
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 2S03
Exercise Sheet 6
Solution Hints

SFWR ENG 2S03 — Principles of Programming

18 October 2006

Exercise 6.1 — Calendar (22%of Final 2003)

For a calendar application, a year will be represented bya single contiguous arrayof days, called
a “year array” .

For making access easier, a“month start array” will be calculated, containing for each month
indexi the index that the first day of monthi has in year arrays.

Example: In a normal (i.e., non-leap) year, the first four elements (at indices 0, 1, 2, 3) of the month
start array will be 0, 31, 59, 90.

Note: The items (a) and (b) are completely independent of each other.

(a) ≈10% Implement the C function

int * startDays(int monthsNum , const int monthLen[] , int * yearLen)

that

– returns a pointer to the beginning of a newly allocated month start array which should have
monthsNum elements,

– initialises this new month start array according to the month lengths found in the
monthsNum-element arraymonthLen, and

– writes the number of days the whole year has in this calendar into the reference parameter
yearLen.

(b) ≈12% Implement the iterative C function

void printDate(int monthsNum , int monthStart[] , int index)

that, given a number of months and a month start array, usesbinary search to find the month
containing the day with indexindex in a year array; it should then print (to standard output) a
message containing the day in that month and the number of the month as user-level day and
month numbers.

Example:For index 0 it should print “Day 1 month 1”, and for index 33 (using the standard
calendar) it should print “Day 3 month 2”.

Let the following enumeration type definition be given:

typedef enum {SUN, MON, TUE , WED, THU, FRI, SAT } Weekday;

(c) new Write a C functionweekday that, given a month start arraymonthStart, the weekday
wd1 of the first day of the year (for 2003 this would beWED), and twoint valuesmonth and
a day, returns the weekday of the day indicated bymonth and aday, which are supplied as
user-level numbers: For the 21st October, these arguments would bemonth=10 andday=21.

Solution Hints
#include <stdio.h>
#include <stdlib.h>
typedef int bool;
#define TRUE 1
#define FALSE 0

If memory allocation for the result array fails,NULL is returned, and we leave the decision to the
caller whether or not to print a failure message.

However, the number of days of the year can still be calculated even if the memory allocation for
the result array failed, so we do that.

int * startDays(const int monthsNum, const int monthLen[], int * yearLen) {
int * result = malloc(monthsNum * sizeof(int));
int i, s = 0;
for (i = 0; i < monthsNum; i++) {
if (result ≠ NULL) { result[i] = s; }
s += monthLen[i];

}

*yearLen = s;
return result; // pass the burden of error handling to caller

}

Standard binary search:

• initialise lower andupper to the extremes of the search range
• if the range has collapsed:lower (== upper) must be the index of the month we are looking for.
• if the range has not collapsed:

– calculate the middle indexk such thatk is not equal tolower
– Select the subrange to continue.

For printing the result, we have to take care to convert array indices (starting at 0) into natural-lan-
guage ordinal numbers (starting at 1).

void printDate(int monthsNum, const int monthStart[], int index) {
int lower = 0, upper = monthsNum − 1;
int k ;
while (upper > lower) {
k = (upper + lower + 1) / 2;
if (index ≥ monthStart[k])

lower = k ;
else

upper = k − 1;
}
printf ("Day: %d, month: %d\n", index + 1− monthStart[lower], lower + 1);

}

calIndex(monthStart, month, day) considersmonth and day as natural-language ordinal numbers
(starting at 1) and returns the calendar array index corresponding to the day indicated bymonth and
day in calendar arrays governed by month start indicesmonthStart.

int calIndex(const int monthStart[], int month, int day) {
return monthStart[month − 1] + day − 1;

}

typedef enum {SUN, MON, TUE , WED, THU, FRI, SAT } Weekday;

We now employ the fact that we knowwhich integers theWeekday constants are, and that “%”
returns non-negative integers less than its second argument.

Weekday weekday(const int monthStart[], Weekday wd1, int month, int day) {
return (calIndex(monthStart, month, day) + wd1) % 7;

}

Themain function here first prints the result ofstartDays, and then processes its argument list; the
executable can be called in two ways:

./Calendar 294 # testing printdate

./Calendar 21 10 # testing weekday

int main(int argc, char * argv []) {
const char * weekdays[] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
const int monthsNum = 12;
const int monthLen[12] = // 2004 is a leap year!

{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int yearLen;
Weekday w , wd1 = THU; // for 2004
const int * monthStart = startDays(monthsNum, monthLen, &yearLen);
int i, d , m;

if (monthStart == NULL) {
fprintf (stderr , "%s: Could not allocate memory for month start array!\n", argv [0]);
return 1; // exit status indicating error

}
for (i=0; i<monthsNum; i++) {
w = weekday(monthStart, wd1, i+1, 1); // weekday of first of month
printf ("Month %d has %d days and starts on a %s, day number %d\n",

i+1, monthLen[i], weekdays[w], monthStart[i]);
}
printf ("The year has %d days.\n", yearLen);

if (argc == 2) { // Argument read as “day index’’
d = atoi(argv [1]);
printDate(monthsNum, monthStart, d);

}
if (argc > 2) { // Arguments read as “day, month’’
d = atoi(argv [1]);
m = atoi(argv [2]);
w = weekday(monthStart, wd1, m, d);
printf ("Day %d of month %d is a %s.\n", d , m, weekdays[w]);

}
return 0;

}

Exercise 6.2 — Calendar (modified 23%of Final 2003)

For the calendar application of Exercise 6.1:

(a) Write and documentappropriate type definitions for the calendar data — of typeDay — to be
stored in year arrays.

For each day, there should be the times of sunrise and sunset, and up to 10 appointments.

An appointment — of typeAppointment — has begin and end times, a title string, and a
comment string.

(b) Design and implementa C functionfind that accepts the following parameters:
– the number of months and a month start array,
– the number of days in the year and a year array containingDayelements,
– a function check that takes anAppointment— see (c) — as argument and returns either

NULL to signal that the argumentAppointmentis irrelevant, or a pointer to a string containing
a message to be printed.

The functionfind should applycheck to all appointments in the year array, and for each
appointment for which a message is returned, it should print the message and useprintDate
from (b) above to print the date at which the appointment was found.

(c) new Implement argument functions forfind from (b), e.g.:

– checkWhite finds appointments where the comment string contains only white-space
characters, and returns a message transscribing the comment into a C string literal.

So if the comment consisted of an empty line, and a line containing a space and a tab
character, the returned message, when printed to the screen, would contain the nine-character
string"\n \t\n".

(For manually generating this, you would write:"\"\\n \\t\\n\"".)
– checkBirthday finds birthdays: If the comment of an appointment does not contain (case

insensitive) the sub-string"birthday", it returnsNULL. If a birthday comment starts with
"Birthday: ", then checkBirthday only returns the suffix after that prefix, otherwise the whole
comment.

(d) new Write amain program to test everything!

Solution Hints
Different ways to implement “up to ten” appointments are possible — here we choose a solution
that does not involve andmalloc/free for adding and deleting appointments, and uses an explicit

couter rather than some “invalid begin time” sentinel value to indicate which array entries are valid
appointments.#include<stdio.h>#include<stdlib.h>typedefintbool;#defineTRUE1#defineFALSE0Ifmemoryallocationfortheresultarrayfails,NULLisreturned,andweleavethedecisiontothecallerwhetherornottoprintafailuremessage.However,thenumberofdaysoftheyearcanstillbecalculatedevenifthememoryallocationfortheresultarrayfailed,sowedothat.int*startDays(constintmonthsNum,constintmonthLen[],int*yearLen){int*result=malloc(monthsNum*sizeof(int));inti,s=0;for(i=0;i<monthsNum;i++){if(result≠NULL){result[i]=s;}s+=monthLen[i];}*yearLen=s;returnresult;//passtheburdenoferrorhandlingtocaller}Standardbinarysearch:• initialiseloweranduppertotheextremesofthesearchrange• iftherangehascollapsed:lower(==upper)mustbetheindexofthemonthwearelookingfor.• iftherangehasnotcollapsed:– calculatethemiddleindexksuchthatkisnotequaltolower– Selectthesubrangetocontinue.Forprintingtheresult,wehavetotakecaretoconvertarrayindices(startingat0)intonatural-languageordinalnumbers(startingat1).voidprintDate(intmonthsNum,constintmonthStart[],intindex){intlower=0,upper=monthsNum−1;intk;while(upper>lower){k=(upper+lower+1)/2;if(index≥monthStart[k])lower=k;elseupper=k−1;}printf("Day:%d,month:%d\n",index+1−monthStart[lower],lower+1);}calIndex(monthStart,month,day)considersmonthanddayasnatural-languageordinalnumbers(startingat1)andreturnsthecalendararrayindexcorrespondingtothedayindicatedbymonthanddayincalendararraysgovernedbymonthstartindicesmonthStart.intcalIndex(constintmonthStart[],intmonth,intday){returnmonthStart[month−1]+day−1;}

typedefenum{SUN,MON,TUE,WED,THU,FRI,SAT}Weekday;

Weekdayweekday(constintmonthStart[],Weekdaywd1,intmonth,intday){return(calIndex(monthStart,month,day)+wd1)%7;}intmax(intm,intn){returnm>n?m:n;}intmin(intm,intn){returnm<n?m:n;}

voidfillWeek(constintmonthStart[],Weekdaywd1,intweek[],intmonth,intday){intd=day−1;intm=month−1;intind=calIndex(monthStart,month,day);inti;Weekdayw=weekday(monthStart,wd1,month,day);/*lastyear*/for(i=SUN;i<max(w−ind,0);i++)week[i]=−1;/*lastmonth*/for(i=SUN;i<max(w−d,0);i++)week[i]=m;/*thismonth*/}

typedef struct { int hour , minutes; } MyTime;

typedef struct {
MyTime begin, end ;
char * title; // allocated via malloc
char * comment; // allocated via malloc

} Appointment;

It is essential that allocation assumptions are documented!

#define MAXAPPOINTMENTS 10
typedef struct {

MyTime sunrise, sunset;
Appointment[MAXAPPOINTMENTS] appointments;
int numberOfAppointments;

} Day ;

Linked lists have not yet been presented, and are therefore not expected here.

There are of course different ways to handle “up to ten appointments”: They could bemalloced and
the array would then contain pointers; with that option, one could also make it aNULL-terminated
11-element array.

Even withAppointments in the array (and not pointers), one could still use some kind of sentinel
values for termination, for exampleNULL titles or negative times.

void find(int monthsNum, int monthStart[], int yearLen, Day cal[], char * (*check)(Appointment a)) {
int i,j;
char * message;
Appointment * l;
for (i=0; i<yearLen; i++) {
l = cal[i].appointments;
for (j=0; j<MAXAPPOINTMENTS; j++) {
if ((message = check(l[j]))) {
printf ("%s ", message);
printDate(monthsNum, monthStart, i);

}
l = l→next;

}
}

}

char * checkWhite(Appointment a) {
char * s = a.comment;
bool allSpace = True;
while (allSpace && *s) { allSpace &&= isSpace(*s); }
if (allSpace) {
char msg [strlen(a.comment) + 30] = "All white!";

return msg;
}
else return NULL;

}

(c) and (d) not yet covered.
intmain(intargc,char*argv[]){constchar*weekdays[]={"Sun","Mon","Tue","Wed","Thu","Fri","Sat"};constintmonthsNum=12;constintmonthLen[12]=//2004isaleapyear!{31,29,31,30,31,30,31,31,30,31,30,31};intyearLen;Weekdayw,wd1=THU;//for2004constint*monthStart=startDays(monthsNum,monthLen,&yearLen);inti,d,m;

for(i=0;i<monthsNum;i++){d=monthStart[i];w=weekday(monthStart,wd1,i+1,d);printf("Month%dhas%ddaysandstartsona%s,daynumber%d\n",i+1,monthLen[i],weekdays[w],d);}printf("Theyearhas%ddays.\n",yearLen);

if(argc==2){//Argumentreadas“dayindex’’d=atoi(argv[1]);printDate(monthsNum,monthStart,d);}if(argc>2){//Argumentsreadas“day,month’’d=atoi(argv[1]);m=atoi(argv[2]);w=weekday(monthStart,wd1,m,d);printf("Day%dofmonth%disa%s.\n",d,m,weekdays[w]);}return0;}

Exercise 6.3 — Typing (22%of Midterm 2, 2005)

Give variable declarations (and only variabledeclarations) to preceed the following statements
so that the resulting code is valid ANSI C. In each case, you must providethe most appropriate
type.

(a) d = 0.5;
Solution Hints

double d ;

(b)
*p = q + 0.5;

Solution Hints
double q, p[1];

(c) p = q + *q;

Solution Hints
The following is not really “only a declaration”:

int *p, q[1] = {2};

(d) array [3] = 3.14;
Solution Hints

double array [N];

for someN > 3

(e)
*answer = 42;

Solution Hints
int answer [1];

Declaring as pointer “int * answer” without initialisation is “dynamically
invalid”.

(f) array = malloc(10 * sizeof (double));
array [6] = 2.73e5; Solution Hints

double *array ;

(g) matrix = malloc(5 * sizeof (double *));
matrix[2] = malloc(8 * sizeof (double));
matrix[2][4] = 0.0;

Solution Hints
double **matrix;

