
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 2

Chapter 8

Pipes

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.5 7

Pipes

• Pipes are kernel data structures for inter-process
communication

• int pipe(int filedes[2]);

• Linux: pipe creates a pair of file descriptors, pointing to a
pipe inode,and places them in the array pointed to by filedes.
filedes[0] is for reading,filedes[1] is for writing.

• “The POSIX standard does not specify what happens if a
process tries to write tofiledes[0] or read fromfiledes[1].”

• Solaris: Thepipe() function creates an I/O mechanism
called a pipe and returns two file descriptors,fildes[0] and
fildes[1]. The files associated withfildes[0] andfildes[1] are
streams and are both opened for reading and writing.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.6 8

Pipes — PUP Example 3.20 (USP Program 6.3)

1 #include <stdio.h> <stdlib.h> <unistd .h> <fcntl.h>
2 void main(void)
3 { int fd [2]; pid_t childpid;
4
5 pipe(fd);
6 if ((childpid = fork()) == 0) { /* ls as child */
7 dup2(fd [1], STDOUT_FILENO);
8 close(fd [0]); close(fd [1]);
9 execl("/usr/bin/ls", "ls", "-l", NULL);
10 perror ("The exec of ls failed");
11 } else { /* sort as parent */
12 dup2(fd [0], STDIN_FILENO);
13 close(fd [0]); close(fd [1]);
14 execl("/usr/bin/sort", "sort", "-n", "+4", NULL);
15 perror ("The exec of sort failed"); }
16 exit(0); }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.11 13

Named Pipes (FIFOs)

• Named pipes (FIFOs) are pipes turned into file system
objects.

• A named pipe is aspecial filewith access regulated via file
system permissions:

prw------- 1 kahl users 0 Jan 30 00:08 /tmp/fifo1

• Data is passed though the FIFO by the kernel without
writing it to the file system.

• Normally, opening the FIFO blocks until the other end is
opened also.

• When a process tries to write to a FIFO that is not opened for
read on the other side, the process is sent aSIGPIPE signal.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.12 14

PUP Program 3.3 skeleton (USP Prog. 6.5)

1 void main (int argc, char *argv [])
2 { mode_t fifo_mode = S_IRUSR | S_IWUSR;
3 int fd , status; char buf [BUFSIZE]; unsigned strsize;
4 mkfifo(argv [1], fifo_mode); /* create FIFO with u=rw */
5 if (fork() == 0) { /* The child writes */
6 fprintf (stderr , "Child[%d] about to open\n", getpid());
7 fd = open(argv [1], O_WRONLY);
8 sprintf (buf ,"written by child[%d]\n", getpid());
9 strsize = strlen(buf) + 1;
10 write(fd , buf , strsize);
11 fprintf (stderr , "Child[%d] is done\n", getpid());
12 } else { /* The parent does a read */
13 fprintf (stderr , "Parent[%d] about to open\n",getpid());
14 fd = open(argv [1], O_RDONLY | O_NONBLOCK);
15 fprintf (stderr ,"Parent[%d] about to read\n",getpid());
16 while ((wait(&status)== −1) && (errno == EINTR)) {}
17 read(fd , buf , BUFSIZE);
18 fprintf (stderr , "Parent[%d] got: %s\n", getpid(), buf);
19 }}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.17 19

Client-Server Communication Using FIFOs

• Writes of up toPIPE_BUF bytes areatomic

⇒ one FIFO can receive (short) requests from several
clients

• Reads haveno atomicity properties

⇒ each reader neads one dedicated FIFO

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.24 26

I/O Blocking

How to monitor both the keyboard and the net in one
process?

• read() on the keyboard hangs until signalled

• A byte on the net does not send a signal …

• read() on the net hangs until signalled

• A normal key press does not send a signal, either …

• getc(3) etc. are implemented on top ofread(2)

• ???

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.27 29

Nonblocking I/O

In the man page forread(2) we find under “ERRORS”:

EAGAIN Non-blocking I/O has been selected using
O_NONBLOCK and no data was immediately
available for reading.

Checking the man page foropen(2):

O_NONBLOCK or O_NDELAY

When possible, the file is opened in non-blocking mode.
Neither the open nor any subsequent operations on the file
descriptor which is returned will cause the calling process
to wait. For the handling of FIFOs (named pipes), see
alsofifo(4). This mode need not have any effect on files
other than FIFOs.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.33 35

select() — #include <sys/select.h>

int select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

Three independent sets of descriptors are watched.

– Those listed inreadfds will be watched to see if characters
become available for reading (more precisely, to see if a read
will not block — in particular, a file descriptor is also ready
on end-of-file)

– Those inwritefds will be watched to see if a write will
not block

– Those inexceptfds will be watched for exceptions

On exit, the sets are modifiedin place to indicate which
descriptors actually changed status.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.34 36

Timeout using select() — from Linux man page

#include <stdio.h> <sys/time.h> <sys/types.h> <unistd .h>
int main(void) {

fd_set rfds; struct timeval tv ; int retval;

FD_ZERO(&rfds); /* Watch stdin (fd 0) */
FD_SET (0, &rfds); /* to see when it has input. */
tv .tv_usec = 0;
tv .tv_sec = 5; /* Wait up to five seconds. */

retval = select(1, &rfds, NULL, NULL, &tv);
/* Don’t rely on the value of tv now! */

if (retval) printf ("Data is available now.\n");
/* FD_ISSET(0, &rfds) will be true. */

else printf ("No data within five seconds.\n");
return 0;}

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.44 46

Avoiding Suspension on Individualread and write Calls

Problem:

• Normalread andwrite block until I/O possible

• Program may need to do other things while I/O impossible

• Program may need perform I/O where itfirst becomes
possible

Different solutions:

• Open withO_NONBLOCK and “poll manually”

• Useselect

• Usepoll

• Open withO_ASYNC and perform I/O in signal handlers

• Use multiple threads (carefully …)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.45 47

Concurrent Reading — 1

#include <stdio.h> /* interleavingRead1.c */
#include <unistd .h>
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
int main(void) { pid_t childpid; int i,k ,n,fd ; char buf [2];

if ((childpid = fork()) == −1) { perror ("fork"); return 1; }
if ((fd = open("test",O_RDONLY)) == −1)
{ perror ("couldn’t open"); return 1; }

k = (childpid == 0) ? 1: 10; /* distinguish parent and child */
for (i=0; i<10; i++) {
while((n = read(fd , buf , 1)) == −1&& (errno == EINTR)) {}
printf ("%2d: %2d --- %c\n", k , k * i, buf [0]);
usleep((10 + k) * 20000); }

return 0; }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.46 48

Concurrent Reading — 2

#include <stdio.h> /* interleavingRead2.c */
#include <unistd .h>
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
int main(void) { pid_t childpid; int i,k ,n,fd ; char buf [2];

if ((fd = open("test",O_RDONLY)) == −1)
{ perror ("couldn’t open"); return 1; }

if ((childpid = fork()) == −1) { perror ("fork"); return 1; }

k = (childpid == 0) ? 1: 10; /* distinguish parent and child */
for (i=0; i<10; i++) {
while((n = read(fd , buf , 1)) == −1&& (errno == EINTR)) {}
printf ("%2d: %2d --- %c\n", k , k * i, buf [0]);
usleep((10 + k) * 20000); }

return 0; }

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.60 62

Asynchronous I/O

• Standardnon-blocking I/O: Input processed after
successful return of non-blocking calls toread(), or return
from select()

• Asynchronous I/O with signals: input processed in signal
handler

– Applications in real-time processing

– May use signal queueing

– Set up withioctl (andfcntl)

• New Asynchronous I/O according to POSIX:AIO

– Issue asynchronous requests; inspect results later

– Allows to specify signals, or work without signals.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 8.65 67

POSIX:AIO

• int aio_read(struct aiocb *aiocbp);

requests an asynchronousread

• int aio_write(struct aiocb *aiocbp);

requests an asynchronouswrite

• int aio_error(const struct aiocb *aiocbp);

returns the error status for the asynchronous I/O request with
control block pointed to byaiocbp

• ssize_t aio_return(struct aiocb *aiocbp);

returns the final return status for the asynchronous I/O
request with control block pointed to byaiocbp

