
McMaster University
Department of Computing and Software

Dr. W. Kahl

SFWR ENG 3E03
Exercise Sheet 1

Design and Selection of Programming Languages

11 September 2005

Exercise 1.1 — Lexing

The latest ISO standard for the C programming language, namely ISO/IEC 9899 with Technical
Corrigenda 1 and 2, is available on-line at the following URL:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

(a) Read the sections “5.1.1.2 Translation phases” and “6.4 Lexical elements”, and point out potential
portability problems allowed by the standard. Note that in particular most of the “Semantics”
subsections are not relevant for basic lexing.

(b) Write a separateflex lexer implementing translation of trigraphs and line splicing as described in
translation phases 1 and 2 in section 5.1.1.2.

(c) Adapt the toy lexer from the lecture (available on the course page) to C identifiers not containing
universal character names.

(d) Add universal character names for at least one language of your choice.

(e) Further adapt the lexer to recognise C integer constants.

(f) Further adapt the lexer to recognise C character constants.

(g) Further adapt the lexer to recognise C comments. (Hint: Use “start conditions” in the lexer.)

Exercise 1.2 — Expression Representation in Java

The following expression class definitions are available on the course page asExpression1.java:

class Operator {
private char _op;
public Operator (char c) { _op = c; }

}

abstract class Expression {} // Expression = Value + Variable + Binary

class Value extends Expression { // Value = int
int intValue;

}
class Variable extends Expression { // Variable = String
String name;

}
class Binary extends Expression { // Binary = Expression× Operator× Expression
Operator op;
Expression term1, term2;

}



(a) Add atoString method to these classes such thate.toString() produces an infix representation of
any Expression e with at least the necessary parentheses for being able to apply higher-priority
operators like* to argument expresssions constructed from lower-priority operators like+.

(b) Make the fieldsprivate and add constructors that ensure that only expressions with reasonable string
representation can be constructed.

Documentyour definition of “reasonable string representation” in each case!

(c) Thegraphviz tool suite from AT&T includes, among others, the graph layout tools

• dot for layout of directed, typically acyclic graphs — the main principle of the algorithm is to
arrange nodes into “levels”, and then reduce edge crossings, and

• neato for layout of undirected graphs using a “spring embedding” algorithm that understands
nodes as electically charged and therefore repelling each other, and edges as springs of equal
spring constants and lengths, and therefore produces always drawings with straight-line edges.

To the right is the the drawing thatdot produces when invoked with

dot -Tps -o E1.ps E1.dot

on the following input file corresponding to the expression(2 + k) ∗ (3 − m):

digraph MT1a {
node [fontsize="30"];
edge [labeldistance="1",fontsize="30"];
"+" [shape="circle"];
"*" [shape="circle"];
"-" [shape="circle"];
"2" [shape="box"];
"3" [shape="box"];
"k" [shape="triangle"];
"m" [shape="triangle"];
"*" -> "+";
"*" -> "-";
"+" -> "k";
"+" -> "2";
"-" -> "3";
"-" -> "m";

}

+

2 k

*

-

3 m

Extend the expression class with awriteDotGraph method that produces such adot file.

Note: What should the interface of this method be? How do you distribute its task among
the sub-classes?

Document and justify your design decisions! Test your output withdot!

Advanced: Add a methodshowDotGraph that writes thedot file, invokesdot on it, and invokes
a program to display the output ofdot (if necessary in a different format).


