
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3BB4
Assignment 3

SFWR ENG 3BB4 — Software Design III — Concurrent System Design

22 March 2007

This assignment is due on Monday, April 2, at 9:30

Your are participating in the development of a game server for amulti-user dungeon-style game.

In the game, there are players and “loose objects”; every loose object is, at every point in time, either located
somewhere in the dungeon, or it is being carried around by a player. Players can pick up and put down loose objects;
these actions are considered to be instantaneous. New players also can join the game at any time.

(a) Describe a particular gameof your own designthat preserves the essential characteristics described above and
adds some interesting features.Read the whole assignment first,and design (a) so as to create tricky problems in
(e) that you can solve nicely in (g)!

(b) Describeand document the essential data structuresthat you propose to be kept in the serverfor your
gamefrom (a). These essential data structures should only concentrate on supporting the game, and not yet on
synchronisation issues (but see (g)below). You should keep in mind that players usually will need fast direct access
to the items they are carrying around.

– Provide a mathematical design of these data structures. Typically this will involve some base sets, and
constructions like powersets, cartesian products, direct sums (disjoint unions), and sets of partial functions, total
functions, or relations.

– Provide datatype definitions in C to implement this design.

(c) How do you propose to deal with players that carry around important loose objects but just stop to play without
notifying the server?

(d) Give a game-independent definition of which objects are “important” in the sense of (c).

(e) Identify at least three different ways — see (f) — how players’ actions might give rise to race conditions over
server-side data structures, unless proper protection mechanisms are used.

(f) For each of these race conditions, state the safety properties that are violated in case of interference.Try to make
these different!

(g) Describe how you would prevent the interferences described in (e), taking into account that the server should be
able to deal concurrently with as many player actions as possible.

– Describe the changes this implies for the data structures described in (b).

– Explain why each of the race conditions described in (e) is now avoided.

– Explain how efficiency affected the design.

(h) Designand implement aproof of concept implementationof your server design:

– There isat least one thread per clientin the server.
– Communication with each client is via two FIFOs. This allows you to test the server using a shell script of the

following shape (this example is available on the course page):

#!/bin/bash
for i in 1 2 3
do

make FIFOs for client $i:
#
mkfifo client$i”out client$i”in
#
start observer terminal for client $i:
#
xterm -e "cat < client$i”out" &

done
#
Start my server:
#
./myDungeonServer 3 &
#
Open client input FIFOs:
#
exec 3<> client1in
exec 4<> client2in
exec 5<> client3in
#
And play!
#
sleep 1
echo "pickup jewel" >&3; echo "turn left" >&4
sleep 1
echo "raise wand" >&4; echo "drop coat" >&3; echo "move forward" >&5

• You may need to arrange on your screen thexterm terminal windows opened in the loop, so you see what is
happening on all of them.

• “exec 3<> client1in ” makes the input FIFO of client 1available as file descriptor 3 in the shell, and does
not close it after each “echo "xyz" >&3 ”.

• “echo "pickup jewel" >&3; echo "turn left" >&4 ” feeds a line containing “pickup jewel ” to
the input of client 1 (file descriptor 3), and, “at almost the same time”, feeds a line containing “turn left ”
to the input of client 2 (file descriptor 4).

The following simplifications are allowed:

• For this proof-of-concept, you can assume the number of clients to be given as command-line argument to
the server.

• Not all the functionality described in (a) needs to be implemented, but some avoidance of possible
interference needs to be demonstrated.

• Client input can be designed to be easily handled by your program.

“Bells and whistles”, the option to use network sockets (textbook chapter 15) instead of FIFOs, and additional
client software can get bonus marks!

Deliverables:

(1) Thelog recording your actions on this assignment, in particular any interactions with other students.

This assignment is to be solved individually!
(2) A single, well-organised document containingyour answersto the problems above, including thedesignof the

proof-of-concept implementation. Thismust be handed inon paper.
(3) The source code of your proof-of-concept implementation (includingMakefileetc.), together with a test shell script

similar to the one in the box above, bundled as a.tar.gz file containing a single top-level directory, and there at least
a REDME file explaining the other files in the package. This should be sent by e-mail to “kahl@mcmaster.ca”.

