
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 2S03
Exercise Sheet 5
Solution Hints

SFWR ENG 2S03 — Principles of Programming

11 October 2006

Exercise 5.1 — Top 10 Lists (55%of Midterm 3, 2003)

A computer game maintains itstop 10 list in two arrays, declaredglobally by:

#define TOPLEN 10
int top10scores[TOPLEN];
char * top10names[TOPLEN];

(These are global arrays and need not be passed as arguments to the functions below.)

Scores in this game are always non-negative, so negative entries intop10scores indicateempty
positions, i.e., positions that have not been claimed yet. For example, after the first player plays this
game, achieving the non-negative scores1 only the entry for the “top position” will be occupied by
s1; all other entries in the arraytop10scores will be negative.

Players who provide their name will have their name listed in the arraytop10names in the same
positions that their scores occupy intop10scores. Players can playanonymously; instead of their
names, theNULL pointer value will be stored in their positions in the arraytop10names.

(a) ≈10% Some possible states of the two arraystop10scores andtop10names make no sense.
For example, there should be no “empty” entries between real scores.

Define preciselywhich states of the two arraystop10scores andtop10names you consider as
legal, and how you interpret these states. In particular, where will the best score be stored?

(b) ≈20% Define the interfaceof a functioninsertIntoTop that attempts to insert a new score into
the top 10 lists — it will insert only if the new score deserves it, and it will inform the caller of
the following:
• whether insertion was successful,
• whether the score of adifferent non-anonymous player was expunged from the list, and if

yes, who this was, and what their score was (so the system can, for example, send them an
e-mail to ask them to play again),

• the difference between the supplied score and the previous best score.

Documenthow the caller of the functioninsertIntoTop will be able to accessall this information
after a call, anddocumentthe arguments the functioninsertIntoTop accepts and which assump-
tions it makes about those arguments. —Hint: Pass-by-reference may be useful.

(c) ≈25% Implement the functioninsertIntoTop from (b).

(d) (not on the original midterm — independentfrom (b) and (c))

Implement the functiondisplayTop10 that produces a sensible display of legal states — see (a)
— of the top 10 list.

(e) (not on the original midterm) Implement an appropriatemain program to test your functions.

Solution Hints

Legal states:

• Specify where the highest score is stored, for example at index 0 — we assume this throughout
the following.

• The sequence of scores is monotonically decreasing

• Decision: negative scores are all -1

• Decision: positions with negative score haveNULL as name

• Possible decisions (not implemented in the example solution to (b,c) below): (Consecutive)
entries with the same score must not have the same name

• Possible decision (not implemented in the example solution to (b,c) below): equal names are
represented by equal pointers.

• Intuitively desirable: Correspondence between names and scores.

However, instead of a static condition on states, this is a condition relating the states before and
after insertion. Mentioning this is therefore not expected in (a).

The interface of a function consists of prototype and specification of behaviour. Beyond the
insertion aspect covered in the question (insertion of key-value-pair into list of key-value-pairs
sorted by keys), the arguments and return values need to be documented, here as comments in
the code:

#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#define TOPLEN 10
int top10scores[TOPLEN];
char * top10names[TOPLEN];

bool insertIntoTop(/* return value: success (Boolean) */
int score, /* in: new score — non-negative */
char * name, /* in: name of score winner, orNULL */
int * diff , /* out: difference, always set */
int * outscore, /* out: expunged score: -1 if none, or if the expunged score belongs to

name */
char ** outname) /* out: expunged name — non-NULL possible only if*outscore ≠ −1*/

{
int i = 0, j;

if (top10scores[0] > 0)

*diff = score − top10scores[0];
else

diff = score; / maximum of empty set of non-negative scores is 0. Alternative choice:*diff =
0; */

while(i < TOPLEN && top10scores[i] > score) { i++; }
if (i == TOPLEN)

return false; /* score does not belong into top 10 */

/* Now, for all j with 0 ≤ j < i, we havetop10scores[j] > score,
and for allj with i ≤ j < TOPLEN, we havetop10scores[j] ≤ score.
We decide that in the case of equal scores, the latest comer is top.
Therefore,i is the position where score and name have to be entered. */

/* shift scores that are not better than new score */
for (j=i ; j < TOPLEN ; j++) {
/* swap(score,name) with top10[j] using*out... as temporary variables;

this way,*outscore and*outname contain the expungend entry at the end, or are empty */

*outscore = top10scores[j];

*outname = top10names[j];
top10scores[j] = score;
top10names[j] = name;
score = *outscore;
name = *outname;

}
/* clear *out... if name pushed out their own score */
if (*outscore > 0 && /* not necessary since otherwise*outname = NULL */

*outname && name && !strcmp(*outname,name)) /* *outname == name is acceptable in the
test */

{ *outname = NULL; *outscore = −1; }
return true;

}

Exercise 5.2 — Find Errors (15%of Midterm 3, 2003)

Find and describe the error in each of the following program segments. If the error can be corrected,
explain how.

(a) char *s;
printf ("%s\n", s);

(b) char s[] = "Some string.";
printf ("%s\n". &s[1]);

(c) float * x , y ;
x = y ;

(d) char s[4] = {’a’, ’b’, ’d’, ’e’};
printf ("%s\n", s);

(e) int z = 5;
int * p, q; /* integer pointersp andq */
p = &z;
q = *p;

Solution Hints

(a) The poiners is not initialised — initialise it by assigning the start address of some string, e.g.,
s = "".

(b) The period “.” should be a comma “,”.

(c) Type error — change tox = &y ;.

(d) There is no terminating zero character in the arrays — when changing to string initialisation,
take care to allow enough space for the terminating zero character, e.g.,char s[5] = "abde"

(e) The comment is wrong — change it!

Exercise 5.3 — Typing (8%of Midterm 2, 2004)

Let the following declarations bee given:

char z[100];
char * c[15];
int ** p;

Give the types of the following expressions:

(a) p[42]
(b) z + 4
(c) *(c+5)
(d) &(c[1])

Solution Hints

(a) A pointer toT cab ne treated as an array ofT elements, sop is treated here as an arrayp : int *
[], and we havep[42] : int *

(b) As argument to pinter addition, z is considered as a pointer, i.e.,z : char *, soz + 4 : char *
(c) Analogously,(c+5) : char **, so(*(c+5)) : char *
(d) (c[1]) : char *, so&(c[1]) : char **

