(Slide 1 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. Ridha Khedri

Department of Computing and Software, McMaster University Canada L8S 4L7, Hamilton, Ontario

Acknowledgments: Material based on Java actually: A Comprehensive Primer in Programming (Chapter 3)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in loop statements

Assertions as a testing technique

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

《日》《圖》《臣》《臣》 [] 臣 []

Topics Covered

1	Introduction and Learning Objectives Boolean expressions Boolean primitive data type Relational Operators Understanding relational operators	SFWR ENG/COMP SCI 2S03 Principles of Programming
	 Logical operators 	Dr. R. Khedri
	 Precedence for logical operators 	
	Short-circuit evaluation	Intro. & Learning
_	Using Boolean expressions to control flow of execution	Objectives
3	Control flow in selection statements	Boolean
	• Simple selection statement	expressions
	Blocks of statements	Control flow in
	Local variables in a block	selection
	Selection statement it-else	statements
	Nested selection statements	Control flow in
_	Chaining if-else statements	loop statements
4	Control flow in loop statements	Accortions as a
	Pre-test loop: vvnile	testing technique
	Post-test loop: do-while	
~	• Nested loops	
5	Assertions as a testing technique	
	Making assertions	
	 Assertions as a testing technique 	
	うどの 逝 《 臣 》 《 臣 》 《 臣 》 《 臣 》	

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

(Slide 2 of 42)

Program Control Flow Introduction and Learning Objectives	(Slide 3 of 42)
• We used simple statements (executed sequentially)	SFWR ENG/COMP SCI 2S03
 We would like to have more control the order in which statements are executed 	Principles of Programming Dr. R. Khedri
• We will introduces selection statements and loops	Intro. & Learning Objectives Boolean expressions
 Selection statements enable us to define multiple actions that are guarded by conditions 	Control flow in selection statements
 Loops enable us to execute the same statements repeatedly, dependent on a condition being satisfied 	Control flow in loop statements Assertions as a testing technique
• Conditions controlling the execution flow are specified as Boolean expressions	

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow (Slide 4 of 42) Introduction and Learning Objectives SFWR ENG/COMP SCI Learning Objectives: 2503 Principles of Programming Comparing values using relational operators Dr. R. Khedri Intro. & Learning Evaluation of expressions with logical operators Objectives • Selecting statements to execute (if, if-else) Control flow in Executing statements repeatedly using loops (while, loop statements do-while) Assertions as a Verifying expected program properties with assertions

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

《日》《聞》《臣》《臣》 [] 臣 []

Program Control Flow Boolean expressions Boolean primitive data type

- The primitive data type **boolean** in Java defines two Boolean values: true, and false
- We can declare variables of the type boolean and assign Boolean values to them:

boolean itemlsOnSale = true;

• We will use Boolean values to facilitate decision making over the actions that should be executed

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Boolean primitive data type

Relational Operators Understanding relational operators Logical operators Precedence for logical operators Short-circuit evaluation Using Boolean expressions to control

flow of execution Control flow in selection statements

Control flow in

	Boolean e Relat	expressions tional Operators		(Slide 6 of 42)
A	relational operator enables us to compare values			SFWR ENG/COMP SCI 2S03 Principles of
	Operator	Meaning		Programming
	ZZ	Equal to		Dr. R. Khedri
]=	Not equal to	In	ntro. & Learning
	<	Less than	В	oolean
	>	Greater than	E t	xpressions Boolean primitive data ype
	<=	Less than or equal to	F L	Relational Operators Jnderstanding
	>=	Greater than or equal to	P O S E U	cogical operators Precedence for logical pperators Short-circuit valuation Jsing Boolean expressions to control low of execution
			C se st	ontrol flow in election atements

Program Control Flow

Program Control Flow Boolean expressions Relational Operators

• The following expression in Java is a Boolean expression:

numHours >= **37.5**

• We can assign the value of a Boolean expression to a Boolean variable:

boolean workedOvertime = numHours >= 37.5;

- Relational operators have higher precedence than the assignment operator =
 - first the Boolean expression is evaluated
 - then, the assignment is performed

(Slide 7 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Boolean primitive data type

Relational Operators

Understanding relational operators Logical operators Precedence for logical operators Short-circuit evaluation Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Program Control Flow Boolean expressions Relational Operators

heads + tails == tosses

- The operands of a relational operator can be any arithmetic expression
- Arithmetic operators have higher precedence than relational operators

((heads + tails) == tosses)

It is a common mistake to confuse the equality operator == with the assignment operator = (Slide 8 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Boolean primitive data type

Relational Operators

Understanding relational operators Logical operators Precedence for logical operators Short-circuit evaluation Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Program Control Flow Boolean expressions Understanding relational operators

1 // Testing relational operators in boolean expressions.
public class TestRelationalOperators {
 public static void main(String[] args) {
 // Tests for integers.
 System.out.printf("&=Zos%=12s%=12s%m", "3 == 3", true, (3 == 3));
 System.out.printf("%=Zos%=12s%=12s%m", "7 = 4", false, (7 = 4));
 System.out.printf("%=Zos%=12s%=12s%m", "6 <= 6", true, (6 <= 6));
 System.out.printf("%=Zos%=12s%=12s%m", "6 <= 6", true, (6 <= 6));
 System.out.printf("%=Zos%=12s%m=12s%m", "6 <= 6", true, (6 <= 6));
 System.out.printf("%=Zos%m=12s%m=12s%m", "6 <= 6", true, (6 <= 6);
 System.out.printf("%=Zos%m=12s%m=12s%m", "6 <= 6", true, (6 >= 6);
 System.out.printf("%=Zos%m=12s%m=12s%m", "6 <= 6", true, (6 >= 6);
 System.out.printf("%=Zos%m=12s%m=12s%m", "6 <= 6", true, (6 >= 6);
 System.out.printf("%=Zos%m=12s%m=12s%m", "6 <= 6", true, (6 >

SFWR ENG/COMP SCI 2S03 Principles of Programming

(Slide 9 of 42)

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Boolean primitive data type Relational Operators

Understanding relational operators

Logical operators Precedence for logical operators Short-circuit

evaluation Using Boolean

expressions to control flow of execution

Control flow in selection statements

Control flow in

Program Output

Expression	Expected	Calculated
3 == 3	true	true
3 != 3	false	false
7 > 4	true	true
7 < 4	false	false
6 <= 6	true	true
6 >= 6	true	true

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Boolean expressions Logical operators

We can combine Boolean expressions by means of logical operators

boolean payBonus = workedOvertime || salesAboveAverage;

Operator	Meaning
1	Negation, results in inverting the truth value of the operand, i.e. Itrue evaluates to false and Ifalse evaluates to true.
&&	Conditional And, evaluates to true if both operands have the value true and false otherwise.
	Conditional Or, evaluates to true if one or both operands have the value true and false otherwise.

Truth tables for ||, &&, and ! + Discuss DeMorgan Laws

(Slide 10 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions Boolean primitive data

type Relational Operators Understanding relational operators

Logical operators

Precedence for logical operators Short-circuit evaluation

Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Boolean expressions Precedence for logical operators

• The precedence of the logical operators is as follows

! has higher precedence than &&

&& has higher precedence than

Example

boolean b1 = false, b2 = false, b3 = true;

System.out.printf(" b1 || ! b2 && b3 evaluates to %s%n", b1 || ! b2 && b3);

(Slide 11 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions Boolean primitive data type Relational Operators Understanding relational operators Logical operators

Precedence for logical operators

Short-circuit evaluation

Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Program Control Flow Boolean expressions Precedence for logical operators

 The logical operators have lower precedence than the relational operators

weekday
$$>= 6 \parallel$$
 weekday $== 3$

(weekday
$$\geq = 6$$
) || (weekday $== 3$)

(Slide 12 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions Boolean primitive data type Relational Operators Understanding relational operators Logical operators

Precedence for logical operators

Short-circuit evaluation

Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Program Control Flow Boolean expressions Precedence for logical operators

Program Output

Weekday number is 4 Wednesday, Saturday or Sunday: false

Weekday number is 6 Wednesday, Saturday or Sunday: true (Slide 13 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Boolean primitive data type Relational Operators Understanding relational operators

Logical operators

Precedence for logical operators

Short-circuit evaluation

Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Boolean expressions Short-circuit evaluation

- The operands in a Boolean expression are normally evaluated from left to right
- Note: the evaluation of a Boolean expression ends as soon as the value of the expression can be determined
- This is called short-circuit evaluation

(4 == 3) && (3 < 4)

will first evaluate to: false && (3 < 4)

- && returns false if one of its operands is false
- We do not need to evaluate (3 < 4)
- Another example: (4 > 3) || (5 < 4)

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

(Slide 14 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Sociean expressions Boolean primitive data type Relational Operators Understanding relational operators Logical operators Precedence for logical operators

Short-circuit evaluation

Using Boolean expressions to control flow of execution

Control flow in selection statements

Program Control Flow Boolean expressions Using Boolean expressions to control flow of execution

- We often want to perform different actions depending on whether a given condition is satisfied
- The condition can be formulated as a Boolean expression
- The statement that allows the program to select a path of execution from others is called a **selection statement**
- Other types of problems require that certain actions be executed repeatedly (repetition statement)

(Slide 15 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions Boolean primitive data type Relational Operators Understanding relational operators Logical operators Precedence for logical operators Short-circuit evaluation

Using Boolean expressions to control flow of execution

Control flow in selection statements

Control flow in

Program Control Flow Control flow in selection statements Simple selection statement

- A simple selection statement performs an action if a given condition is satisfied
- The condition is a Boolean expression
- If the Boolean expression evaluates to true, the action in the if body is executed
- If the expression evaluates to false, the action in the if body is skipped

(Slide 16 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Simple selection statement

Blocks of statements Local variables in a block Selection statement if-else Nested selection statements Chaining if-else statements

Control flow in loop statements

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Control flow in selection statements Simple selection statement

```
// Calculating weekly salary, version 1.
 2 import java.util.Scanner;
   public class Salary1 {
     public static void main(String[] args) {
       final double NORMAL WORKWEEK = 37.5:
       // Read the number of hours worked this week.
8
       Scanner keyboard = new Scanner(System.in);
       System.out.print("Enter the number of hours worked [decimal number]:
             "):
       double numHours = keyboard.nextDouble();
       // Calculate the weekly salary and print it to the terminal window.
       double salary = 750.0:
                                                        // (1) weekly salary
14
       if (numHours > NORMAL_WORKWEEK)
         salary = salary + (numHours - NORMALWORKWEEK) * 30.0:
       System.out.printf("Salary for %.1f hours is %.2f USD%n",
16
                          numHours, salarv):
                                (4)
18
```

Program Output

Enter the number of hours worked [decimal number]: 37.5 Salary for 37.5 hours is 750.00 USD

(Slide 18 of 42)

SFWR ENG/COMP SCI 2503 Principles of Programming Dr. R. Khedri Intro. & Learning Control flow in Simple selection statement Blocks of statements Local variables in a block Selection statement if-else Nested selection Chaining if-else

Control flow in loop statements

Program Control Flow Control flow in selection statements Simple selection statement

```
// Calculating weekly salary, version 1.
import java.util.Scanner;
public class Salary1 {
  public static void main(String[] args) {
    final double NORMAL WORKWEEK = 37.5:
    // Read the number of hours worked this week.
    Scanner keyboard = new Scanner(System.in);
    System.out.print("Enter the number of hours worked [decimal number]:
          "):
    double numHours = keyboard.nextDouble();
    // Calculate the weekly salary and print it to the terminal window.
    double salary = 750.0:
                                                    // (1) weekly salary
    if (numHours > NORMAL_WORKWEEK)
      salary = salary + (numHours - NORMALWORKWEEK) * 30.0:
    System.out.printf("Salary for %.1f hours is %.2f USD%n",
                       numHours, salarv):
                             (4)
```

Program Output

Enter the number of hours worked [decimal number]: 45.5 Salary for 45.5 hours is 990.00 USD

(Slide 19 of 42)

SFWR ENG/COMP SCI 2503 Principles of Programming Dr. R. Khedri Intro. & Learning Control flow in Simple selection statement Blocks of statements Local variables in a block Selection statement if-else Nested selection Chaining if-else

Control flow in loop statements

 Program Control Flow Control flow in selection statements Blocks of statements
 (Slide 20 of 42)

 • A sequence of statements can be enclosed in curly brackets { }
 SFWR ENG/COMP SCI 2503 Principles of Programming Dr. R. Khedri

block of statements

• A sequence of statements between "{" and "}" is a

- A block is called a compound statement
- A compound statement can be used anywhere that a single statement can be used

Control flow in

Simple selection statement Blocks of statements Local variables in a block

Selection statement

Nested selection statements Chaining if-else

Program Control Flow Control flow in selection statements Local variables in a block

- We can define new variables inside a block
- It is then called a local variable to the block
- A local variables can only be accessed inside the block
- The part of the program where such a variable can be accessed is called its scope
- When it is not accessible, it is out of scope

(Slide 21 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Simple selection statement

Blocks of statements

Local variables in a block

Selection statement if-else

Nested selection statements Chaining if-else statements

Control flow in loop statements

Program Control Flow Control flow in selection statements Local variables in a block

(Slide 22 of 42)

// Calculating weekly salary, version 1b import java.util.Scanner; public class Salarv1b { public static void main(String[] args) { final double NORMALLWORKWEEK = 37.5; // Read the number of hours worked this week Scanner keyboard = new Scanner(System.in): System.out.print("Enter the number of hours worked [decimal number]: double numHours = keyboard.nextDouble(); // Calculate the weekly salary and print it to the terminal window double salary = 750.0: if (numHours > NORMALWORKWEEK) { // if body is a double overtime = numHours - NORMAL.WORKWEEK: // local variable salary = salary + overtime + 30.0: System.out.printf("Salary for %.1f hours is %.2f USD%n". numHours, salary); // System.out.printf("Number of hours overtime: %.1f%n", overtime); //

Program Output

Enter the number of hours worked [decimal number]: 39.5 Salary for 39.5 hours is $810.00\ \text{USD}$

Program Output

Enter the number of hours worked [decimal number]: 35.5 Salary for 35.5 hours is 750.00 USD SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection

Simple selection statement

Blocks of statements

Local variables in a block

Selection statement if-else

Nested selection statements Chaining if-else statements

Control flow in loop statements Program Control Flow Control flow in selection statements Selection statement if-else

- We often need to choose between two alternative actions
- Java offers an if-else statement for this purpose

loop statements

(Slide 23 of 42)

SFWR

ENG/COMP SCI 2S03

Principles of Programming Dr. R. Khedri

Intro. & Learning

Program Control Flow Control flow in selection statements Selection statement if-else

```
// Calculating weekly salary, version 2.
                                                                                              SFWR
   import java.util.Scanner;
                                                                                         ENG/COMP SCI
   public class Salarv2 {
                                                                                              2503
     public static void main(String[] args) {
 4
                                                                                           Principles of
        final double NORMAL WORKWEEK = 37.5:
                                                                                           Programming
        final double FIXED SALARY = 750.0:
                                                                                           Dr. R. Khedri
8
       // Read the number of hours worked this week.
        Scanner keyboard = new Scanner(System.in);
                                                                                        Intro. & Learning
        System.out.print("Enter the number of hours worked [decimal number]:
        double numHours = keyboard.nextDouble();
       // Calculate the weekly salary and print it to the terminal window.
14
        double salary = 0.0;
                                                                    // weekly
                                                                                        Control flow in
             salarv
        if (numHours <= NORMAL_WORKWEEK) {
                                                                       (1)
16
          salary = FIXED_SALARY;
                                                                       (2)
                                                                           if body
                                                                                         Simple selection
        } else {
                                                                    // (3)
18
          salarv = FIXED_SALARY +
                                                                                         Blocks of statements
                                                                                         Local variables in a
                    (numHours - NORMAL_WORKWEEK) * 30.0;
                                                                    // (4) else
                                                                                         block
                          body
                                                                                         Selection statement
20
                                                                                         if-else
       System.out.printf("Salary for %.1f hours is %.2f USD%n",
                                                                                         Nested selection
                            numHours, salary);
                                                                                         Chaining if-else
24
```

loop statements

(Slide 25 of 42)

Program Control Flow Control flow in selection statements

```
// Calculating weekly salary, version 3.
                                                                                             ENG/COMP SCI
   import java.util.Scanner;
   public class Salarv3 {
     public static void main(String[] args) {
4
                                                                                              Principles of
       final double NORMAL-WORKWEEK = 37.5:
                                                                                              Programming
       final double FIXED_SALARY = 750.0:
                                                                                              Dr. R. Khedri
8
       // Read the number of hours worked this week.
       Scanner keyboard = new Scanner(System.in);
       System.out.print("Enter the number of hours worked [decimal number]:
10
                                                                                           Intro. & Learning
              "):
       double numHours = keyboard.nextDouble();
       // Calculate the weekly salary and print it to the terminal window.
14
       double salary = 0.0;
       if (numHours <= NORMAL_WORKWEEK) {
                                                                if statement
                                                                                           Control flow in
16
          salary = FIXED_SALARY;
                                                        // (2) if body
       } else {
                                                        // (3) else body
18
          salary = FIXED_SALARY + (numHours - NORMALWORKWEEK) * 30.0; //
               (4)
                                                                                            Simple selection
          if (numHours > 42.0) {
                                                        // (5) nested if
                                                                                            Blocks of statements
               statement
                                                                                            Local variables in a
20
            salary = salary + 100.0;
                                                        // (6)
                                                                                            block
                                                                                            Selection statement
                                                         // (7)
                                                                                            if-else
       System.out.printf("Salary for %.1f hours is %.2f USD%n",
                                                                                            Nested selection
24
                            numHours. salarv):
                                                                                            statements
                                                                                            Chaining if-else
26
```

(Slide 26 of 42)

SFWR

2503

Program Control Flow Control flow in selection statements Chaining if-else statements

• Chaining if-else: The else (, or true) body in an if-else statement can be another if-else statement

SFWR ENG/COMP SCI 2503 Principles of Programming Dr. R. Khedri Intro. & Learning Control flow in Simple selection Blocks of statements Local variables in a block Selection statement if-else Nested selection Chaining if-else statements

(Slide 27 of 42)

Program Control Flow	
Control flow in selection statements Chaining if-else statements	(Slide 29 of 42)
 When nesting selection statements, we must be careful to ensure that the program logic is correct ² import java.util.Scanner: 	SFWR ENG/COMP SCI 2S03 Principles of Programming
<pre>public static void main(String[] args) { public static void main(String[] args) { int temperate: Scanner keyboard = new Scanner(System.in); System.out.print("Enter the temperate: "); temperature = keyboard.nextInt(); if (temperature < 0) {// Temperature in]MinValue, 0[if (temperature < 0) {// Temperature in]MinValue, 0[</pre>	Dr. R. Khedri Intro. & Learning Objectives Boolean expressions Control flow in selection statements Simple selection statements Local variables in a block Selection statement Blocks of statements Local variables in a block Selection statement Statements Chaining if-else statements

Program Control Flow Control flow in selection statements Chaining if-else statements

Calculating weekly salary, version 4. import java.util.Scanner; public class Salary4 { public static void main(String[] args) { final double NORMAL_WORKWEEK = 37.5 final double FIXED SALARY = 750 0: // Read the number of hours worked this week Scanner keyboard = new Scanner(System.in); System.out.print("Enter the number of hours worked [decimal number]: double numHours = keyboard.nextDouble(); // Calculate the weekly salary and print it to the terminal window double salary = 0.0: if (numHours <= NORMAL_WORKWEEK) { salary - FIXED_SALARY: } else if (numHours <= 42.0) { salary = FIXED_SALARY + (numHours - NORMAL_WORKWEEK) + 30.0; // (4) } else { salary = FIXED_SALARY + (numHours - NORMALWORKWEEK) + 30.0 + 100.0; System.out.printf("Salary for %.1f hours is %.2f USD%n", numHours, salary); 26 }

Program Output

Enter the number of hours worked [decimal number]: 42.5 Salary for 42.5 hours is 1000.00 USD

SFWR ENG/COMP SCI 2503 Principles of Programming Dr. R. Khedri Intro. & Learning Control flow in Simple selection Blocks of statements Local variables in a block Selection statement if-else Nested selection Chaining if-else statements

(Slide 30 of 42)

Control flow in loop statements

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Control flow in loop statements Pre-test loop: While

- A loop statement can-be used to execute an action repeatedly
- The action is specified in the loop body
- The action can consist of zero or more statements
- Each execution of the loop body is called an iteration

(Slide 31 of 42)

SFWR ENG/COMP SCI 2503 Principles of Programming

Dr. R. Khedri

Intro. & Learning

Control flow in

Program Control Flow Control flow in loop statements Pre-test loop: While	(Slide 32 of 42)
• The loop executes the loop body for as long as a given loop condition is satisfied	SFWR ENG/COMP SCI 2S03 Principles of Programming
 The condition is specified as a Boolean expression 	Dr. R. Khedri
 In a while statement, the loop condition is tested before the loop body is executed 	Intro. & Learning Objectives Boolean expressions
 This kind of loop called a pre-test loop keyword boolean expression while (counter < 10) { 	Control flow in statements Control flow in loop statements Pre-test loop: While Post-test loop: do-while Nested loops
sum = sum + counter; counter = counter + 1;	Assertions as a testing technique
Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles	of Programming

Program Control Flow Control flow in loop statements Pre-test loop: While

- The execution of a loop body MUST at some point affect the loop condition
- OTHERWISE, the loop will never terminate: infinite loop
- Should an undesirable infinite loop occur in a program, the program will need to be terminated explicitly
- On most platforms, pressing the key combination CTRL - C terminates program execution

(Slide 33 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in loop statements

Pre-test loop: While Post-test loop: do-while Nested loops

Assertions as a testing technique

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

3

・ロト ・四ト ・ヨト ・ヨト

Program Control Flow Control flow in loop statements Post-test loop: do-while

- A do-while loop evaluates the loop condition after the loop body has been executed
- It is a post-test loop

SFWR ENG/COMP SCI 2503 Principles of Programming

(Slide 34 of 42)

Dr. R. Khedri

Intro. & Learning

Control flow in

Control flow in

Pre-test loop: While

Post-test loop: do-while Nested loops

Assertions as a

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Control flow in loop statements Post-test loop: do-while

// Adding a series of integers read from the keyboard. 2 import java.util.Scanner public class IntegerAddition { public static void main(String[] args) { Scanner keyboard = new Scanner(System.in); System.out.print("Enter the number of integers to add [integer]: "); int totalNumbers = keyboard nextInt(); // (1) No. of integers to keyboard.nextLine(); // Skip rest of input int numberCounter = 0; // Numbers read so far int sum = 0// Sum of numbers so far 14 while (numberCounter < totalNumbers) { System.out.print("Enter the next number [integer]: "); int nextInteger = keyboard.nextInt(): // Read the next number keyboard.nextLine(): sum = sum + nextInteger: numberCounter = numberCounter + 1: 20 // (3) System.out.printf("The sum of %d integers is %d%n". numberCounter. sum): // (4) 24

Program Output

Enter the number of integers to add [integer]: 3 Enter the next number [integer]: 12 Enter the next number [integer]: 34 Enter the next number [integer]: 567 The sum of 3 integers is 613 (Slide 36 of 42)

SFWR ENG/COMP SCI 2503 Principles of Programming Dr. R. Khedri Intro. & Learning Control flow in Pre-test loop: While Post-test loop: do-while Nested loops Assertions as a

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Control flow in loop statements Nested loops

1 // Printing a multiplication table using nested loops.
public class NestedLoops {
 public static void main(String]] args) {
 int number = 1, limit = 10;
 while (number <= limit) { // Outer loop
 int times = 1;
 while (times <= limit) { // Inner loop
 int product = number * times;
 System.out.println(number + " x " + times + " = " + product);
 times = times + 1;
 }
 number = number + 1;
 }
 }
}
</pre>

Program Output

		C
1 x 1 = 1		
1 x 2 = 2		10
1 x 3 = 3		P
$1 \times 4 = 4$		D
1 x 5 = 5		P1
1 x 6 = 6		u
1 x 7 = 7		N
1 x 8 = 8		
1 x 9 = 9		As
1 x 10 = 10		te
2 x 1 = 2		
2 x 2 = 4		
2 x 3 = 6		
2 x 4 = 8	×	
$2 \times 5 = 10$		

(Slide 37 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in loop statements

Pre-test loop: While Post-test loop: do-while

Nested loops

Assertions as a testing technique

Program Control Flow Assertions as a testing technique Making assertions

- Sometimes, we want to make sure that a program satisfies a certain assumption at a given point
- The code for an assumption defines an assertion
- The assert statement allows us to specify an assertion about the program's behaviour
- The assumption is written as a Boolean expression
- The Boolean expression is evaluated during program execution
- If the expression evaluated to false, then
 - an error message is generated
 - the execution is aborted

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

イロト イポト イヨト イヨト

(Slide 38 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in loop statements

Assertions as a testing technique

Making assertions Assertions as a testing technique

Program Control Flow Assertions as a testing technique Making assertions

Using java -ea FloatingPointArea3

Using assertions to verify user input and calculated values. import java.util.Scanner: public class FloatingPointArea3 public static void main(String[] args) { Scanner keyboard = new Scanner(System.in); // Read rectangle dimensions System.out.print("Enter the rectangle length [decimal number]: "); double length = keyboard.nextDouble(); keyboard.nextLine(): System.out.print("Enter the rectangle width [decimal number]: "); double width = keyboard.nextDouble(); // Validate user input assert length > 0.0 : "The length of the rectangle must be > 0.0";// assert width > 0.0 : "The width of the rectangle must be > 0.0"; // double area = length + width; // Calculate area of the rectangle // Print the correct answer System.out.printf("A rectangle of length %.2f cm. and width %.2f cm. has" + " area %.2f sq. cm.%n", length, width, area); 25

Program Output

Enter the rectangle length [decimal number]: -4 Enter the rectangle width [decimal number]: 1.4 Exception in thread "main" java.lang.AssertionError: The length of the rectangle must be > 0.0 at FloatingPointArea3.main(FloatingPointArea3.java:15) (Slide 39 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in oop statements

Assertions as a testing technique

Making assertions Assertions as a testing technique

Program Control Flow Assertions as a testing technique Making assertions

Using java FloatingPointArea3

Using assertions to verify user input and calculated values. import java.util.Scanner; public class FloatingPointArea3 public static void main(String[] args) { Scanner keyboard = new Scanner(System.in); // Read rectangle dimensions System.out.print("Enter the rectangle length [decimal number]: "): double length = keyboard.nextDouble(); keyboard nextline (): System.out.print("Enter the rectangle width [decimal number]: "): double width = keyboard.nextDouble(): // Validate user input assert length > 0.0 : "The length of the rectangle must be > 0.0"; // assert width > 0.0 : "The width of the rectangle must be > 0.0": // double area = length + width: // Calculate area of the rectangle // Print the correct answer System.out.printf("A rectangle of length %.2f cm. and width %.2f cm. has" + " area %.2f sq. cm.%n", length, width, area); 26 1

Program Output

Enter the rectangle length [decimal number]: -4 Enter the rectangle width [decimal number]: 1.4 A rectangle of length -4.00 cm. and width 1.40 cm. has area -5.60 sq. cm. (Slide 40 of 42)

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in oop statements

Assertions as a testing technique

Making assertions Assertions as a testing technique

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

Program Control Flow Assertions as a testing technique Assertions as a testing technique

- Assertions provide a useful testing technique that can help us detect errors early
- Assertions can be turned on when running the program for test purposes, and turned off when the program is shipped to the user
- The assertions can be turned on again by means of the "-ea" flag

SFWR ENG/COMP SCI 2S03 Principles of Programming

Dr. R. Khedri

Intro. & Learning Objectives

Boolean expressions

Control flow in selection statements

Control flow in loop statements

Assertions as a testing technique Making assertions

Assertions as a testing technique

・ロト・日本・ キャ・キャー ヨー うくぐ

	(Slide 42 of 42)
	SFWR ENG/COMP SCI 2S03 Principles of Programming
	Dr. R. Khedri
	Intro. & Learning Objectives
	Boolean expressions
	Control flow in selection statements
	Control flow in loop statements
	Assertions as a testing technique Making assertions Assertions as a testing technique
< ロ > < 団 > < 巨 > < 巨 > < 巨 > < 巨 > < 巨 > < 巨 > < つ < ぐ	