(Slide 1 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

SFWR ENG/COMP SCI 2503 Dr. R. Khedri
Principles of Programming

Dr. Ridha Khedri

Department of Computing and Software, McMaster University
Canada L8S 4L7, Hamilton, Ontario

Acknowledgments: Material based on Java actually: A Comprehensive Primer in Programming

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Topics Covered

@ Introduction and Learning Objectives
@ Introduction to the object model
@ Abstractions, classes and objects
@ Objects, ref. values and ref. variables
@ The new operator
@ Using objects
@ Object state
@ Strings
@ Characters and strings
@ Character literals
o Character var. and arith. expressions
@ String literals
@ String concatenation
o Creating string objects
@ String comparison
@ Methods from the String class
@ Manipulating references
@ Reference types and variables
@ Aliases
@ The null literal
o Comparing objects
@ Primitive values as objects
@ Boxing and unboxing
@ Explicit boxing and unboxing

@ Useful methods in the wrapper classes
Dr. R. Khedri

(Slide 2 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction and Learning Objectives

@ We use abstractions to handle the diversity that
surrounds us in everyday life

@ An abstraction represents the relevant properties of an
object required to solve the problem at hand

@ We need to represent the properties and behaviour of
these abstractions

@ In Java, abstractions can be represented by classes
@ A class describes objects of a particular type

@ |t specifies the properties and behaviour of these
objects

(Slide 3 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

Introduction and Learning Objectives

Learning Objectives:

The relationship between a class and its objects
Representing the properties and behaviour of an object
Creating objects using the new operator

Manipulating objects by reference variables

Calling methods on objects and accessing fields in
objects

Representing characters in the computer
Using methods from the String class
Reference equality versus value equality for objects

Using primitive values as objects

(Slide 4 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

@ A CD has certain properties:
e a title

e a number of tracks

@ It should be possible to determine its title and how
many tracks there are on it

@ We should be able to change the title and number of
tracks on the CD

(Slide 5 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

Properties

Behaviour

cD

title
no0fTracks

getTitle()
getNoOfTracks ()
setTitle()
setNoOfTracks ()

Class name

Field Variables

Instance Methods

(a) Standard notation for a class

Dr. R. Khedri

(b) Simplified notation for a class

(Slide 6 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Introduction to the object model

@ A class declaration contains a number of declarations
that define the properties and behaviour of its objects

Class name

class CD {

1/ Declaration of field variables

String title;

int noOfTracks;

/ Declaration of instance methods
String getTitle() { return title; }

int getNoOfTracks() { return noOfTracks; }

void setNoOfTracks(int nTracks) { noOfTracks

void setTitle(String newTitle) { title = newTitle; }

(Slide 7 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model
Reference variable
@ A class is a "blueprint” for creating objects that have

properties and behaviour defined by the class

@ The term instance is often used as a synonym for an
object

@ There is only one CD class, but we can create several
CD objects

@ When we create an object from a class, we get a
reference value for the newly-created object

@ Each object of a class is unique

(Slide 8 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

@ The identity of the object is indicated by the
reference value

o A reference variable (or reference) is a variable that
can store a reference value of an object

@ References are analogous to variables of primitive data
types

@ We manipulate an object via a reference that holds the
reference value of the object

(Slide 9 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

Reference variable declaration
@ It is used to declare a reference variable

@ It specifies the name of the reference and its reference
type

@ A class is a reference type

@ References can only refer to objects of the specified
class

CD favouriteAlbum;

@ A memory is allocated for the reference favouriteAlbum
to store the reference value of a CD object

(Slide 10 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

@ No object is created as a result of declaring a reference
@ To create an object of the class CD:

new CD();

e new CD(); has two parts:
e The operator new
o A constructor call: CD () It specifies the name of
the classt + specifies a list of parameter values

@ The operator new
e creates an object of class CD
e returns the reference value of the new object
@ The constructor call can be used to initialize the field

variables in the new object

(Side 11 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Introduction to the object model

Often we combine the declaration of a reference and the
creation of an object

Reference declaration Constructor call
[[(I

Reference type —CD favouriteAlbum = new CD();

Reference variable Operator T Parameter list
Class name

@ The fields title and noOfTracks have the values null

and 0 respectively

(Slide 12 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

@ After an object has been created, a reference that
refers to the object can be used to send messages to
the object

@ Messages take the form of a method call in Java

@ A method call to an object specifies:
o the reference to the receiving object

e the name of the method that is to be executed

e any other information (in a parameter list)

@ The class of the referred object must define the
method that is called

(Slide 13 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

object

favo‘%_; :CD favouriteAlbum:CD

A reference holds title = null title = null

the reference value of noOfTracks = 0 noOfTracks = 0

an object.
getTitle() getTitle()
getNoOfTracks() getN(_!OfTracks()
setTitle() setTitle()
setNoOfTracks() setNoOfTracks()

(a) Explicit reference for a Java object (b) Standard notation for objects

favouriteAlbum:CD favouriteAlbum:CD
title = null
noOfTracks = 0

(c) Other simplified notations for objects

(Slide 14 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

(Slide 15 of 57)

Dot SFWR
. " ENG/COMP SCI
favouriteAlbumYsetTitle("Java Jam Hits"); 2503
l J Principles of
Programming

Reference to Method name Parameter list

the receiver
object

Dr. R. Khedri

(a) Calling a method in an object

Abstractions, classes
and objects

Dot Objects, reference
values and reference
variables
The new operator

favouriteAlbumYtitle = "Java Jam Hits"; TEomafns

Object state

Reference to Field name
the receiver
object
(b) Referring to a field in an object

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

@ Each object has its own copy of field variables

@ The fields of different objects of class CD can have
different values

@ The behaviour of an object is given by the instance
methods

@ The code that constitutes a method declaration is
called a method implementation

@ Objects of the same class share method
implementations

(Slide 16 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

Each object has
a copy of
the field variables.

Objects share
the method
implementations.

Figure: Object state

favouriteAlbum:CD

jazzAlbum:CD

title = "Java Jam Hits"
noOfTracks = 8

title = “Java Jazz Hits"
noOfTracks = 10

getTitle()
getNoOfTracks ()
setTitle()
setNoOfTracks()

Dr. R. Khedri

getTitle()
getNoOfTracks()
setTitle()
setNoOfTracks()

(Slide 17 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Abstractions, classes
and objects

Objects, reference
values and reference
variables

The new operator
Using objects
Object state

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Introduction to the object model

(Slide 18 of 57)

1| // Using CD-objects
public class CDSampler { SFWR
3 public static void main(String[] args) { ENG/COMP SCI
// Create 2 CDs 2503
5 CD favouriteAlbum = new CD(); LT
CD jazzAlbum = new CD(); Principles of
7 Programming
// Set state of the CDs
9 favouriteAlbum .setTitle (" Java Jam Hits"); i
favouriteAlbum .setNoOfTracks(8); DCgRIRb ey
11 jazzAlbum .setTitle ("Java Jazz Hits");
jazzAlbum .setNoOfTracks (10);
13
Print state of the CDs
15 System.out.printin (" Title of favourite album: " +
favouriteAlbum . getTitle());
17 System.out. printin ("Number of tracks on favourite album: " +
favouriteAlbum . getNoOfTracks()); i
19 System.out.printin (" Title of jazz album: " + jazzAlbum.getTitle()); Abstractions, classes
System.out.printin ("Number of tracks on jazz album: " and objects
21 jazzAlbum . getNoOfTracks()); Objects, reference
} values and reference
2]} variables

The new operator
Using objects
Object state

Program Output

Title of favourite album: Java Jam Hits
Number of tracks on favourite album: 8
Title of jazz album: Java Jazz Hits
Number of tracks on jazz album: 10

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects

E (Slide 19 of 57)
Strings
. . SFWR
@ In programming languages, text is usually a sequence ENG/COMP SCI
of characters and is called a text string, or just string Prinsios of

Programming

@ Java provides a primitive data type char Dr. R. Khedri

@ Java provides a pre-defined class String

@ Each character is represented by an integer value called

Characters and strings

the code number Character literals
Character variables
and arithmetic
expressions

. String literals
@ Java uses a standard called Unicode to represent S f————

Creating string objects

characters S Gamp
Methods from the
String class

@ This standard assigns a unique code number for each
character

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

Strings

@ The char data type represents the code number of each
character as a 16-bit integer value

@ We can represent 210 characters in the data type

@ We can represent the characters found in most of the
languages in the world

@ The Unicode values are usually specified as

hexadecimal numbers

The letter 'a’ has the Unicode value \u0061
The digit ‘0’ has the Unicode value \u0030

The character ' 7’ has the Unicode value \u20ac

(Slide 20 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

Strings

In Java, we can write a character as a char value
The letter a can be written as "a’ or "\u0061’

Without the single quotes, the character a alone will be
interpreted as a one-letter name

The single quote " by a backslash \ are needed

The backslash character \ is used to "escape” the
special meaning of a character

(Slide 21 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

Character Decimal value Unicode value Character literal
0 (zero) 48 \u0030 ‘0"
a 97 \u0061 ‘a’
A 65 \u0041 ‘A’
? 63 \u003f ‘2!
single quote: * 39 \u0027 A
double quote: " 34 \u0022 A
backslash: \ 92 \u005¢ W\
newline 10 \u000a "\n'
tab 9 \u0009 ‘At
space 32 \u0020 v
Dr. R. Khedri

(Slide 22 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison

Methods from the
String class

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

@ A character literal has the data type char

@ We can declare variables that can store characters
char newline = "\n’, tab = "\u0009’;
char charl, char2, char3, char4;
charl = char4 = 'a’; char2 = char3 = 'b’;

@ A character can be an integer operand in an arithmetic
expression (as it is represented by integer):

int number ='5’ - '0’; 53 - 48 gives 5

int sumCodeNumbers = charl 4+ char2 4 char3 +
char4; 97+984-98+4-97 gives 390

(Slide 23 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Introduction to the
object model

Strings

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Manipulating
references

Primitive values as

nhincte

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Strings

(Slide 24 of 57)

SFWR
ENG/COMP SCI
2503
Principles of

e [a,--,z], [A,---,Z] and [O,---,9] are numbered Programming
consecutively in the Unicode standard Dr. R. Khedri

@ We can compare characters and it is the code numbers
that are actually compared:

Characters and strings
boolean testl = (charl == char4); Character literals
Character variables
and arithmetic
expressions
String literals

@ Analogous to character literals, we can define string P
literals

String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

Strings

A string literals is defined by enclosing a sequence of
characters in double quotes ”

String literals are objects of the class String
The string literal "abba” is a String object

This object stores the characters as a sequence

Any double quotes ” that actually occur in a strin
must be escaped with a backslash

String literals cannot span more than one line in the
source code

(Slide 25 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

(Slide 26 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

String literal Printout Dr. R. Khedri
“Welcome to Forevereverland" Welcome to Forevereverland
- The empty string has no visible repre-
sentation.
o '
"\"Move it{\", said the teacher."” "Move it!", said the teacher. Characters and strings
Character literals
"A string cannot Compile-time error. Character variables
and arithmetic
span more than one line." expressions
String literals
"Wrap a long string\n with a newline literal.* Wrap a long string String concatenation
) Creating string objects
with a newline literal. String comparison

Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

@ We can declare variables of class String that can refer
to string literals

String firstName = " John”, lastName = " Eriksen”;

@ The character sequence in a String object cannot be
modified

@ Seemingly modifying the string in a String object
actually result in a new String object

@ The binary operator + is used for concatenating two
strings

String fullName = firstName + ” " + lastName;

(Slide 27 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

w

Using Objects
Strings

// Ilustrating string concatenation
public class StringConcatenation {
public static void main(String[] args) {
String course = "programming”;

String course2 =
System.out. println
System.out. println
System.out. println
System.out. println

coursel:
course2:
int)'C");

(
(int)'S");

(
(
(
(

course = "Introductory course in " 4+ course;
System.out.printin (" course: + course);

int courseNumber = 100;

String coursel = "C" + "S"” + courseNumber + ":

'C’ 4+ 'S’ + courseNumber + "
+ coursel);
+ course2);

4+ course;
+ course;

// (1)
/] (2)
/] (3)

Program Output

course: Introductory course in programming
coursel: CS100: Introductory course in programming
course2: 250: Introductory course in programming
67

83

Dr. R. Khedri

(Slide 28 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

@ Specification of a string literal in the program —
creation of a String object

@ The reference value of this object can be assigned to a
String reference variable:
String star = "madonna”;

@ If several reference variables are assigned the same
string literal, they are aliases
String Singer = ” madonna"; The reference singer is the same as star

@ Another way of creating String objects is by using the
new operator
String newSinger = new String(”madonna”); (1)
String artist = new String(newSinger); (2)

(Slide 29 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Strings

star

singer

newSinger

length()

charAt ()
equals()

String star
String singer
String newSinger
String artist

Dr. R. Khedri

artist

La’] Lal
length() length()
charAt() charAt()
equals() equals()

“madonna‘;
"madonna*;
new String("madonna”);
new String(newSinger);

(Slide 30 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison

Methods from the
String class

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

@ Comparison of strings is based on lexicographical order

@ The method compareTo() in the String class can be
used to compare strings

@ We call this method on one string and send the second
string as a parameter in the method call

int resultl = star.compareTo(singer); == ()
int result2 = star.compareTo(newSinger); == (0
String groupl = "abba”, group2 = 'aha”;

int result3 = group2.compareTo(groupl); >0
int result4 = group.compareTo(group2); <0
if (result4 j 0) {

System.out.println(groupl + " is smaller!”); Prints: abba is smaller!
}

(Slide 31 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison
Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Strings

Method

Description

int compareTo(Object s2)

Compares two strings. For example, given the code line:
int result = s1.compareTo(s2);

where 81 and s2 are strings, we can conclude the following,
depending on the value of the result variable:

If result < 0, string 81 is less than string s2.

If result == 0, string s1 is equal to string §2.

If result > 0, string s1 is greater than string s2.

boolean equals(Object s2)

Compares two strings for equality, i.e. whether the respec-
tive strings have identical sequences of characters, and
returns true if that is the case. Otherwise the method
returns false.

int length()

Returns the number of characters in the string, i.e. the
length of the string.

Dr. R. Khedri

(Slide 32 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison

Methods from the
String class

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

(Slide 33 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

static String valueOf(T t) Depending on the type T, returns a string representation of

the value in t. For example, type T can be boolean, char, Dr. R. Khedri
double, float, int or long.
char charAt(int index) Returns the character at the index in the string. The first
character is at index 0. Invalid index values will result in an
IndexOutOfBoundsException.
int indexOf(int charvalue) Returns the index of the charvalue or index of the start of
int indexOf (String subString) the substring in the string, otherwise returns -1. Argu-
int indexOf (int charvalue, ment startIndex can be used to start the search from a Characters and strings
int startIndex) particular index, otherwise the search starts at index 0. C"""““""' el
int indexOf (String subString, Character variables

int startIndex) SXpeessions

String literals

String concatenation
Creating string objects
String comparison

Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Strings

String substring(
int startlndex,
int endIndex)

Returns a new string consisting of the sequence of charac-
ters from startIndex to (endIndex-1). The returned
string has length (endIndex-startindex). Invalid index
values will result in an IndexOutOfBoundsException.

String toLowerCase(}
String toUpperCase()

Returns a new string in which all characters that are letters
in the original string are converted to either lowercase or
uppercase, respectively.

String trim()

Returns a new string where invisible characters at the start
and end of the original string are deleted. These invisible
characters can be, for example, space, tab or newline.

(Slide 34 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals
Character variables
and arithmetic
expressions

String literals

String concatenation
Creating string objects
String comparison

Methods from the
String class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

19

21

Strings

//

Illustrating misc. String methods

public class MiscStringMethods {
public static void main(String[] args) {

String groupl = "abba”, group2 = "aha";
int result3 = group2.compareTo(groupl); // >0
int result4 group2.compareTo(new Integer(10)); (1) Error!
if (result3 > 0) // True in this case
// "aha” is greater lexicographically
System.out.printin(group2 4+ " is greater lexicographically!”);
if (groupl.length() > group2.length()) /] 4 >3
// "abba” is greater in length.
System.out.println(groupl + " is greater in length!");
String star = "madonna”;
int strLength = star.length(); /] 7
System.out. printin(star.charAt(strLength —4)); / o (index: 3,
// i.e. 4th.
char)
System.out. printin(star.indexOf('n")); / 4
System.out. printin(star.substring(0,3)); / "mad

(Slide 35 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Characters and strings
Character literals

Character variables
and arithmetic

aha is greater lexicographically!
abba is greater in length!

Dr. R. Khedri

pression:
String literals

String concatenation
Creating string objects
String comparison

Methods from the
String class

SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects

a . Slide 36 of 57
Manipulating references :)
. . . , SFWR
@ A reference value identifies an object in the computer’s TR
memory Principles of
Programming
Dr. R. Khedri
@ A Java object can only be referenced by its reference
value
@ A class defines a data type called a reference type

Reference types and

@ A reference variable of a specific reference type can only ~ variables

Aliases

store reference values of objects of that reference type The null literal

Comparing objects

We can change the reference value stored in a
reference variable

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

@ The same reference value can be assigned to several
reference variables

@ What happens when a reference value is assigned to
several reference variables?

e these variables are called aliases for the object
identified by the reference value stored in them

e an object can be manipulated by any of its aliases

(Slide 37 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Reference types and
variables

Aliases

The null literal
Comparing objects

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

Reference variables star and singer are aliases for the

same String object

star

singer

newSinger
:String

length()
charAt()

equals()
String star
String singer
String newSinger
String artist

Dr. R. Khedri

artist
:String

PN AWN 2O

length()
charAt()
equals()
*madonna‘“;
"madonna“;

new String("madonna");
new String(newSinger);

(Slide 38 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Reference types and
variables

Aliases
The null literal
Comparing objects

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

(Slide 39 of 57)

SFWR

@ The literal null is a special reference value ENG/COMP SCI
2503
Principles of
Programming

@ It can be assigned to any reference variable Dr. R. Khedri

@ null indicates that the reference variable does not refer
to any object

o After assignment of null to a reference, the object
previously referred to will no longer be available via this ~ Wis ™

Aliases

reference The null literal

Comparing objects

o If we use a reference that has the value null, a runtime
error (NullPointerException) can occur

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

-

Using Objects
Manipulating references

(Slide 40 of 57)

SFWR
// Illustrating aliases ENG/COMP SCI
public class ReferenceValueSwapping { 2503
public static void main(String[] args) { Principles of
String groupl = "abba”, group2 = "aha”, groupName; // (1) Programming
groupName = groupl; /] (2)
groupl = group2; // (3) Dr. R. Khedri
group2 = groupName; /] (4)
groupName = null; // (5)
System.out.println(”"groupl refers to: " + groupl);
System.out.println(”"group2 refers to: + group2);
System.out.println(”groupName refers to: " + groupName);
System.out. println (groupName.length()); /] (6)
}
}

Program Output

groupl refers to: aha

group2 refers to: abba

groupName refers to: null

Exception in thread "main" java.lang.NullPointerException

at ReferenceValueSwapping.main(ReferenceValueSwapping. java:12)

Reference types and
variables

Aliases
The null literal
Comparing objects

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

(Slide 41 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

@ In String comparison, we had value equality and
reference equality e R

@ We can now generalize these comparison to other
objects

@ What does it mean if we say that two cars are equal?

Reference types and
variables

Aliases
The null literal

@ To compare objects for value equality, the class must Comparing objects
provide its own implementation of the equals() method

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Manipulating references

@ This method has a special position in Java, and is used
for comparing two objects for value equality

@ The equals () method must check that it is meaningful
to compare the two objects for value equality (use
<obj> instanceof <Class>)

@ The class String implements its own equals ()

@ The operator == can be used to determine whether
two references are aliases

@ == compares the reference values stored in the
references

(Slide 42 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Reference types and
variables

Aliases
The null literal
Comparing objects

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

(Slide 43 of 57)

SFWR
ENG/COMP SCI
2503
Back to the previous program ... Principles of
Programming
Dr. R. Khedri
// Illlustrating aliases
2| public class ReferenceValueSwapping {
public static void main(String[] args) {
4 String groupl = "abba”, group2 = "aha”, groupName; // (1)
groupName = groupl; // (2)
6 groupl = group2; // (3)
group2 = groupName; /] (4)
8 groupName = null; // (5)
System.out.println(”"groupl refers to: " + groupl);
10 System.out.println(”"group2 refers to: " + group2);
System . out. println(”groupName refers to: " 4 groupName); Refferaes Gypes adl
12 System.out. println (groupName.length()); // (6) variables
} Aliases
14|} The null literal
C ing objects

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects

Manipulating references

grove? :String grove? :String

groupName groupName

group2 :String group2 :String
After (1) After (2)

group! and groupName are aliases

(Slide 44 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Reference types and
variables

Aliases
The null literal
Comparing objects

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

(Slide 45 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
g POUD1 Programming
M Dr. R. Khedri
"abba"
groupName
group2 _
: St I"lng ‘Il?:rflr“;g:o types and
[rana" Tt
Comparing objects
After (3)

group1 and group2 are aliases

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

Manipulating references

groupt

:String

[—hJ

groupName

group2

“abba"

[——

After (4)

groupName and group2 are aliases

:String

"aha"

Dr. R. Khedri

group1 -
:String
—> “abba’
groupName
group2 :String
[=
After (5)

(Slide 46 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Reference types and
variables

Aliases

The null literal
Comparing objects

SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Manipulating references

~

6

public class Student {
String name;
String course;
double average;
public String getName ()
{
return name;

public void setName (String studentName

{

name = studentName;
}
public String getCourse ()
{

return course;

public void setCourse (String
studentCourse)
{

course = studentCourse;
public double getAverage ()
{
return average;

public void setAverage (double
studentAverage)
{

average = studentAverage;
/+ equals x/
public boolean equals(Student stdt) {
if (stdt instanceof Student) {
if ((int)this.average = (int)stdt.
average) return true;

return false;

19

21

Dr. R. Khedri

/*

+ SameAverage.java
To illustrate the usage of equals method

%/

public class SameAverage {
public static void main(String[] args) {
Student stdl = new Student(), std2 =
new Student();

stdl.name = "John Do";
stdl.course = "2503";
stdl.average = 75.5;

std2.name = "Jane Smith";
std2.course = "2503";
std2.average = 75.6876;

System.out. printf("%n%nThe student %10s
in the course %4s has an average
of %3.2f.%n", stdl.name, stdl.
course, stdl.average);

System.out.printf("The student %10s in
the course %4s has an average of
%3.2f.%n%n" , std2.name, std2.
course, std2.average);

System.out.printf("It is %6s that the
student %—10s and student %—10s
have ALMOST the same average%n%n”
stdl.equals(std2), stdl.name,
std2.name);

(Slide 47 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Introduction to the
object model

Strings

Manipulating
references
Reference types and
variables

Aliases

The null literal
Comparing objects

Primitive values as
objects

SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects

Primitive values as objects

Primitive values are not objects

Java offers wrapper classes so that values of primitive
data types can be treated as objects

The wrapper classes can be used to encapsulate
primitive values

There is a wrapper class for each primitive data type

(Slide 48 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Primitive values as
objects

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects

Primitive values as objects

Primitive data type Corresponding wrapper class
boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

(Slide 49 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Primitive values as
objects

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Primitive values as objects

Auto-boxing

@ Auto-boxing is the process of automatic conversion
from a primitive value to a corresponding wrapper
object

Integer iRef = 10;

@ In the above example, the right-hand side of the
assignment operator can be any int expression

@ The value of the expression is evaluated and
automatically encapsulated in an Integer object

@ The reference value of the object is assigned to the
reference variable iRef

(Slide 50 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects

- oa . Slide 51 of 57
Primitive values as objects : ’

Auto-unboxing ENG/SCF(\)AI(/?P sci

2503
@ Auto-unboxing is the process of automatic conversion SR
from a wrapper object to the corresponding primitive 5 gR i dg_
value o
int j = iRef; // Auto-unboxing

@ The right-hand side of the assignment operator can be
any expression that evaluates to a reference value of an
Integer object

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

@ The int value encapsulated in the Integer object is
assigned to the variable on the left-hand side

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Primitive values as objects

@ We can also do explicit conversion between primitive
data values and wrapper objects

@ Wrapper classes have constructors that take a primitive
value for encapsulation

@ Wrapper classes have methods to read the value in the
wrapper object

Integer iRef = new Integer(10); //esici boxing
int j = iRef.intValue(): //Explicit unboxing

@ The method intValue() in the class Integer returns the
value in the wrapper object as an int value

(Slide 52 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects

Primitive values as objects

w

// Conversions: wrapper <—> primitive value
public class PrimitiveValueWrapper {
public static void main(String[] args) {

// A primitive value.

int valueln = 2006;

// Two ways of creating an object from a
Integer valueObject;
valueObject = new Integer(valueln);
valueObject = valueln; // Simple
// Two ways of creating a
int valueOut;
valueOut = valueObject.intValue();
valueOut = valueObject;
assert(valueln = valueOut);
System.out. println (" valueln:

// Simple

" + valueln +

// Assert:

primitive value:

variant

primitive value from an object:

variant
same primitive value
valueOut: " + valueOut

Program Output

valueIn: 2006, valueOut: 2006

Dr. R. Khedri

(Slide 53 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

SFWR ENG/COMP SCI 2503 Principles of Programming

Using Objects
Primitive values as objects

(Slide 54 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Method Description Dr. R. Khedri
int intvalue() Returns the value in the wrapper object as an int.
String toString() Conversion from wrapper object to string. Returns a string

representation of the primitive value in the wrapper

object.

static String toString(int i) Conversion from wrapper object to string. Returns a string
representation of the int value passed as argument.

static int parselnt(String s) Conversion from string to primitive value. Interprets a
string as an int value. This method accepts strings contain-
ing digits and the minus operator (-) only. It throws a
NunberFormatExceptu.)n (see Chapter 11) if the string R -
does not represent an int value. et e e

unboxing
Useful methods in the
wrapper classes

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Using Objects
Primitive values as objects

str
str

[l

Integer.toString(i);
String.valueOf(i);

i = Integer.parselnt(str);

v

String str;

string

ref
ref

str
str

ref.toString();

= String.valueOf(ref});

Integer.valueOf{str);

new Integer(str);

integer

int i;

%

non

e

H
ref.intvalue();

ref
ref

Dr. R. Khedri

i;
new Integer(i);

object

% Integer ref;

(Slide 55 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

SFWR ENG/COMP SCI 2S03 Principles of Programming

w

Using Objects
Primitive values as objects

// Conversions: string —> wrapper —> primitive
public class PrimitiveValueRepresentation {
public static void main(String[] args) {
String stringl , string2;
// Case A: string —> wrapper —> primitive —> string
stringl = "2005";
Integer iWrapper = new Integer(stringl);
int iPrimitive = iWrapper;
string2 = Integer.toString (iPrimitive);
assert(stringl.equals(string2)); // (1)
// Case B: string —> primitive —> wrapper —> string
stringl = "12.5";
double dPrimitive = Double.parseDouble(stringl);
Double dWrapper = dPrimitive;
string2 = dWrapper.toString();
assert(stringl.equals(string2)); // (2)
¥
¥

(Slide 56 of 57)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Boxing and unboxing
Explicit boxing and
unboxing

Useful methods in the
wrapper classes

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

	Introduction and Learning Objectives
	Introduction to the object model
	Abstractions, classes and objects
	Objects, reference values and reference variables
	The new operator
	Using objects
	Object state

	Strings
	Characters and strings
	Character literals
	Character variables and arithmetic expressions
	String literals
	String concatenation
	Creating string objects
	String comparison
	Methods from the String class

	Manipulating references
	Reference types and variables
	Aliases
	The null literal
	Comparing objects

	Primitive values as objects
	Boxing and unboxing
	Explicit boxing and unboxing
	Useful methods in the wrapper classes

