(Slide 1 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

SFWR ENG/COMP SCI 2503 Dr. R. Khedri
Principles of Programming

Dr. Ridha Khedri

Department of Computing and Software, McMaster University
Canada L8S 4L7, Hamilton, Ontario

Acknowledgments: Material based on Java actually: A Comprehensive Primer in Programming

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Topics Covered

@ Introduction and Learning Objectives
@ Class members
e Defining object properties
o Field declarations
@ Initializing fields
@ Defining behaviour
@ Method declaration & parameters
@ Method calls & actual parameter expr.
@ Call-by-value
@ Call by reference
@ Arrays as actual parameter values
@ The current object: this
@ Method execution and the return statement
@ Passing information using arrays
@ Automatic garbage collection
© Static members of a class
@ Accessing static members
@ The main() method and program argmts
@ Initializing object state
@ Default constructors
@ Constructors with parameters
@ Overloading constructors
@ Enumerated types
@ Simple form of enumerated types
@ General form of enumerated types
@ Declaring enum types inside a class

Dr. R. Khedri

(Slide 2 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Introduction and Learning Objectives

Object-oriented programming:
@ Programs are composed of objects that collaborate to
provide the required functionality

@ An object belongs to a class that defines the common
properties and behaviour of a particular type of objects

@ When writing programs, defining and understanding
problem-specific classes is essential

@ We focus on
o how to define and use our own classes
o called user-defined classes

e We introduce a special kind of class (enumerated types)

(Slide 3 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Introduction and Learning Objectives

Learning Objectives
@ Define your own classes that implement abstractions

@ Declare and call methods

@ Pass information to methods and methods return values
@ Declaration and use of static members of a class

@ Passing information to the program via arguments

@ Initializing the state of newly-created objects using
constructors

@ Defining and using enumerated types

(Slide 4 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

(Slide 5 of 76)
Class members
@ A class declaration defines ENG/SCF(\)",(,'TP sci
. 2503
° the propertles Principles of
e the behaviour Programming
Dr. R. Khedri

Member declarations:
o Declarations that are used inside the class
e Declarations that are used by other classes Class members

Field variables represent properties

@ Instance methods define the behaviour of the objects of
the class

Field variables and instance methods are collectively
called instance members

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

(Slide 6 of 76)
Class members
SFWR
@ Member declarations in a class can be declared in any ENG/COMP SCI
Order Principles of

Programming

Dr. R. Khedri

@ It is common practice to group instance and static
members separately

Class members

e Static variables represent properties Static methods
define the behaviour of the class

e NOTE:

e Static variables and static methods are collectively
called static members
o They belong to the class, not to the objects of the class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Class members

class name Employee

variables

methods

Instance members belong to objects | Static members are a part of the class
Field variables Static variables
lastName MALE

Properties firstName FEMALE
hourlyRate numOfMales
gender numOfFemales
Instance methods Static methods
setState() r‘egisterGender‘()

: isFemale() printStatistics()

Behaviour computeSalary () -

printState()
objects class

members

(Slide 7 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Class members

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining object properties

(Slide 8 of 76)

@ Field variables define the properties of objects that can e
2503
be created from the class Principles of
Programming
@ Each object gets its own copy of the field variables Dr. R. Khedri
@ A field declaration specifies both the field type and the
field name
Field declarations
class EmployeeV1 { // Assume that no constructors are declared. Initializing fields

/! Field variables

String firstName;

String lastName;

double hourlyRate;

boolean gender; /1 false means male, true means female

...

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining object properties

(Slide 9 of 76)

. . SFWR
We create objects from a class using the new operator ENG/COMP SCI
2503
Principles of

EmployeeV1 anEmployee = new EmployeeV1(); Programming

Dr. R. Khedri

@ “new” creates a new object of the EmployeeV1

The object have room for the fields declared in the class

Field declarations
Initializing fields

All objects created this way will have their fields
initialized to default values

@ The state of an object comprises all values in the fields

@ The state can change over time

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

P . 0 Slide 10 of 76
Defining object properties e
anEmployee:EmployeeV1 TR
ENG/COMP SCI
lastName = null /2503
firstName = null Principles of
hourlyRate = 0.0 Programming
gender = false Dr. R. Khedri
class Employeev2 { // Assume that no constructors are declared

// Field variables with initial values
String firstName = "Joe";

String lastName = "Jones";

double hourlyRate = 15.50;

boolean gender = false; // false means male, true means female

/... Field declarations
Initializing fields

I

}
EmployeeV2 employeeA = new EmployeeV2();

employeeA:EmployeeVv2

lastName ="Joe"
firstName =“Jones"
hourlyRate =15.50
gender =false

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining behaviour

@ We saw that a method declaration comprises

e a method header
e method body

@ The method header declares

e the return type
o the method name
o the parameter list

@ If a method is NOT supposed to return a value, the
keyword void should be specified

@ A non-void method must specify a return type

(Slide 11 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining behaviour

@ The parameter list indicates what information the
method needs to do its job

@ The parameter list declares formal parameters for the
method

@ Each parameter is specified as a variable declaration
(name and type)

@ The type of a formal parameter can also be a reference
type (e.g., a class or an array)

@ The parameter list is enclosed in parentheses ()
(even if the method has no parameters)

(Slide 12 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining behaviour

(Slide 13 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
@ The method and the parameter list constitute the poeianning
signature of the method D (% (it
@ The signature determines which method declaration is
chosen for execution by a method call
@ Method body comprises variable declarations and ST e o
. Method calls & actual
a ct|o ns parameter expr.

@ Variable declarations in the method body define the
local variables needed

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Defining behaviour

@ Local variables are accessible only in the method body
@ Formal parameters are also local variables

@ Several methods can have the same names for their
local variables

@ The method body implements the actions

@ Local variables and statements can be defined in any
order

@ Rule: A local variable must be declared before it can
be used in the method body

(Slide 14 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Defining behaviour

class EmployeeVv3 {

// Declaration of a field variable

field _ gouble hourlyRate;

daration

method

L
[r—»double computeSalary(double numOfHours) {

local

eriables |

actions —

return type]method name

field type field name

/1 Declaration of an instance method
method signature

list of formal—l
parameters

|

method body

assert numOfHours >= 0 : "Number of hours must be >= 0";
double normalNumOfHours = 37.5;
double weeklySalary = hourlyRate * normalNumOfHours;

if (numOfHours > normalNumberOfHours) {
weeklySalary += 2.0 * hourlyRate * (numOfHours - normalNumOfHours);

}
return weeklySalary; I
4

} return-statement refers to a field

Dr. R. Khedri

(Slide 15 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining behaviour

1

class EmployeeV3 { // Assume that no constructors are

ared
Field variables
String firstName;
String lastName;
double hourlyRate;
boolean gender; // false means male, true means female

Instance methods

// Assign values to the field variables of an employee
void setState(String fName, String IName,
double hRate, boolean genderValue) {
firstName = fName;
lastName = IName;
hourlyRate = hRate;
gender = genderValue;

Determines whether an employee is female
boolean isFemale() { return gender; }

// Computes the salary of an employee, based on the number of hours
// worked during the week
double computeSalary(double numOfHours) {

assert numOfHours >= 0 : "Number of hours must be >= 0";

double normalNumOfHours = 37.5;

double weeklySalary = hourlyRate + normalNumOfHours;

if (numOfHours > normalNumOfHours)

weeklySalary += 2.0 = hourlyRate + (numOfHours — normalNumOfHours)
}

return weeklySalary;

Prints the values in the field variables of an employee
void printState() {

System.out. print (" First name: " + firstName);
System.out. print("\tLast name: " + lastName);
System.out. printf("\tHourly rate: %.2f", hourlyRate);
if (isFemale()) {

System.out. printin ("\tGender: Female");
} else

System.out . printin ("\tGender: Male");

}
}

java EmpldyeeV3

Exception in thread "main" java.lang.NoSuchMethodError:
SFWR ENG/COMP SCI 2503 P

Dr. R. Khedri

(Slide 16 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Class members

Defining object
properties

Defining behaviour

Method declaration
and formal parameters
Method calls & actual
parameter expr.

Call-by-value
Call by reference

Method execution
and the return
statement

Passing information

ciples of Programming

Defining Classes
Defining behaviour

@ A method call is used to execute a method body

@ A call specifies

e the object whose method is called

e the name of the method

e any information the method needs to execute its
actions (actual parameters, or arguments)

@ An actual parameter is an expression

@ A formal parameter is specified in the method
declaration

(Slide 17 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Defining behaviour

@ The signature of a method call consists of the method
name and the type of the actual parameter expressions
setState(String, String, double, boolean) Call signature

@ The compiler checks that a method exists that
corresponds to the method call

@ The signature of the method call has to be compatible
with the signature of the method declaration

@ Examples of method calls that result in compile-time
errors:

manager.setState(name, hourlyRate*2.0, " Jones”, false);// error
manager. setState(name, " Jones”, hourlyRate*2.0); // error

Dr. R. Khedri

(Slide 18 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Defining behaviour

String name = “Joe";
double hourlyRate = 15.50;
EmployeeV3 manager = new EmployeeV3();
Actual parameter expressions

Method call

f 1
manager.setState(name, *Jones", hourlyRate*2.0, false);

Values of

actual parameters
are assigned to
formal parameters

Method declaration

void setState(]String fName, String 1lName, double hRate, boolean genderVahﬁ) {

(P1) (P2) (P3) (P4)

Formal parameters
firstName = fName;
lastName = 1Name;
hourlyRate = hRate;
gender = genderValue;

After parameter passing:

(P1) fName and name are aliases of the String object with the value *Joe".

(P2) LName refers to the String object with the value "Jones".
(P3) hRate has the value 31.0, i.e.hourlyRate*2.0 = 15.50*2.0.
(P4) genderValue has the value false.

(Slide 19 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method declaration
and formal parameters
Method calls & actual
parameter expr.

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

(Slide 20 of 76)
Call-by-value
. . SFWR
@ An actual parameter expression is evaluated ENG/COMP SCI
2503

@ Then, its value is assigned to the corresponding formal

parameter variable

Principles of
Programming

Dr. R. Khedri

@ Parameter passing in previous Figure is equivalent to
the following assignments:

String fName =
String 1Name =
double hRate =

name;
"Jones";
31.0;

/! (P1) reference value of "Joe" Celbyavalue

/! (P2) reference value of "Jones*
/] (P3) primitive value 31.0

boolean genderValue = false; // (P4) primitive value false

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Call-by-value

// Ulustrating parameter passing
public class Client3A {
3| public static void main(String[] args) {

(Slide 21 of 76)

SFWR
5 String name = " Joe"; ENG/COMP SCI
double hourlyRate = 15.50; 2503
7 EmployeeV3 manager = new EmployeeV3(); // (1) LT
System.out. printin (" Manager state before call to setState() method”) Principles of
; Programming
9 manager. printState () ;
manager.setState(name, "Jones”, hourlyRatex2.0, false); // (2) Dr. R. Khedri
11 System.out.println (" Manager state after call to setState() method”);
manager. printState () ;
13 System.out.printin(); Intro. & Learning
15 System.out. printf (" Manager hourly rate before adjusting: %.2f%n", Objectives
manager . hourlyRate); /] (3)
17 adjustHourlyRate (manager. hourlyRate); // (4) LOGICAL ERROR! Class members
System.out. printf (" Manager hourly rate after adjusting: %.2f%n",
19 manager. hourlyRate); Defining object

System.out. printin(); properties

21
EmployeeV3 director = new EmployeeV3(); /] (5) . .

23 System.out. printin (" Director state before call to copyState() method Defining behaviour
director.printState(); Call-by-value

25 copyState (manager, director); 7/ (6)
System.out.println (" Director state after call to copyState() method: Call by reference

27 director.printState(); :
System.out. printin (" Manager state after call to copyState() method:" Method execution

; and the return

29 manager. printState () ; statement
System.out.printin();

i} Passing information

33 using arrays

// CONTINIUED on next slide

Static members of
a class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

Call-by-value

//Continues the program on the previous slide

// Method that tries to adjust the hourly rate.
static void adjustHourlyRate(double hourlyRate) { /] (7)
hourlyRate = 1.5 * hourlyRate; (8)
System.out.printf(” Adjusted hourlyRate: %.2f%n"”, hourlyRate);
¥
// Method that copies the state of one employee over to another
employee.
static void copyState(EmployeeV3 fromEmployee,
EmployeeV3 toEmployee) { // (9)
toEmployee.setState (fromEmployee. firstName , // (10)
fromEmployee.lastName,
fromEmployee. hourlyRate ,
fromEmployee . gender);
toEmployee = fromEmployee = null; // (11)
¥
¥
Dr. R. Khedri

(Slide 22 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Call-by-value

Program put

Manager state before call to setState() method
First name: null Last name: null Hourly rate: 0.00
Gender: Male

Manager state after call to setState() method
First name: Joe Last name: Jones Hourly rate: 31.00
Gender: Male

Manager hourly rate before adjusting: 31.00
Adjusted hourlyRate: 46.50
Manager hourly rate after adjusting: 31.00

Director state before call to copyState() method
First name: null Last name: null Hourly rate: 0.00
Gender: Male

Director state after call to copyState() method:
First name: Joe Last name: Jones Hourly rate: 31.00
Gender: Male

Manager state after call to copyState() method:
First name: Joe Last name: Jones Hourly rate: 31.00
Gender: Male

(Slide 23 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Call-by-value

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Ca | I—by—value (Slide 24 of 76)
SFWR
G/CO SC
Consequences of call-by-value BN s

Principles of
Programming

@ Inside the method body, a formal parameter is used like Or. R. Khedri
any other local variable

@ Changing its value in the method has no effect on the
value of the corresponding actual parameter in the
method call ST

@ A simple solution for getting the adjusted value from
the method is to have the method return the adjusted
value

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Call by reference

@ The state of an object whose reference value is passed
to a formal parameter variable can be changed in the
method

@ The changes will be apparent after return from the
method call

2 // Method that copies the state of one employee over to another
employee
static void copyState(EmployeeV3 fromEmployee,
4 EmployeeV3 toEmployee) { /] (9)
6 toEmployee.setState (fromEmployee . firstName , // (10)
fromEmployee . lastName ,
8 fromEmployee . hourlyRate ,
fromEmployee . gender);
10
toEmployee = fromEmployee = null; // (11)
12

copyState(manager, director);

(Slide 25 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value

Call by reference

Arrays as actual
parameter values

The current object:
this

Method execution
and the return
statement

Passing information

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

(Slide 26 of 76)
Call by reference
SFWR
ENG/COMP SCI
. . 2503
@ Passing arrays as parameter values does not differ from Principles of

. . p n
passing ObJeCtS rogramming
Dr. R. Khedri

@ If the actual parameter evaluates to a reference value
of an array, then this reference value is passed

@ We use the [] notation to declare an array reference as
a formal parameter

static void computeSalaries(EmployeeV3[| employeeArray, armays as actuai

parameter values

double[| hoursArray) { ... } | The cument object:

this

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Call by reference

S

// Passing arrays
public class Client3B {

public static void main(String[] args) {
// (1) Associated arrays with information about employees
String [] firstNameArray "Dick”, "Linda" };
String [] lastNameArray = { "Tanner”, "Dickens”, "Larsen” };
double [] hourlyRateArray = { 30.00, 25.50, 15.00 };
boolean [] genderArray = { false, false, true };

// (2) Array with employees
EmployeeV3[] employeeArray = new EmployeeV3[3];
// (3) Create all employees
for (int i = 0; i < employeeArray.length; i++) {
employeeArray[i] = new EmployeeV3();
employeeArray[i].setState(firstNameArray[i]
hourlyRateArray [i
(4)

, lastNameArray[i],
1. genderArray[il]);

}

// (5) Array with hours worked by each employee
double[] hoursArray = { 50.5, 32.8, 66.0 };

// (6) Compute the salary for all employees
computeSalaries(employeeArray , hoursArray);

}
// (7) Compute the salary for all employees:
static void computeSalaries(EmployeeV3[] employees,
double [] hours) {
for (int i = 0; i < employees.length; i++) {
System.out.printf (" Salary for %s %s: %.2f%n",
employees[i]. firstName ,
employees[i].lastName,
employees[i].computeSalary (hours[i]));
}
}

Dr. R. Khedri

(Slide 27 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value

Call by reference

Arrays as actual
parameter values

The current object:
this

Method execution
and the return
statement

Passing information

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Call by reference

@ When we call an instance method of an object, we say
that the method is invoked on the object

@ The object whose method is invoked becomes the
current object

@ Inside the method, the current object can be referred
to by the keyword this

(Slide 28 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Arrays as actual
parameter values

The current object:
is

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Call by reference

(Slide 29 of 76)

Example 1 SFWR
. , * ENG/COMP SCI
manager. setState (name , " Jones’, hourlyRate*2.0, false); 2503
Principles of
Programming
Assign values to the field variables of an employee
2 void setState(String fName, String IName, Dr. R. Khedri
double hRate, boolean genderValue) {
4 firstName = fName;
lastName = IName;
6 hourlyRate = hRate;

gender = genderValue;

Could be written as follows:

void setState(String fName, String lName,
double hRate, boolean genderValue) {

this.firstName = fName; Arrays s actual
this.lastName . = 1Name; i iz s
this.hourlyRate = hRate;

this.gender = gendervalue;

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Call by reference (Sl S0
void setState(String firstName, String lastName, SR
double hRate, boolean genderValue) { ENG/COMP SCI
firstName = firstName; // (1) Prineioles of
lastName = lastName; // (2) Programming
hourlyRate = hRate; Dr. R. Khedri
gender = genderValue;
}
void setState(String firstName, String lastName,
double hRate, boolean genderValue) {
this.firstName = firstName; // (1')
this.lastName = lastName; // (2')
this.hourlyRate = hRate;
this.gender = gendervValue; Lopoan)

The current object:
this

We can use the this reference to distinguish the field
variable from the local variable when they have the same
(names shadowed by a local var.)

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Method execution and the return statement

@ When we invoke a method on an object, the method
can in turn invoke other methods

void setState(String firstName, String lastName,
double hRate, boolean genderValue) {
/1 Some superfluous local variables

int i;

String s;

this.printState(); : /! Print state before

this.firstName = firstName;

this.lastName = lastName;

this.hourlyRate = hRate;

this.gender = gendervValue;

this.printState(); /! Print state after
}

(Slide 31 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
and the return
statement

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Method execution and the return statement

setState(...)

String fName
String 1Name
double hRate
boolean gender

int i
String s

:’ Local

Formal parameters are assigned values of the
actual parameter expressions.

(Slide 32 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

are not

this.printState()

execution of the
method
printState()

return frg‘m the method printState()

this.firstName
this.lastName =
this.hourlyRate
this.gender = g

execution of the method setState()

= fName
1Name
= hRate
endervalue

this .El‘intStateﬁ)

execution of the
method
printState()

Method execution

Local variables are not accessible after return.

Dr.

om the method printState()
bk} and the return

’fet‘um from the method setState() statement

R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Method execution and the return statement

The return statement comes in two forms:
@ return;
e Method execution stops and control returns

e This form can be used when the method does not
return a value

o In setState() method, no need to add return as the last
statement (execution of the method will end anyway)

@ return <expression>;
e The return statement is required for methods that
return a value

e The value of this expression is returned (method stops)

e The method must explicitly specify the return type
e The return value must be of this return type

(Slide 33 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
and the return
statement

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

Method execution and the return statement

A method with two exits:

double computeSalary({double numOfHours) {
assert numOfHours >= 0 : "Number of hours must be >= 0';
double normalNumberOfHours = 37.5;
double weeklySalary = hourlyRate * normalNumberOfHours;
if (numOfHours <= normalNumberOfHours) {
return weeklySalary;
}
return weeklySalary +
2.0 * hourlyRate * (numOfHours - normalNumberOfHours);
}
We can rewrite as follows:

double computeSalary(double numOfHours) {
assert numOfHours >= 0 : *Number of hours must be >= 0";
double normalNumberOfHours = 37.5;
double weeklySalary = hourlyRate * normalNumberOfHours;
if (numOfHours > normalNumberOfHours) {

(Slide 34 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
and the return
statement

weeklySalary += 2.0 * hourlyRate * (numOfHours - normalNumberOfHours);

}

return weeklySalary;

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Passing information using arrays

import java.util.Scanner;
public class ArrayMaker {

N

4 public static void main(String[] args) {
// (1) Read first names:

6 String [] firstNameArray = new String[3];
System.out.printin(”"Read first names”);
8 fillStringArray (firstNameArray); // (1la)
printStrArray (firstNameArray);
10
// (2) Read last names:
12 System.out.println(”Read last names");
String [] lastNameArray = createStringArray(); // (2a)
14 printStrArray (lastNameArray);
¥
16
// (3) Reference value of the array to be filled is passed
18 // as formal parameter:
static void fillStringArray(String[] strArray) { // (3a)
20 Scanner keyboard = new Scanner(System.in);
for (int i = 0; i < strArray.length; i++) {
22 System.out.print (" Next: ");
strArray[i] = keyboard.nextLine();
24
}
26

// Continues on the next slide

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of P;ugramming

(Slide 35 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Automatic garbage
collection

Defining Classes
Passing information using arrays

/] Continues from previous slide
// (4) The method creates and fills an array of strings.
// The reference value of this array is returned by the method:
static String[] createStringArray() { /] (4a)
Scanner keyboard = new Scanner(System.in);
System.out.print (" Enter the number of items to read: ");
int size = keyboard.nextlnt();
String [] strArray = new String[size];
keyboard . nextLine(); // Clear any input first
for (int i = 0; i < strArray.length; i++) {
System.out.print (" Next: ");
strArray[i] = keyboard.nextLine();
}
return strArray;
}
// (5) Prints the strings in an array to the terminal window:
static void printStrArray (String[] strArray) {
for (String str strArray) {
System.out.println(str);
}
}

Dr. R. Khedri

SFWR ENG/COMP SCI 2503 Principles of P;ugramming

(Slide 36 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Automatic garbage
collection

Defining Classes

E - - - (Slide 37 of 76)
Passmg mformatlon using arrays
Program Output
SFWR
ENG/COMP SCI
Read first names 2803
Principles of
Next: Tom Programming
Next: Dick Dr. R. Khedri
Next: Linda
Tom
Dick
Linda
Read last names
Enter the number of items to read: 3
Next: Tanner
Next: Dickens
Next: Larsen
Tanner
Dickens Passing information
using arrays
Larsen Automatic garbage
collection

v
Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

E - - - (Slide 38 of 76)
Passing information using arrays
@ Objects that are no longer in use are removed by JVM ENG/SCF(‘,",(,'TP o
2503
Principles.of
@ It is always the JVM that decides when such a clean up Programming
should take place Dr. R. Khedri
@ This clean-up process is called automatic garbage
collection
o If a method creates an object and returns its reference
value, the reference value of the object can be used
after the method returns (object kept)
@ If the reference value of an object is only stored in a
local variable, the object will not be accessible after
return from the method (candidate for garbage) Colotmion. 5008

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

o Slide 39 of 76
Static members of a class (:
@ Static members specify properties and behaviour of the ENG/SCF(\)",(fp sal
| 2503
class Principles of

Programming

Dr. R. Khedri

@ They are NOT a part of any object of class
e Example:
How can we keep track of the number of male and
female employee objects that have been created?
We can define two counters that are incremented
These counters will exist in every employee object
Each object will have two counters
So, which counters should we use to do the book
keeping?
One solution is to maintain the counters as static
Variables for the class only

@ We use the keyword static in the declaration of static
members Static members of

a class
Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Static members of a class

(Slide 40 of 76)

1| class EmployeeV4 { // Assume that no constructors are declared
SFWR
3| // (1) Static variables ENG/COMP SCI
static final boolean MALE = false; 2503
5 static final boolean FEMALE = true; Principl f
static final double NORMALWORKWEEK = 37.5; LR T
7 static int numOfFemales; Programming
static int numOfMales;
9 .) Dr. R. Khedri
// (2) Static methods:
11 // Register an employee's gender by updating the relevant counter.
static void registerGender(boolean gender) { .
13 if (gender — FEMALE) { iz, £ Lermning
++numOfFemales; Objectives
15 1 else {
++numOfMales ; Class members
17
. o . Defining object
19 // Print statistics about the number of males and females registered. e
static void printStatistics() { DIOP
21 System.out.println ("Number of females registered: " + . .
EmployeeV4 . numOfFemales) ; // Defining behaviour
23 System.out.println ("Number of males registered: " + Call-by-value
EmployeeV4 . numOfMales) ; //
(4) Call by reference
25|}
27| // Rest of the specification is the same as in class EmployeeV3 Method execution
and the return
29| // See EmployeeV3 program statement
31 } Passing information
l using arrays

Dr. R. Khedri

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Static members of a class

@ A static member can be accessed using the notation
className.memberName

@ We can use the member name to refer to static
members in the same class inside any method
(cond.: the name is not shadowed by a local variable)

@ Inside an instance method, we can also use
this.staticMember to uniquely identify the member in
the class

(Slide 41 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

10

12

14

16

18

20

22

24

26

Static members of a class

// Accessing static members
public class Client4A {

public static void main(String[] args)
// (5) Print information in class EmployeeV4 before any objects
// are created:
System.out. println (" Print information in class EmployeeV4:");

System.out. println (" Females registered: " +
EmployeeV4 . numOfFemales) ; // (6) class
name
System.out. println (" Males registered: " +
EmployeeV4 . numOfMales) ; // (7) class
name

// (8) Create a male employee.

EmployeeV4 coffeeboy = new EmployeeV4();

coffeeboy.setState (" Tim”, "Turner”, 30.00, EmployeeV4.MALE);

coffeeboy.registerGender (EmployeeV4 .MALE) ; // (9)
referanse

System.out. println (" Print information in class EmployeeV4:");

coffeeboy . printStatistics(); // (10)
referanse

// (11) Create a female employee.

EmployeeV4 receptionist = new EmployeeV4();
receptionist.setState("Amy”, "Archer”, 20.50, EmployeeV4 .FEMALE);
EmployeeV4 . registerGender (EmployeeV4 .FEMALE) ;

System.out. printin (" Print information in class EmployeeV4:");
EmployeeV4. printStatistics ();

Dr. R. Khedri

(Slide 42 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Static members of a class

Program Output

Print information in class EmployeeV4:
Females registered: 0

Males registered: 0

Print information in class EmployeeV4:
Number of females registered: O
Number of males registered: 1

Print information in class EmployeeV4:
Number of females registered: 1
Number of males registered: 1

(Slide 43 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Static members of a class

@ ATTENTION: No this reference for static members

e Static methods have no this reference

e They are a part of the class, and not a part of the
current object

o Initializing static variables

e They are initialized automatically before the class is
used

e One can initialize them with initial values

(Slide 44 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Static members of a class

(Slide 45 of 76)

UML diagram showing all members in a class SEWR

Field variables

Static variables

Instance methods

Static methods

ENG/COMP SCI
2503
Principles of

EmployeeV4

Programming

Dr. R. Khedri

firstName
lastName
hourlyRate
gender

MALE

FEMALE

NORMAL WORKWEEK
numOfFemales
numOfMales

setState()
isFemale()
computeSalary()
printState()
registerGender()
printStatistics()

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

o Slide 46 of 76

The main() method and program argmts :)
@ A Java application must have a primary class that ENG/ScFmp sci
defines a method main Princhr?lgs of

Programming

public static void main(String][] args) br. R. Khedri

e Execution always starts in the main() method

@ The program terminates when all the actions in the
main() method have been executed

@ The signature of the main() method shows that it has
an array of strings as a formal parameter

@ Program arguments specified on the command line are
stored in an array of strings

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
The main() method and program argmts

(Slide 47 of 76)

SFWR
. . ENG/COMP SCI
@ In the program, the main () method can obtain these 2503
Principles of

program arguments from the array Programming

Dr. R. Khedri

e For that, it uses the formal parameter variable args

@ If there are no program arguments, the parameter
variable args will refer to an array of strings with zero
elements

e Example:

> java Client4B Mona Lisa 20.5 true

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

The main() method and program argmts

1

//

public class

public

/

Using program arguments

/

Client4B {

// (1) Check that al

static void main(String[]

args) {

| information

on the command line:

if (args.length
return;
}

(2) Print the array

System.out.println ("Program arguments:");
args) {

for (String arg
System.out. printin

// (3) Assign

information

= 4) {

args:

(arg);

String firstName = args[0];
String lastName = args[1];
Double . parseDouble (args[2]); // (4) Floating—

double hourlyRate =
point

boolean gender;

if (args[3].equals(”

value

true”)) {

gender = EmployeeV4 .FEMALE;

} else {

gender = EmployeeV4 .MALE;

// (6) Create an employee,

EmployeeV4 decorator

decorator.setState(firstName ,
System.out.println("Information about an employee:”

decorator.printState

System.out.printf(”Salary:

and print its
= new EmployeeV4();
lastName ,

0

about an employee is

from the array args to

hourlyRate

given

local variables:

// (5) Boolean

state:

gender);

%.2f%n" , decorator.computeSalary (40.0));

Dr. R. Khedri

(Slide 48 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
The main() method and program argmts

(Slide 49 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Program Output

Program arguments: o [(it
Mona

Lisa

20.5

true

Information about an employee:

First name: Mona Last name: Lisa Hourly rate: 20.50
Gender: Female

Salary: 871.25

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

e e . (Slide 50 of 76)
Initializing object state
@ Constructors have a special role in a class declaration ENG/SCFOW,\,'fp @

2503
Principles of
Programming

@ The main purpose of a constructor is to set the initial

state of the current Dr. R. Khedri

o Explicit default Constructor: A class can choose to
declare an explicit default constructor

class EmployeeV5 {
// Explicit default constructor

EmployeeV5() { /1 (3) No parameters
firstName = "Joe';
lastName = “Jones";
hourlyRate = 15.50;
gender = MALE;
}

// Rest of the specification is the same as in class EmployeeV4
}

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

oo oo - Slide 51 of 76

Initializing object state : :

@ The constructor call ENG/ScFmp sci
2503

EmployeeV5 cook = new EmployeeV5(); Programming

Dr. R. Khedri

results in executing the explicit default constructor
@ A constructor always has the same name as the class
@ A constructor cannot return a value

@ The constructor body can contain declarations and
actions, similar to an instance method body

@ A constructor can use the this reference to refer to the
current object

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state

Implicit default Constructor

@ If the class EmployeeV5 does not declare a constructor,
the compiler will generate a constructor for the class

EmployeeV5() { ... }

@ Note the use of the class name and the absence of
parameters in the constructor header

@ The constructor body has no actions to initialize the
state of the current object

@ The constructor declaration resembles a method
declaration, but it is not a method

(Slide 52 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state

(Slide 53 of 76)

SFWR
ENG/COMP SCI
2503
Principles of

Emp|oyeeV5() { } Programming

Dr. R. Khedri

@ It is called the implicit default constructor for the class
EmployeeV5

@ The implicit default constructor is not always adequate
(field variables initialized to their default values)

e THEREFORE, a class should usually provide explicit
constructors to set the initial state of an object

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state

@ A class can declare constructors with formal parameters

@ Constructors with parameters are called non-default
constructors

@ The values of the actual parameter expressions in the
constructor call are used to initialize the state of the
object

o If a class declares any constructor, the implicit default
constructor cannot be applied

(Slide 54 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state

class EmployeeV6 {

(Slide 55 of 76)

Only non—default Constructor
4| EmployeeV6(String fName, String IName, double hRate, boolean gender) {
this . firstName = fName: ield access via this reference
6 this lastName = IN:

| i heuriyRate = hRate: SFWR
R et ENG/COMP SCI

X this. registerGender (gender); cal
o 2503
Ul e eelenn MALE — faise Principles of

14| final static boolean FEMALE = true n
final static double NORMALWORKWEEK = 37.5; Programming
16| static int numOfFemales:

Static int numOfMales:

Dr. R. Khedri

Field variables

L peetenn gender Intro. & Learning
. Instance methods Objectives
Determines whether an employee is a female

28 boolean isFemale() { return (gender = FEMALE); }
Class members

2 Computes the salary of an employee. based on the number of hours
worked during the we
32| double computeSalary(double numOfHours) { . .
assert numOfHours >= 0 : "Number of hours must be >= 0" ; Defining object
3| double weeklySalary = hourlyRate + this .NORMALWORKWEEK: .
if (numOfHours > EmployeeV6.NORMALWORKWEEK) { properties
3 =20 1 M — NORMALWORKWEEK) ;
)
Bl e weskiySatary: Defining behaviour
0
Prints the values in the field variables of an employes i :
2| void printstate() { -by-
System.out. print (" First name: " + firstName); Ca SRS
g iyl e T ltlme
stem_out . printf ("\tHourly rate: %2f", hourlyRate):
M T (isFemaie()) v v Call by reference
System . out. printin ("\tGender: Female’);
s) el {
| St enprinein(C\scender: waie); Methodlexeeton
o 7 and the return
. Static methods R ETE
Register an employee's gender by updating the relevant counter
s6| static void registerGender (baolean gender) { o .
it (gender — FEMALE) { Passing information
58 ++numOfFemales: 5
) else g using arrays
60 ++numOfMales ; g “ y
1T brin the mumber of females and males regisiered Static members of
6| static void printStatistics
Syavem “out printin(’ Numbes of femsies registered: + numOfFemsles) a class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

24

26

28

Initializing object state

// Using constructors
public class Client6 {

public static void main(String[] args) {

// EmployeeV6 clerk = new EmployeeV6();
error!

// (1) Compile time

// No default
constructor

// Print information in class EmployeeV6

System.out.printin (" Print information in class EmployeeV6:");

EmployeeV6. printStatistics ();

System.out. printin();

// Create an employee, and print its information
EmployeeV6 operatorl = new EmployeeV6 (" Tim”, "Turner”, 30.00,
EmployeeV6 .MALE) ; //
(2)

printEmployeelnfo (operatorl , 40.0);
System.out.printin();

// Create a new employee, and print its information
EmployeeV6 operator2 = new EmployeeV6("Amy", "Archer”, 20.50,
EmployeeV6 .FEMALE) ; //
(3)

printEmployeelnfo(operator2, 50.0);

static void printEmployeelnfo(EmployeeV6 employee
double numOfHours) {
System.out.printin("Printing information about an employee:");
employee . printState () ;
System.out. printf(”Salary: %.2f%n",
employee.computeSalary (numOfHours)) ;

System.out.printin (" Print information in class EmployeeV6:");
EmployeeV6. printStatistics ();

Dr. R. Khedri

(Slide 56 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Initializing object state

Program Output

Print information in class EmployeeV6:
Number of females registered: 0
Number of males registered: 0

Printing information about an employee:

First name: Tim Last name: Turner Hourly rate:

Gender: Male

Salary: 1275.00

Print information in class EmployeeV6:
Number of females registered: O
Number of males registered: 1

Printing information about an employee:

First name: Amy Last name: Archer Hourly rate:

Gender: Female

Salary: 1281.25

Print information in class EmployeeV6:
Number of females registered: 1
Number of males registered: 1

30.00

20.50

(Slide 57 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state (Slide 58 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

EmployeeV6 operatorl = new EmployeeV6("Tim", "Tanner"”, 20.60, EmployeeV6.MALE); B (i (Ot
EmployeeVé operator2 = new EmployeeV6("Amy", "Archer", 18.50, EmployeeV6.FEMALE);

operatorl:EmployeeVé operator2:EmployeeVé
lastName = "Tim" JastName = "Amy"
firstName = "Tanner" firstName = "Archer"
hourlyRate = 20.60 hourlyRate = 18.50
gender = false gender = true
(@ (b)

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state

@ A class can declare several constructors

@ Each constructor call will result in the execution of the
constructor that has a signature compatible with the
constructor call

@ The initial state of each object is dependent on which
constructor was called when the object was created

(Slide 59 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Initializing object state

10

14

16

18

22

24

26

28

30

32

class EmployeeV7 {

static final double STANDARD_HOURLY RATE =

// Constructors
EmployeeV7 () {
firstName =
lastName =

= " Joe";
"Jones”;

hourlyRate = STANDARb,HOURLY,RATE ;

gender = MALE;

registerGender (MALE) ;

EmployeeV7(String
this.firstName
this.lastName
this.hourlyRate
this.gender

fName,

fName;

IName;
STANDARD_HOURLY_RATE;
gender;

this.registerGender (gender);

}

EmployeeV7(String
double
this . firstName
this.lastName
this.hourlyRate
this.gender

fName, String IName,
hRate, boolean gender) {

fName;
IName ;
hRate;
gender;

this.registerGender(gender);

/1

// Rest of the specification is the same as

/] . to be continued on next Slide

String IName, boolean gender) {

15.50;

in class EmployeeV7

Dr. R. Khedri

(Slide 60 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Initializing object state

Continues the previous slide

Static variables
final static boolean MALE = false

final static boolean FEMALE = truc:

final static double NORMALWORKWEEK = 37.5;
static int numOfFemales;

static int numOfMales:

Field variables
String firstName;
String lastName;
double hourlyRate
boolean gender;

Instance methods

Determines whether an employee is a female
boolean isFemale() { return (gender — FEMALE); }

Computes the salary of an employee, based on the number of hours
worked during the week
double computeSalary (double numOfHours) {
assert numOfHours >= 0 : "Number of hours must be >= 0";
double weeklySalary = hourlyRate = this .NORMALWORKWEEK
if (numOfHours > EmployeeV7 .NORMALWORKWEEK) {
_ o

~ NORMAL WORKWEEK) ;

return weeklySalary:

Prints the values in the ficld variables of an employee
void printState() {
tem . out. print (" "t firstName)
+ lastName) |
System . out_ printf ("\tHourly rate: %2f", hourlyRate);
i (isFemale()) {
System.out. printin("\tGender: Female")
} else
System.out_ printin("\tGender: Male");

Static methods
R r an employee's gender by updating the relevant counter
Static void registerGender (boolean gender) {
it (gender — FEMALE) {
“+numOfFemales
} else {
+numOfMales;

i
Print the number of females and males registered

Static void printStatistics()
System . out. printin ("Number of females registered: * + numOfFemales):
System ot printin ("Number of males registered: " + numOfMales)

(Slide 61 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes

Slide 62 of 76
Enumerated types : :
SFWR
@ An enumerated type (also called enum for short) ENG/COMP SCI
. . 2503
defines a fixed number of enum constants Principles of

Programming

)) Dr. R. Khedri
@ An enumerated constant is a unique name that refers

to a particular object

@ We use the keyword enum to indicate that the
declaration is an enumerated type

@ The enum constants are specified in a list in the block
that comprises the body of the enumerated type

@ These objects are created automatically only once
during program execution

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Enumerated types

(Slide 63 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Fnum type name

enum Weekday ({ Enum constants

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Enumerated types

(Slide 64 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

switch(day) { /1 (1)
case SATURDAY: case SUNDAY: Dr. R. Khedri
System.out.println("The day is " + day + ", it must be weekend.");
break;
default:

System.out.println(day + " is a working day.");

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Enumerated types

(Slide 65 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Method Description Dr. R. Khedri
String toString() Returns the string representation of the current

enum constant, i.e. the name of the current

constant.
static enumTypeName[] values() Returns an array with the enum constants that are

declared in the enum type that has the enum-
TypeName. The order of the constants in the array
is the same as the order in the enum declaration.

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

N

Defining Classes
Enumerated types

// An enum client

(Slide 66 of 76)

public class Weekdays {
public static void main(String[] args) { SFWR
ENG/COMP SCI
Weekday lateOpeningDay = Weekday. THURSDAY; // Reference of enum 2503
type Principles of

Programming
// Method toString () applied implicitly

System.out. println(lateOpeningDay); // Prints THURSDAY.
System.out. println (Weekday.SUNDAY) ; // Prints SUNDAY.

Dr. R. Khedri

Intro. & Learning

// Testing for equality Objectives

assert(lateOpeningDay != Weekday.SUNDAY) ; // true
assert(lateOpeningDay = Weekday .THURSDAY); // true Class members
Defining object
properties

// lterate over days of the week:
System.out.println(”"Days of the week:");
Weekday [] daysArray = Weekday.values();
for (Weekday day daysArray) {
switch (day) { // (1)
case SATURDAY: case SUNDAY:
System.out.printin (" The day is

Defining behaviour

Call-by-value

"+ day +

Call by reference
, it must be weekend.”); !

Dr. R. Khedri

break; Method execution
default: and the return
System.out.printin(day + " is a working day.”); statement
} Passing information
} using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Enumerated types

SFWR
Program Output ENG/COMP SCI
2503

Principles of
Programming

(Slide 67 of 76)

THURSDAY

SUNDAY

Days of the week:

MONDAY is a working day.

TUESDAY is a working day.

WEDNESDAY is a working day.

THURSDAY is a working day.

FRIDAY is a working day.

The day is SATURDAY, it must be weekend.
The day is SUNDAY, it must be weekend.

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Slide o
Enumerated types (Slide 68 of 76)
SFWR
ENG/COMP SCI
2503
Enum type name Principles of

Programming

enum MealTime { Dr. R. Khedri

fnum constants are | // Enum constants for meals.
piways declared first | BREAKFAST (7,30), LUNCH(12,15), DINNER(19,45);

/] Constructor for a meal time.
Any constructors | MealTime(int tt, int mm)
servingTime = new Time(tt, mm);

}

// Field for meal time.
private Time servingTime;

Any other members
// Returns meal time.
Time getServingTime() {
return this.servingTime;
}
}

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Enumerated types

(Slide 69 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

@ In this way, it is possible to define properties and Dr. R. Khedri

behaviour of enum constants in an enumerated type
@ Constructors cannot be called directly

@ A constructor is called implicitly when an object
representing an enum constant is created automatically

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Enumerated types

MealTime.java

enum MealTime {

// Enum constants for meals.
BREAKFAST (7,30) , LUNCH(12,15), DINNER(19,45);

// Constructor for a meal time.
MealTime(int tt, int mm) {
servingTime = new Time(tt, mm);

}

// Field for meal time.
private Time servingTime;

// Returns meal time.
Time getServingTime () {
return this.servingTime;

(Slide 70 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

N

Defining Classes

Enumerated types

(Slide 71 of 76)

H H SFWR
Time.java ENG/COMP SCI
2503
Principles of
Programming
// Time is given as hours (0—23) and minutes (0—59).
class Time { Dr. R. Khedri
// FleldsAfor the time. Intro. & Learning
int hours; Objecti
int minutes; JSELLES
Clz b
/] Constructor ass members
Time(int hours, int minutes) { Defining object
assert (0 <= hours && hours <= 23 && properties
0 <= minutes && minutes <= 59)
"Invalid hours and/or minutes”; Defining behaviour
this.hours = hours;
this.minutes = minutes; Call-by-value
Call by reference
// String representation of the time, TT:MM Method execution
public String toString() { and the return
return String.format(”%02d:%02d” , hours, minutes); statement
}
} Passing information
using arrays
Static members of
a class
Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Enumerated types

MealService.java

1| // Using enums
public class MealService {
3 public static void main(String[] args) {

5 // (1) Create an array of meals:

MealTime [] meals = MealTime.values();
7

// (2) Print meal times:
9 for (MealTime meal : meals) {

System.out. printin(meal + " is served at " + meal.getServingTime()
)i
11 }
¥
13| }
Dr. R. Khedri

(Slide 72 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri
Intro. & Learning
Objectives
Class members

Defining object
properties

Defining behaviour
Call-by-value
Call by reference

Method execution
and the return
statement

Passing information
using arrays

Static members of
a class

SFWR ENG/COMP SCI 2503 Principles of Programming

Defining Classes
Enumerated types

(Slide 73 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Program Output

BREAKFAST is served at 07:30
LUNCH is served at 12:15
DINNER is served at 19:45

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes

Slide 74 of 76
Enumerated types : :
SFWR
ENG/COMP SCI
@ We have declared an enumerated type as a top-level Prinzt:?[:)lzs of

Programming

declaration in its own separate source file
Dr. R. Khedri

@ Other clients can access enum constants by using the
class name and the constant name

@ An enumerated type can also be declared as a member
in a class declaration

@ It makes sense to do this if the use of the enum
constants is localized to a single class

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Defining Classes
Enumerated types

(Slide 75 of 76)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

/! Enum type as member in a class ‘ A
public class Weekdays {
// Enum type as member in a class.
enum Weekday {
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
}
public static void main(String[] args) {
// Same as before.
}
}

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

	Introduction and Learning Objectives
	Class members
	Defining object properties
	Field declarations
	Initializing fields

	Defining behaviour
	Method declaration and formal parameters
	Method calls & actual parameter expr.

	Call-by-value
	Call by reference
	Arrays as actual parameter values
	The current object: this

	Method execution and the return statement
	Passing information using arrays
	Automatic garbage collection

	Static members of a class
	Accessing static members

	The main() method and program argmts
	Initializing object state
	Default constructors: implicit or explicit
	Constructors with parameters
	Overloading constructors

	Enumerated types
	Simple form of enumerated types
	General form of enumerated types
	Declaring enum types inside a class

