontally composed would be to use the
following type declaration for horizontal composition (leaving the definition unchanged):


(|||) :: T h1 (T h2 t) -> T h1 (T h2 t) -> T h1 (T h2 t)


• The table folding function tFold:


tFold :: (h -> t -> e) -> (e -> e -> e) -> T h t -> e


This satisfies the following laws if comp is associative:


tFold addH comp (cell c) = c ‘addH‘ ()


tFold addH comp (h >|| t ) = h ‘addH‘ t


tFold addH comp (t1 ||| t2) = tFold addH comp t1 ‘comp‘ tFold addH comp t2


The export list of this module guarantees that all table analysis can only be performed
via tFold.


• The type class Table, explained below.


module Table(T(), cell, (>||), (|||), tFold, Table()) where


infixr 7 >||


infixr 8 |||


In Sect. 3, we introduced T 〈β1, . . . , βn〉 α as the general type of n-dimensional tables — the
general type of tables is therefore parameterised by the cell type and the list of header types.


Since Haskell does not allow parameterisation by lists of types, we essentially have the following
choices:


i) introduce separate table types for different dimensions,


ii) restrict the tables accommodated by the table data type to those fitting into a simpler
type scheme, for example with β1 = . . . = βn ,


iii) relax the typing of tables, generalising the data type for tables so that it can (potentially)
contain some non-table objects.


We chose a combination of the first and the third approach by introducing a binary type con-
structor T such that for a header type h and a type t of n-dimensional tables the type expression
T h t stands for the resulting (n + 1)-dimensional tables.


For achieving greater homogeneity, we let cells of type T 〈 〉 α populate the type T α (), so
that n-dimensional tables of type T 〈β1, . . . , βn〉 α will have a Haskell representation of type
T β1 ( · · · (T βn (T α ()))· · ·).


This does of course also make possible types T β1 ( · · · (T βn (T α γ))· · ·) for arbitrary γ.
However, Haskell’s type class system can be used to restrict the table constructors to well-formed
tables only; we can force γ to be () for types in the class Table via the following definitions:


class Table t


instance Table ()


instance Table t => Table (T h t)
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Then, the exported functions can be restricted to operate on valid Tables only by replacing the
type declarations given above by the following:


(>||) :: Table t => h -> t -> T h t


(|||) :: Table t => T h t -> T h t -> T h t


tFold :: Table t => (h -> t -> e) -> (e -> e -> e) -> T h t -> e


A few technical points should be noted:


• Here, the one-element type () is considered as a table, too. By dropping the limitations
of Haskell 98 and additionally enabling overlapping instance declarations as supported by
some implementations, this can be avoided. The interface functions would then require
“Table (T h t)” as type constraint instead of “Table t” to achieve the same generality.


• If the class Table is exported, then importing modules can define their own instances of
this class, and the static type safety that was the main motivation of introducing this class
is lost.


• If the class Table is not exported, then we do have type safety for tables (i.e., the guarantee
that the γ from above is always () in the types of arguments to the functions exported
from this module. However, it is then not possible to give explicit type declarations for
any function that has tables in its type, since those tables will be restricted to the class
Table that cannot be referred to from importing modules.


(Not being able to provide type declarations will incur as further complication the im-
possibility to define these functions in pattern bindings, i.e., without explicit reference to
their arguments; this is due to Haskell’s monomorphism restriction.)


In addition, from a pragmatic point of view, different types γ would not amount to much more
than different ways to factor the information contained in cells.


On the whole, not much is gained by introducing the class Table and using it to constrain the
functions exported from this module. We chose not to constrain the interface functions, but we
export the Table class so that users may use it to constrain their own functions if so desired.


Implementation


We implement a table as a list of header-subtable-pairs; the abstract interface guarantees that
these lists are always non-empty.


newtype T h t = T [(h,t)] deriving Eq


(>||) :: h -> t -> T h t


(>||) h t = T [(h,t)]


(|||) :: T h t -> T h t -> T h t


T ps1 ||| T ps2 = T (ps1 ++ ps2)


cell :: c -> T c ()


cell x = x >|| ()


tFold :: (h -> t -> e) -> (e -> e -> e) -> T h t -> e


tFold addH comp (T ps) = foldr1 comp (map (uncurry addH) ps)
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The laws are easily verified:


tFold addH comp (h >|| t)


= tFold addH comp (T [(x,t)])


= foldr1 comp (map (uncurry addH) [(x,t)])


= foldr1 comp [uncurry addH (x,t)]


= uncurry addH (x,t)


= addH x t


= x ‘addH‘ t


tFold addH comp (T ps1 ||| T ps2) -- T is surjective


= tFold addH comp (T (ps1 ++ ps2))


= foldr1 comp (map (uncurry addH) (ps1 ++ ps2))


= foldr1 comp (map (uncurry addH) ps1 ++ map (uncurry addH) ps2)


= {- ps1 and ps2 are non-empty -}


foldr1 comp (map (uncurry addH) ps1) ‘comp‘


foldr1 comp (map (uncurry addH) ps2)


= tFold addH comp (T ps1) ‘comp‘ tFold addH comp (T ps2)


tFold addH comp (cell c)


= tFold addH comp (c >|| ())


= c ‘addH‘ ()


A.2 Table Manipulation and Advanced Construction


Here we define utility functions for table construction and manipulation on top of the interface
of the module Table. That module is also re-exported, so that there is no need to ever explicitly
import Table.


All functions here are defined in a direct, mathematical way, and no new datatypes are intro-
duced, so that a separate interface definition is unnecessary.


module Tables(module Table, module Tables) where


import Table


A.2.1 Simple Table Manipulation and Access


The table datatype constructor T is a bifunctor, and the arrow parts of the individual functors
are easily defined via tFold:


hMap :: (h1 -> h2) -> T h1 t -> T h2 t


hMap f = tFold ((>||) . f) (|||)


tMap :: (t1 -> t2) -> T h t1 -> T h t2


tMap f = tFold (\ h t -> h >|| f t) (|||)


The header list of the first dimension is obtained through another simple application of tFold:


headers :: T h t -> [h]


headers = tFold (\ h t -> [h]) (++)


Sometimes, a three-argument folding function like z from Def. 4.1.1 is more appropriate; we
can easily compose this from tFold and tMap:
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tFoldM a c f = tFold a c . tMap f


A definition via just tFold avoids the construction of the intermediate table:


tFoldM :: (h -> s -> r) -> (r -> r -> r) -> (t -> s) -> T h t -> r


tFoldM a c f = tFold (\ h t -> a h (f t)) c


A.2.2 The “Cons View” of Tables


Adding a first element to a table assembles the header-subtable pair and concatenates it to the
given tail:


hCons :: h -> t -> T h t -> T h t


hCons h t0 t = (h >|| t0) ||| t


The case distinction between singleton and longer tables is implemented as


hUnCons :: T h t -> Either (h,t) ((h,t), T h t)


with the following specification:


hUnCons (h >|| t) = Left (h,t)


hUnCons (hCons h t0 t) = Right ((h,t0), t)


This can be implemented via tFold — note that q is associative:


hUnCons = fst . tFold (\ h t -> (Left (h, t), (h >|| t))) q


where q (r,t1) (_, t2) = (case r of


Left p -> Right (p,t2)


Right (p,t1’) -> Right (p,t1’ ||| t2)


, t1 ||| t2)


This analysis function can now be used to define structural induction over the “cons view” of
tables:


tFoldr :: (h -> t -> r) -> (h -> t -> r -> r) -> T h t -> r


tFoldr a f t = case hUnCons t of


Left (h,t) -> a h t


Right ((h,t),t’) -> f h t (tFoldr a f t’)


Note that no laws are required to hold here, in particular, no variant of associativity is necessary
for f.


Also note that this arrangement makes it possible to let the header and subtable of the last
component receive a treatment (via a) different from what the others receive (via f).


The “cons view” of tables could be used as an alternative basis; concatenation ||| and tFold


can be regained via the following:


t1 ||| t2 = tFoldr (\ h t -> hCons h t t2) hCons t1


tFold a c = tFoldr a (\ h t r -> a h t ‘c‘ r)
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A.2.3 Regular Table Skeletons


We now define functions regSkelN that map each N -dimensional table to Nothing if it is not
regular, and to Just s if it is regular, where s is a nested tuple of lists representing the table’s
skeleton — since the headers of different dimensions can belong to different types, we cannot in
general represent a regular table skeleton as a list of header lists in Haskell.


For regular zero-dimensional tables, we have to deal with the possibility of concatenated cells
— since we consider tables containing concatenated cells as not regular, we return Nothing for
concatenations at the cell level. A single cell is always regular, and has no header structure
that would influence concatenability of higher dimensions, so we return the zero-tuple () as its
skeleton.


regSkel0 :: T c () -> Maybe ()


regSkel0 = tFold (\ _ _ -> Just ()) (\ _ _ -> Nothing)


For an (n+1)-dimensional table t to be regular, all its n-dimensional constituent tables need to
be regular and need to have the same skeletons; the skeleton of t is then that of the constituent
tables with the header list of the first dimension added (we employ Haskell’s monadic do notation
in the Maybe monad):


regSkelStep :: Eq s => (t -> Maybe s) -> T h t -> Maybe ([h],s)


regSkelStep reg t = do s <- tFold (\ h t -> reg t) mEq t


return (headers t, s)


The skeleton equality and propagation herein is achieved via the following (associative and
idempotent) “equality folding combinator”:


mEq :: Eq a => Maybe a -> Maybe a -> Maybe a


mEq (Just x) (Just y) = if x == y then Just x else Nothing


mEq _ _ = Nothing


Note that a one-dimensional table can only fail to be regular by containing concatenated cells
— without that, one-dimensional tables cannot be ragged.


regSkel1 :: T h (T c ()) -> Maybe ([h],())


regSkel1 t = regSkelStep regSkel0 t


regSkel2 :: Eq h2 => T h1 (T h2 (T c ())) -> Maybe ([h1],([h2],()))


regSkel2 t = regSkelStep regSkel1 t


regSkel3 :: (Eq h2, Eq h3) =>


T h1 (T h2 (T h3 (T c ()))) -> Maybe ([h1],([h2],([h3],())))


regSkel3 t = regSkelStep regSkel2 t


If one is only interested in the regularity of the N outermost dimensions, then regularity to zero
dimensions would return a trivial skeleton for arbitrary objects, and regularity to one dimension
always succeeds, only constructing the header list:


regSkelOuter0 :: t -> Maybe ()


regSkelOuter0 _ = Just ()


regSkelOuter1 :: T h t -> Maybe ([h],())


regSkelOuter1 t = regSkelStep regSkelOuter0 t


= Just (headers t, ())


Therefore, we simplify both definition and typing of regSkelOuter1:
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regSkelOuter1 :: T h t -> Maybe [h]


regSkelOuter1 t = Just (headers t)


regSkelOuter2 :: Eq h2 => T h1 (T h2 c) -> Maybe ([h1],[h2])


regSkelOuter2 t = regSkelStep regSkelOuter1 t


regSkelOuter3 :: (Eq h2, Eq h3) =>


T h1 (T h2 (T h3 t)) -> Maybe ([h1],([h2],[h3]))


regSkelOuter3 t = regSkelStep regSkelOuter2 t


If t is regular, its first header list equals headers t; we introduce a corresponding function for
the second dimension — this is partial, and defined only on tables that are regular in their two
outermost dimensions:


reg2dimen2 t = case regSkelOuter2 t of


Nothing -> error "reg2dimen2: not a regular table"


Just (_,hs2) -> hs2


A.2.4 Table Construction Functions


Since an (n + 1)-dimensional table is the concatenation (via |||) of a positive number of n-
dimensional tables, each equipped with a header via ., this construction of an (n+1)-dimensional
table can be considered to start from a list of pairs, where each pair consists of a header and an
n-dimensional table.


The construction is then easily implemented via list folding — the use of foldr1 is justified by
the absence of empty tables and turns tOfList into a partial function which is undefined on the
empty list:


tOfList :: [(h,t)] -> T h t


tOfList = foldr1 (|||) . map (uncurry (>||))


This partial function is surjective and injective, and therefore has a total right-inverse. This is
a simple application of tFold, turning an at least one-dimensional table into a list of header-
subtable-pairs:


tList :: T h t -> [(h,t)]


tList = tFold (\ h t -> [(h,t)]) (++)


The following holds:


tOfList . tList = id :: T h t -> T h t


Frequently, a zipping variant of tOfList is easier to apply:


zipT :: [h] -> [t] -> T h t


zipT hs = tOfList . zip hs


This can also be directly defined by applying the list constructors via list functions from Haskell’s
prelude:


zipT hs = foldr1 (|||) . zipWith (>||) hs
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We use this to define functions that are intended for constructing regular one- and two-dimensio-
nal tables from header lists and a grid of cells — for table2, regularity has to be guaranteed by
either supplying a rectangular cell grid or a header list hs2 for the second dimension that is at
most as long as the shortest element list of the grid. (Both functions are also partial since they
are undefined for empty lists.)


table1 :: [h] -> [c] -> T h (T c ())


table1 hs = zipT hs . map cell


table2 :: [h1] -> [h2] -> [[c]] -> T h1 (T h2 (T c ()))


table2 hs1 hs2 = zipT hs1 . map (table1 hs2)


The sharing semantics of Haskell implies that headers in tables constructed by table2 will not
be duplicated, but shared. Although our implementation also allows for ragged tables, the space
overhead for regular tables, if they are constructed for example via table2, is therefore limited
to one pair constructor per cell, which will mostly be negligible in comparison with the cell
contents.


A.2.5 Table Transposition


The list interface to tables that is exposed by tList and tOfList makes list functions available
for table manipulation; here we use zipWith to create a corresponding function for at least
one-dimensional tables:


tZipWith :: ((h1,t1) -> (h2,t2) -> (h,t)) -> T h1 t1 -> T h2 t2 -> T h t


tZipWith f t1 t2 = foldr1 (|||) $ map (uncurry (>||)) $


zipWith f (tList t1) (tList t2)


This function does of course inherit from zipWith the property that if the arguments are of
different length, then the result has the length of the shorter argument.


Using tZipWith, we can define “vertical” concatenation of (at least) two-dimensional tables
(since the header of the second table is never used, the given type is not principal):


(///) :: T h1 (T h2 c) -> T h1 (T h2 c) -> T h1 (T h2 c)


t1 /// t2 = tZipWith vConc0 t1 t2


where


vConc0 (h1,t1) (h2,t2) = (h1, t1 ||| t2)


This can be seen as a variant of ||| that operates on the second dimension instead of on the
first. For vertical concatenation of two tables t1 and t2 to make sense, the first-dimension
headers have to coincide, i.e., headers t1 = headers t2 has to hold.


We introduce an analogous variant of >|| that preserves the first dimension and adds a new
singleton second dimension. This operator addH2 interacts with >|| by interspersing its first
operand between the two arguments of >|| into a double application of the latter, and it dis-
tributes over |||:


h2 ‘addH2‘ (h1 >|| t ) = h1 >|| (h2 >|| t)


h2 ‘addH2‘ (t1 ||| t2) = (h2 ‘addH2‘ t1) ||| (h2 ‘addH2‘ t2)


This obviously is a simple instance of tMap:
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addH2 :: h2 -> T h1 t -> T h1 (T h2 t)


addH2 h2 = tMap (\ t -> h2 >|| t)


We can further simplify this definition, and systematically continue into higher dimensions:


addH1 :: h1 -> t -> T h1 t


addH1 = (>||)


addH2 :: h2 -> T h1 t -> T h1 (T h2 t)


addH2 = tMap . addH1


addH3 :: h3 -> T h1 (T h2 t) -> T h1 (T h2 (T h3 t))


addH3 = tMap . addH2


addH4 :: h4 -> T h1 (T h2 (T h3 t)) -> T h1 (T h2 (T h3 (T h4 t)))


addH4 = tMap . addH3


Transposition is only defined for tables with at least two dimensions, and replaces the standard
constructors ||| and >|| with those acting on the second dimension:


tTranspose :: T h1 (T h2 t) -> T h2 (T h1 t)


tTranspose = tFold addH2 (///)


Higher-dimensional transpositions are easily constructed from this, e.g.:


tTranspose3 :: T a (T b (T c d)) -> T c (T b (T a d))


tTranspose3 = tTranspose . tMap tTranspose . tTranspose


tTranspose4 :: T a (T b (T c (T d e))) -> T d (T b (T c (T a e)))


tTranspose4 = tTranspose . tMap tTranspose3 . tTranspose


Another primitive table transformation collapses the two outermost dimensions, combining the
two headers together in a single header. We define this as an instance of a generalised concate-
nation function:


collapse :: (h1 -> t1 -> T h2 t2) -> T h1 t1 -> T h2 t2


collapse f = tFold f (|||)


collapse2 :: (h1 -> h2 -> h) -> T h1 (T h2 t) -> T h t


collapse2 f = collapse (hMap . f)


A.3 Table Inversion


module Inversion where


import Tables


Inversion of tables with one-cell grids is easy, since only the grid cell content needs to be “pushed
up” by appropriate deep-dimensional header insertions: the following functions take two argu-
ments h and t0, and deliver the inversion (in the respective dimension) of table h . t0 (we use
the type variable u where normally the unit type () would be substituted):


invC1 :: h1 -> T c u -> T c (T h1 u )


invC2 :: h1 -> T h2 (T c u ) -> T c (T h2 (T h1 u ))


invC3 :: h1 -> T h2 (T h3 (T c u )) -> T c (T h2 (T h3 (T h1 u )))


invC4 :: h1 -> T h2 (T h3 (T h4 (T c u))) -> T c (T h2 (T h3 (T h4 (T h1 u))))
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invC1 = addH2


liftInvC :: (h1 -> t -> T c t’) -> h1 -> T h2 t -> T c (T h2 t’)


liftInvC g h1 = tFoldM addH2 (|||) (g h1)


invC2 = liftInvC invC1


invC3 = liftInvC invC2


invC4 = liftInvC invC3


Table inversion as presented in the literature is complicated by the requirement that the resulting
tables be regular.


If we allow the result table to be ragged, we only need to embed the appropriate cell inversion
function into a simple table folding:


raggedInv2 :: T h1 (T h2 (T c u )) -> T c (T h2 (T h1 u ))


raggedInv3 :: T h1 (T h2 (T h3 (T c u ))) -> T c (T h2 (T h3 (T h1 u )))


raggedInv4 :: T h1 (T h2 (T h3 (T h4 (T c u)))) -> T c (T h2 (T h3 (T h4 (T h1 u))))


raggedInv2 = tFold invC2 (|||)


raggedInv3 = tFold invC3 (|||)


raggedInv4 = tFold invC4 (|||)


In the following, we let inversion always be targeted to production of regular tables. The essential
change necessary to achieve this is replacing the horizontal concatenation ||| in liftInvC with
a diagonal concatenation that pads the remaining “grid space” with regular tables filled with
“empty values” and carefully adapted skeletons.


Inversion of higher-dimensional normal tables needs some auxiliary functions, first of all for
eliminating individual dimensions (in which case only one of each list of lower-dimensional
subtables can be preserved):


delH1 :: T a b -> b


delH1 = tFold (\ h t -> t) const


delH2 :: T a (T b c) -> T a c


delH2 = tMap delH1


delH3 = tMap delH2


delH4 = tMap delH3


Using these, we can define “header slimming functions” which slim down the header of the
selected dimension to a singleton containing the supplied entry:


slimH1 :: a -> T b u -> T a u


slimH2 :: a -> T b (T c u ) -> T b (T a u )


slimH3 :: a -> T b (T c (T d u )) -> T b (T c (T a u ))


slimH4 :: a -> T b (T c (T d (T e u))) -> T b (T c (T d (T a u)))


slimH1 u = (>||) u . delH1


slimH2 = tMap . slimH1 -- = addH2 u . delH2


slimH3 = tMap . slimH2 -- = addH3 u . delH3


slimH4 = tMap . slimH3 -- = addH4 u . delH4


Since cells are headers, too, we do not need separate cell update functions like updCn from
page 19; these are instances (obtained by setting u = () in the types) of the header slimming
functions:
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updC0 = slimH1 :: a -> T b () -> T a ()


updC1 = slimH2 :: a -> T b (T c () ) -> T b (T a () )


updC2 = slimH3 :: a -> T b (T c (T d () )) -> T b (T c (T a () ))


updC3 = slimH4 :: a -> T b (T c (T d (T e ()))) -> T b (T c (T d (T a ())))


The “slimming” effect is lost on the cell level as long as we do not permit cell concatenation.
the Isabelle proofs for semantics preservation of table inversion include the possibility of cell
concatenation; for Theorem 6.3.1, this results only in one additional distributivity law that is
required to hold for the cell-level concatenation semantics.


Diagonal concatenation of regular tables uses horizontal and vertical concatenations to arrange
the two argument tables as blocks on the main diagonal of the top two dimensions, and uses
“empty” tables of appropriate skeletons to fill the whole concatenation up to be a regular table
again:


dConc :: (T a b -> T a b) -> T c (T a b) -> T c (T a b) -> T c (T a b)


dConc h t1 t2 = (t1 /// fill0 h t1 t2) ||| (fill0 h t2 t1 /// t2)


The fillers are parameterised by an “emptying” function h that acts on subtables below the first-
dimension headers. The filling function preserves of its first argument table only the headers
of the first dimension, and of the second argument table the headers of all other dimensions;
the “emptying function” will usually update the cells, which may be at an arbitrarily deep
dimension.


fill0 :: (t -> t’) -> T h t0 -> T h0 t -> T h t’


fill0 h t1 t2 = tMap (const $ h $ delH1 t2) t1


In the special case of two dimensional tables, the emptying function will be updC1, as on page
37:


fill :: a -> T b1 t’ -> T b1’ (T b2 (T a’ ())) -> T b1 (T b2 (T a ()))


fill u = fill0 (updC1 u)


Here, however, we will not need that function any further since we subsume the two-dimension
inversion into a more general approach. This approach involves inversion operators that perform
inversion for tables of the shape h1 >|| t; inversion of arbitrary tables is obtained from these
inversion operators via folding with (|||):


inverse1 :: T a (T b c)


-> T b (T a c)


inverse1 = tFold invOp1 (|||)


inverse2 :: a -> T a (T b (T c d))


-> T c (T b (T a d))


inverse2 u = tFold (invOp2 u) (|||)


inverse3 :: a -> T a (T b (T c (T d e)))


-> T d (T b (T c (T a e)))


inverse3 u = tFold (invOp3 u) (|||)


inverse4 :: a -> T a (T b (T c (T d (T e f))))


-> T e (T b (T c (T d (T a f))))


inverse4 u = tFold (invOp4 u) (|||)


The operators themselves are defined by induction over the dimension; for one-dimensional tables
this is just addH2:
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invOp1 :: a -> T b c


-> T b (T a c)


invOp1 = addH2


Higher-dimensional inversion operators are obtained using an “inversion lifting” function that in
addition needs to supply the emptying function corresponding to the dimensionality to diagonal
concatenation:


invLift :: (T b c -> T b c) ->


(d -> e -> T f c) ->


(d -> T b e -> T f (T b c))


invLift h g = \ h1 -> tFoldM addH2 (dConc h) (g h1)


This allows to systematically build inversion operators for arbitrary dimensionality; the partially
applied slimming functions (usually in their rôle as cell update functions) are supplied for being
passed to diagonal concatenation:


invOp2 :: a -> a -> T b (T c d)


-> T c (T b (T a d))


invOp2 u = invLift (slimH2 u) invOp1


invOp3 :: a -> a -> T b (T c (T d e))


-> T d (T b (T c (T a e)))


invOp3 u = invLift (slimH3 u) (invOp2 u)


invOp4 :: a -> a -> T b (T c (T d (T e f)))


-> T e (T b (T c (T d (T a f))))


invOp4 u = invLift (slimH4 u) (invOp3 u)


Composing with transposition functions, we obtain “inner” inversions, too:


inverse2_2 :: b -> T a (T b (T c d))


-> T a (T c (T b d))


inverse3_2 :: b -> T a (T b (T c (T d e)))


-> T a (T d (T c (T b e)))


inverse3_3 :: c -> T a (T b (T c (T d e)))


-> T a (T b (T d (T c e)))


inverse4_2 :: b -> T a (T b (T c (T d (T e f))))


-> T a (T e (T c (T d (T b f))))


inverse4_3 :: c -> T a (T b (T c (T d (T e f))))


-> T a (T b (T e (T d (T c f))))


inverse4_4 :: d -> T a (T b (T c (T d (T e f))))


-> T a (T b (T c (T e (T d f))))


inverse2_2 u = tTranspose . inverse2 u . tTranspose


inverse3_2 u = tTranspose . inverse3 u . tTranspose


inverse3_3 u = tTranspose3 . inverse3 u . tTranspose3


inverse4_2 u = tTranspose . inverse4 u . tTranspose


inverse4_3 u = tTranspose3 . inverse4 u . tTranspose3


inverse4_4 u = tTranspose4 . inverse4 u . tTranspose4
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A.4 Table Evaluation Structures


This module exports, besides auxiliary datatypes, abstract datatype constructors for wrapper-
less table evaluation structures (TESs). Not including wrappers considerably simplifies the
presentation of this module; if wrappers are needed, they can easily be added by an additional
layer pairing a wrapper-less TES with a wrapper function (representation).


module TES( FRep1(..), FRep2(..), F2(..)


, CPR(), mkCPR, hComb, cComb


, TESnil(), mkTES0, tEval0


, TEScons(), consTES


, tEval1, TES1, mkTES1


, tEval2, TES2, mkTES2


, tEval3, TES3, mkTES3


, TES(..)


, module Tables


) where


import Tables


The ingredients of TESs are functions, mostly grouped in combinator pairs, which are used
in table evaluation. In a table transformation support tool, however, there may be the need
to, rather than applying them, inspect those functions, for example in order to base some
transformation decision on the result of this inspection.


Therefore, we allow arbitrary representations of functions, as long as they offer an interface for
application. Such an interface is naturally encoded as a type class, and we need representations
of unary and binary functions:


class FRep1 f1 where


apply1 :: f1 a b -> a -> b


class FRep2 f2 where


apply2 :: f2 a b c -> a -> b -> c


Although many applications will not be able to provide fully polymorphic representation types,
standard techniques like “dummy parameters” together with type constraints can still be used to
produce the required interfaces. However, polymorphic representation types enable us to restrict
larger TESs to use the same representation type at every dimension without compromising
flexibility of the header types or type safety.


Functions themselves are of course the most obvious function representations:


instance FRep1 (->) where apply1 f x = f x


instance FRep2 F2 where apply2 = applyF2


newtype F2 a b c = F2 {applyF2 :: (a -> b -> c)}


Combinator pair representations are then pairs of binary function representations — we export
their type as an abstract data type, enforcing their consistency by constraining the types of the
construction and access functions:


newtype CPR f2 h s r = CPR (f2 h s r, f2 r r r)


mkCPR :: FRep2 f2 => f2 h s r -> f2 r r r -> CPR f2 h s r


mkCPR = curry CPR
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hComb :: FRep2 f2 => CPR f2 h s r -> (h -> s -> r)


cComb :: FRep2 f2 => CPR f2 h s r -> (r -> r -> r)


hComb (CPR p) = apply2 (fst p)


cComb (CPR p) = apply2 (snd p)


The typical use of a combinator pair is in a tFold; so we define variants that take combinator
pairs as arguments:


tFoldCPR :: FRep2 f2 => CPR f2 h s r -> T h s -> r


tFoldCPR cp = tFold (hComb cp) (cComb cp)


tFoldMCPR :: FRep2 f2 => CPR f2 h s r -> (t -> s) -> T h t -> r


tFoldMCPR cp = tFoldM (hComb cp) (cComb cp)


Combinator pair representations of course can be just pairs of functions:


type CPairF h s r = CPR F2 h s r


For table evaluation structures, we face the same problem as for tables, that Haskell does not
support parameterisation of type constructors by type lists.


For tables, we solved this by a type family generated by two constructors: the zero-ary con-
structor () for “subtables below cells”, and the parameterised (with parameter h) family of
unary type constructors T h for producing the types of (n +1)-dimensional tables from types of
n-dimensional tables.


Here, we follow the same approach for table evaluation structures (disregarding the wrappers):


• the type constructor TESnil produces types for TESs for sub-cell tables (i.e., tables z used
to form cells containing c in the construction c . z ) — which in standard cases have type
(), and


• the type constructor TEScons takes a header type h, a type tes of TESs for n-dimensional
tables, and some auxiliary type parameters, and constructs from them the types of TESs
for (n + 1)-dimensional tables.


Accommodating the full flexibility of our table types, we allow TES application to start from an
arbitrary “sub-cell type” t, and evaluation of such an “unstructured” table can be an arbitrary
function from t to some result type r:


newtype (FRep1 f1, FRep2 f2) => TESnil t r f1 f2 = TESnil (f1 t r)


mkTES0 :: (FRep1 f1, FRep2 f2) => f1 t r -> TESnil t r f1 f2


mkTES0 f = TESnil f


For obtaining a homogeneous system of TES types, we parameterise TESnil not only with the
type f1 for unary function representations that it needs, but also with f2 for binary function
representations.


The constraint for the newtype is necessary to enforce the correct kind * -> * -> * -> * for
f2, which otherwise would be assigned the default kind *; this would lead to clashes later.


Applying such a trivial TES means applying the function it consists of:


tEval0 :: (FRep1 f1, FRep2 f2) => TESnil t r f1 f2 -> t -> r


tEval0 (TESnil f) = apply1 f
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The step from dimension n to dimension (n+1) in wrapper-less TESs is performed by adding to a
TES for n-dimensional table evaluation, typed with a tes type, a combinator pair representation
of type cp for the new header type h, the subtable result type s, and the new result type r:


data (FRep1 f1, FRep2 f2) => TEScons h tes s r f1 f2 =


TEScons (CPR f2 h s r) (tes f1 f2)


Here, the main task for the constraint is to supply the correct kind * -> * -> * for f1.


consTES :: (FRep1 f1, FRep2 f2) =>


CPR f2 h s r -> tes f1 f2 -> TEScons h tes s r f1 f2


consTES = TEScons


Applying such a TES involves applying the sub-TES to all subtables (via tMap) and then fold
the combinator pair over the top-level structure:


tEval1 (TEScons cp tes) = tFoldMCPR cp (tEval0 tes)


tEval2 (TEScons cp tes) = tFoldMCPR cp (tEval1 tes)


tEval3 (TEScons cp tes) = tFoldMCPR cp (tEval2 tes)


tEval4 (TEScons cp tes) = tFoldMCPR cp (tEval3 tes)


These evaluation functions have the following principal types:


tEval1 :: (FRep1 f1, FRep2 f2) =>


TEScons h1 (TESnil t g2) g2 g1 f1 f2 -> T h1 t -> g1


tEval2 :: (FRep2 f2, FRep1 f1) =>


TEScons h1 (TEScons h2 (TESnil t g3) g3 g2) g2 g1 f1 f2


-> T h1 (T h2 t) -> g1


tEval3 :: (FRep1 f1, FRep2 f2) =>


TEScons h1 (TEScons h2 (TEScons h3 (TESnil t g4) g4 g3) g3 g2) g2 g1 f1 f2


-> T h1 (T h2 (T h3 t)) -> g1


tEval4 :: (FRep1 f1, FRep2 f2) =>


TEScons h1 (TEScons h2 (TEScons h3 (TEScons h4 (TESnil t g5)


g5 g4) g4 g3) g3 g2) g2 g1 f1 f2


-> T h1 (T h2 (T h3 (T h4 t))) -> g1


As abbreviations, we introduce type synonyms for the “well-founded” TES types that are the
arguments of these TES application functions — the following type equations are all at kind
(* -> * -> *) -> (* -> * -> * -> *) -> *, since the TESn type synonyms all accept as two
additional arguments the type constructors f1 : * -> * -> * and f2 : * -> * -> * -> * of
the respective function representations:


type TES1 h1 t g2 g1 = TEScons h1 (TESnil t g2) g2 g1


type TES2 h1 h2 t g3 g2 g1 = TEScons h1 (TES1 h2 t g3 g2) g2 g1


type TES3 h1 h2 h3 t g4 g3 g2 g1 = TEScons h1 (TES2 h2 h3 t g4 g3 g2) g2 g1


type TES4 h1 h2 h3 h4 t g5 g4 g3 g2 g1 = TEScons h1 (TES3 h2 h3 h4 t g5 g4 g3 g2) g2 g1


Unlike in Def. 4.3.1, here we cannot suppress the list of intermediate types γi from the externally
visible type unless we use existentially quantified types, a non-standard type system extension
available in some Haskell implementations, but not in HOL as supported by Isabelle.


We define functions with specialised types that help to assemble TESs for specific dimensions:


mkTES1 :: (FRep1 f1, FRep2 f2) =>


CPR f2 h1 g2 g1 -> f1 t g2 -> TES1 h1 t g2 g1 f1 f2


mkTES1 cp f = TEScons cp (TESnil f)
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mkTES2 :: (FRep1 f1, FRep2 f2) =>


CPR f2 h1 g2 g1 ->


CPR f2 h2 g3 g2 ->


f1 t g3 ->


TES2 h1 h2 t g3 g2 g1 f1 f2


mkTES2 cp1 cp2 f = TEScons cp1 (mkTES1 cp2 f)


mkTES3 :: (FRep1 f1, FRep2 f2) =>


CPR f2 h1 g2 g1 ->


CPR f2 h2 g3 g2 ->


CPR f2 h3 g4 g3 ->


f1 t g4 ->


TES3 h1 h2 h3 t g4 g3 g2 g1 f1 f2


mkTES3 cp1 cp2 cp3 f = TEScons cp1 (mkTES2 cp2 cp3 f)


mkTES4 :: (FRep1 f1, FRep2 f2) =>


CPR f2 h1 g2 g1 ->


CPR f2 h2 g3 g2 ->


CPR f2 h3 g4 g3 ->


CPR f2 h4 g5 g4 ->


f1 t g5 ->


TES4 h1 h2 h3 h4 t g5 g4 g3 g2 g1 f1 f2


mkTES4 cp1 cp2 cp3 cp4 f = TEScons cp1 (mkTES3 cp2 cp3 cp4 f)


Similar to the type class Table in A.1, we can again use a multi-parameter type class to discern
“well-founded” TES type constructors. Here we need a three-parameter class, and if the class
predicate TES tes t r holds for a type constructor


tes :: (* -> * -> *) -> (* -> * -> * -> *) -> *


for TESs, and types t for tables, and r for results, we read this as saying:


“TESs of types that are appropriate instances (via function representations f1 and
f2) of tes can be applied to tables of type t producing results of type r.”


In addition, we will use this class predicate only in contexts where for a given TES type, the table
and result type are uniquely determined; we record this fact by including functional dependencies
in the class declaration (note that the table type does not depend on the function representation
type constructors):


class TES tes t r | tes -> t, tes -> r where


tEval :: (FRep1 f1, FRep2 f2) => tes f1 f2 -> t -> r


The class member tEval obviously provides the TES application function as “witness” for our
interpretation of the class predicate.


Using this understanding, we can easily produce the instance declarations for our two TES
datatype constructors:


instance TES (TESnil t r) t r where


tEval (TESnil f) t = apply1 f t


instance TES tes t t’


=> TES (TEScons h tes t’ r) (T h t) r


where


tEval (TEScons cp tes) = tFoldMCPR cp (tEval tes)
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With these instance declarations, the individual evaluation functions defined above all become
instances of tEval at the types derived from their direct definitions:


tEval0 = tEval ::


(FRep1 f1, FRep2 f2) => TESnil t g1 f1 f2


-> t -> g1


tEval1 = tEval ::


(FRep1 f1, FRep2 f2) => TES1 h1 t g2 g1 f1 f2


-> T h1 t -> g1


tEval2 = tEval ::


(FRep1 f1, FRep2 f2) => TES2 h1 h2 t g3 g2 g1 f1 f2


-> T h1 (T h2 t ) -> g1


tEval3 = tEval ::


(FRep1 f1, FRep2 f2) => TES3 h1 h2 h3 t g4 g3 g2 g1 f1 f2


-> T h1 (T h2 (T h3 t ) ) -> g1


tEval4 = tEval ::


(FRep1 f1, FRep2 f2) => TES4 h1 h2 h3 h4 t g5 g4 g3 g2 g1 f1 f2


-> T h1 (T h2 (T h3 (T h4 t ) ) ) -> g1


A.5 Tabular Expressions as Abstract Data Type


module TE(TE(), mkTE, tes, table, teEval, module TES) where


import TES


A tabular expression is a table together with a TES for that table:


data (TES tes t r, FRep1 f1, FRep2 f2) =>


TE f1 f2 tes t r = TE (tes f1 f2) t


Here we let the function representation type constructors be the first arguments, since for any
particular tool, they are most likely to be fixed. For the TES types in module TES they have to
be the last arguments since only that way it was possible to keep them outside the TES class,
and to enforce homogeneous representation type constructors across dimensions.


We export TE as an abstract data type; the exported constructors and access functions in this
case all have their principal types:


mkTE :: (TES tes t r, FRep1 f1, FRep2 f2) =>


tes f1 f2 -> t -> TE f1 f2 tes t r


mkTE = TE


tes :: (TES tes t r, FRep1 f1, FRep2 f2) => TE f1 f2 tes t r -> tes f1 f2


tes (TE te_tes te_t) = te_tes


table :: (TES tes t r, FRep1 f1, FRep2 f2) => TE f1 f2 tes t r -> t


table (TE te_tes te_t) = te_t


Thanks to the functional dependencies in the declaration of class TES, the declared type of the
tabular expression evaluation function is principal, too:


teEval :: (TES tes t r, FRep1 f1, FRep2 f2) => TE f1 f2 tes t r -> r


teEval te = tEval (tes te) (table te)
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A.6 Interpreter-Supported Table Interaction


This module is intended primarily for use in an interpreter; it explicitly imports all maximal
table modules and re-exports them; since the module chain Table→ Tables→ TES→ TE also
re-exports at every step, all their exports from all table modules are exported from TTop and
therefore available interactively.


This module is not Haskell 98 because of the use of multi-parameter classes and functional
dependencies in TES.


Use:


hugs -98 TTop.lhs


ghci -fglasgow-exts TTop.lhs


module TTop(module TE, module Inversion) where


import TE


import Inversion
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