Design and Selection of Programming Languages

5th September 2002

Some Notation

- For a set S, its cardinality is written $\# S$ and its power set $\mathbb{P} S$.
- The empty set may be written $\}$ or \varnothing.
- Set comprehension is written using the pattern

$$
\{\text { declaration } \mid \text { predicate } \bullet \text { term }\}
$$

and denotes the set containing those values of term that arise from binding variables in the declaration to elements satisfying the predicate. For example:

$$
\left\{n: \mathbb{N} \mid n<5 \bullet n^{2}\right\}=\{0,1,4,9,16\}
$$

If the predicate is omitted, it is understood to be true. If the term is omitted, it is understood to be the tuple of all variable introduced in the declaration, in the same order.

- Quantification also follows this pattern:

$$
\begin{array}{lll}
\forall \text { declaration } \mid \text { predicate } \bullet \text { formula } & \Leftrightarrow & \forall \text { declaration } \bullet(\text { predicate } \Rightarrow \text { formula }) \\
\exists \text { declaration } \mid \text { predicate } \bullet \text { formula } & \Leftrightarrow & \exists \text { declaration } \bullet(\text { predicate } \wedge \text { formula })
\end{array}
$$

- The cartesian product of two sets A and B is written $A \times B$; it can be considered as defined in the following way:

$$
A \times B=\{a: A ; b: B \bullet(a, b)\}
$$

- Given two sets A and B, a relation from A to B is a subset of $A \times B$; the set of all relations from A to B is denoted by $A \leftrightarrow B$; we therefore have:

$$
A \leftrightarrow B=\mathbb{P}(A \times B)
$$

- The domain (of definition) of a relation $R: A \leftrightarrow B$ is the following subset of A :

$$
\operatorname{dom} R=\{a: A \mid(\exists b: B \bullet(a, b) \in R)\}
$$

The range of a relation $R: A \leftrightarrow B$ is the following subset of B :

$$
\operatorname{ran} R=\{b: B \mid(\exists a: A \bullet(a, b) \in R)\}
$$

- For every set A, the identical relation may be written id A or \mathbb{I}_{A}; we have:

$$
\operatorname{id} A=\mathbb{I}_{A}=\{a: A \bullet(a, a)\}
$$

- For two relations $R: A \leftrightarrow B$ and $S: B \leftrightarrow C$, their composition $R ; S$ is an element of $A \leftrightarrow C$, and is defined as follows:

$$
R ; S=\{a: A ; c: C \mid(\exists b: B \bullet(a, b) \in R \wedge(b, c) \in S)\}
$$

- Every relation $R: A \leftrightarrow B$ has a converse (transposed) relation $R^{\sim}: B \leftrightarrow A$ with:

$$
R^{\breve{ }}=\{a: A ; b: B \mid(a, b) \in R \bullet(b, a)\}
$$

- A relation $R: A \leftrightarrow B$ is called
- univalent (a function) iff $R^{\checkmark} ; R \subseteq \mathbb{I}_{B} ;$
- total iff $\mathbb{I}_{A} \subseteq R ; R^{\complement}$, or, equivalently, iff dom $R=A$;
- injective iff $R ; R^{\complement} \subseteq \mathbb{I}_{A}$

- a mapping iff R is a total function;
- bijective iff R is injective and surjective.

The following notations are used:
$-A \rightarrow B \quad$ is the set of all partial functions (i.e., univalent relations) from A to B;
$-A \rightarrow B \quad$ is the set of all mappings (i.e., total functions) from A to B;
$-A \nrightarrow B \quad$ is the set of all univalent and injective relations from A to B;
$-A \mapsto B \quad$ is the set of all injective mappings from A to B;
$-A \rightarrow B \quad$ is the set of all univalent and surjective relations from A to B;
$-A \rightarrow B \quad$ is the set of all surjective mappings from A to B;
$-A \multimap B \quad$ is the set of all bijective mappings from A to B.

- A relation $R: A \leftrightarrow A$, i.e., where source and target are identical, is called homogenous. A homogeneous relation $R: A \leftrightarrow A$ is called:
- reflexive iff $\mathbb{I}_{A} \subseteq R$;
- irreflexive iff $\mathbb{I}_{A} \cap R=\varnothing$;
- symmetric iff $R=R^{\breve{ }}$;
- asymmetric iff $R \cap R^{\complement}=\varnothing$;
- antisymmetric iff $R \cap R^{\smile} \subseteq \mathbb{I}_{A}$;
- transitive iff $R ; R \subseteq R$;
- a preorder iff R is reflexive and transitive;
- an order iff R is an antisymmetric preorder;
- an equivalence iff R is reflexive, symmetric, and transitive;
- a partial equivalence relation (PER) iff R is symmetric and transitive.

