(Slide 1 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

SFWR ENG/COMP SCI 2503 Dr. R. Khedri
Principles of Programming

Dr. Ridha Khedri

Department of Computing and Software, McMaster University
Canada L8S 4L7, Hamilton, Ontario

Acknowledgments: Material based on Java actually: A Comprehensive Primer in Programming (chapter 10)

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Topics Covered

@ Introduction and Learning Objectives
e Method execution and exception prpgtion
@ Method execution
@ Stack trace
@ Exception propagation
© Exception handling
@ try-catch scenario 1: no exception
@ try-catch scenario 2: exception
@ try-catch scenario 3: exc. propagation
@ Checked exceptions
@ Checked exceptions using throw
@ Programming with checked exceptions
© Unchecked exceptions

(Slide 2 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Introduction and Learning Objectives

What is an exception?

@ A program must be able to handle error situations
gracefully when they occur at runtime

@ This is the role of exception handling provided by Java

@ Error situations can be divided into two main
categories:
e Programming errors (e.g., an invalid index to
access an array)
Ideally, they should not occur

e Runtime environment errors (e.g., opening a file
that does not exist)
Should be properly handled

(Slide 3 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Introduction and Learning Objectives

@ A program must be able to handle both kinds of errors

@ An exception signals that an error or an unexpected
situation has occurred during program execution

@ It is based on the "throw and catch” principle

@ An exception is thrown when an error situation occurs
during program execution

@ It is caught by an exception handler that takes an
appropriate action to handle the situation

(Slide 4 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Introduction and Learning Objectives

@ This principle is embedded in the try-catch statement
@ All exceptions are objects

@ Java standard library provides classes that represent
different types of exception

Learning Objectives

@ Use of exception handling to create programs that are
reliable and robust

@ Major scenarios of program execution when using the
try-catch statement

@ Understand how exceptions are thrown, propagated,
caught and handled

@ Understand the difference between checked and
unchecked exceptions

(Slide 5 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Method execution and exception prpgtion

(Slide 6 of 30)

Method Execution (Normal Execution) NG e o

2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

example = nev Exanple();

ex.f(); Method execution
and exception

propagation

1
add(2); Al | val
Method execution

return count += vil; Stack trace

< . .
Exception propagation
Exception handling
wlt(3); cal L g
Checked exceptions
val P
Unchecked
return [count *= val; .
exceptions
return «

<
<

System.out.println(ex.count);

Program Stack to control the execution
Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling
Method execution and exception prpgtion

java.io

java.lang

Throwable
JAN

ClassNotFoundException

AssertionError ‘

I0Error

RuntimeException

TOException

EOFException

FileNotFoundException

ExceptionI!
InitializerError

~< ArithmeticException
ClassCastException

T11egalArgumentException

NumberFormatException

I11egalStateException
Index0ut0fBoundsException

NullPointerException

ArrayIndexOut0fBoundsException
StringIndexOut0fBoundsException

NoClassDefFound-
ror

StackOverflow:
Error

Classes that are shaded (and their subclasses) represent unchecked exceptions.

Dr. R. Khedri

SFWR ENG/COMP SCI 2S03 P

(Slide 7 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Method execution
and exception
propagation

Method execution
Stack trace

Exception propagation

Exception handling
Checked exceptions

Unchecked
exceptions

ciples of Programming

Exception Handling
Method execution and exception prpgtion

public class Speedl {
public static void main(String[] args) {
System.out.println (" Entering main().");
printSpeed (100, 20); // (1)
System.out.println(” Returning from main().");
private static void printSpeed(int kilometers, int hours) {
System.out.println (" Entering printSpeed().");
int speed = calculateSpeed(kilometers, hours); /] (2)
System.out.println(”"Speed =" +
kilometers + " /" + hours + " =" + speed);
System .out.println(” Returning from printSpeed().");
}
private static int calculateSpeed(int distance, int time) {
System.out.printin(” Calculating speed.”);
return distance/time; // (3)
¥
¥

Entering main().

Entering printSpeed ()
Calculating speed.

Speed = 100/20 = 5

Returning from printSpeed().
Returning from main().

IS

)

(Slide 8 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
Stack trace
Exception propagation

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling

Method execution and exception prpgtion

Speedt

main(...) i
args T]println(*Entering main().*) i
printSpeed(100,20) // (1) e
kilometers = 100{, .. . i i .
hours = 20 rintln(“Entering printSpeed().") >y
calculateSpeed(100,20) // (2)
distance = 100
time = 20
println(“Calculating speed.")
100/20 return 5 // (3)
speed = 5 = Ke————————— 4
rintln("Speed = 100 / 20 = 5")
rintln(*Returning from printSpeed().") ,ITI
s
[println('naturning from main().") i
s
Method execution Program output:

Entering main().

Entering printSpeed().
Calculating speed.

Speed = 100/20 = §
Returning from printSpeed().
Returning from main().

(Slide 9 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
Stack trace
Exception propagation

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

N

Exception Handling
Method execution and exception prpgtion

public class SpeedlWithException {

public static void main(String[] args) {
System.out.printin (" Entering main().");

printSpeed (100, 0); // (1) sxxxx CHANGED
System.out.println(” Returning from main().");
private static void printSpeed(int kilometers, int hours) {
System.out.println (" Entering printSpeed().");
int speed = calculateSpeed(kilometers, hours); /] (2)
System.out.println(”Speed =" +
kilometers 4+ " /" + hours + " =" + speed);
System.out.println (" Returning from printSpeed().");
private static int calculateSpeed(int distance, int time) {
System.out.println(” Calculating speed.”);
return distance/time; // (3)
}

Entering main().

S

Entering printSpeed().

Calculating speed.

Exception in thread "main” java.lang.ArithmeticException: / by zero
at Speed1WithException.calculateSpeed (Speed1WithException.java:20)
at Speed1WithException.printSpeed (SpeedlWithException.java:12)
at Speed1WithException.main(Speed1WithException.java:6)

IS

=)

(Slide 10 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
Stack trace
Exception propagation

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling
Method execution and exception prpgtion

main(...)

args ; .. |println(“Entering main().")
printSpeed(100,0) // (1)

kilometers = 100] rintln(*Entering printSpeed().")
hours = 0 =

calculateSpeed(100,0) // (2)

distance = 100
time = 0
println(*Calculating speed.")
11 (3)
Sttty
C———— k< r :ArithmeticExeception
exception propagation
"/ by zero"
Program output: Printed by the program Printed by the default exception handler

Entering main().

Entering printSpeed().

Calculating speed. .

Exception in thread ®main" java.lang.ArithmeticException: / by zero
at Speed1.calculateSpeed(Speedi.java:20)
at Speed1.printSpeed(Speed1.java:12)
at Speed1.main(Speed1.java:6)

class name method name file name 'line number in the file where the call to the next method occurred.

(Slide 11 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Method execution
Stack trace
Exception propagation

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling

o . . Slide 12 of 30

Method execution and exception prpgtion :)
SFWR

Propagation of an exception: ENG/(ZZSO“;'P 3¢l

@ The exception is offered to the method in which the ri:l;f;fﬁizfg

exception occurred Dy

e No code to deal with this exception, it is terminated
o lts stack frame is removed

@ The exception is next offered to the method at the top e
of the program stack Stack trace
X L. i Exception propagation
e No code to handle the exception, it is terminated
o It is also terminated and its stack frame removed
o ...

@ The exception is next offered to the main() method
~> terminated & its stack frame removed

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling

. . 5 Slide 13 of 30)
Method execution and exception prpgtion :
SFWR
@ After the main terminated, the exception has ENG/COMP SCI
propagated to the top level SR
rogramming
Dr. R. Khedri
@ It is now handled by a default exception handler in the
JVM
@ The default exception handler prints information about Method exccution
Stack trace
] the exception Exception propagation

e the stack trace at the time when the exception occurred

@ The execution of the program is then terminated
(For terminal-based applications)

The program continues (For applications with a GUI)

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling
Exception handling

@ Not advisable to leave exceptions to a default handler

@ The consequences:
e data can be lost
o lost of control of the system

@ The construct try-catch can be used for exception
handling in Java

@ It is formed by a try block followed by a catch block

@ A try block contains statements that can result in an
exception being thrown during execution

@ A catch block constitutes an exception handler

Dr. R. Khedri

(Slide 14 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Exception handling
try-catch scenario 1:
no exception
try-catch scenario 2:
exception handling
try-catch scenario 3:
exception propagation

SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Exception handling

The try block contains the code that can lead to an exception being thrown.

try {

try block int speed = calculateSpeed(kilometers, hours);
System.out.println("Speed = " +

kilometers + "/" + hours + " = " + speed);

}

—
G&h block catch (ArithmeticException cxcepuon') { one catch block parameter
System.out.println(exception + * (handled in printSpeed()}");
}

A catch block can catch an exception and handle it, if it is of the right type.

[exception]

[no catch block found]
Execute try block

Find catch block

@ [no exception] @ @
[exceptiont] lexceptiony] [exceptiong)
Execute Execute Execute
catch block for catch block for catch block for
exceptionq exceptiony exceptionp,
|
No exception or ption handled. & é ption not handled.

Normal execution continues after the try~catch blocks. Execution aborted and exception propagated.

Dr. R. Khedri

(Slide 15 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Exception handling
try-catch scenario 1
no exception
try-catch scenario 2
exception handling
try-catch scenario 3
exception propagation

SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Exception handling

public class Speed2 {
public static void main(String[] args) {
System.out. println (" Entering main().");
printSpeed (100, 20); // (1)
System.out. printin (" Returning from main().");
private static void printSpeed(int kilometers, int hours) {
System.out.println (" Entering printSpeed().");
try { /] (2)
int speed = calculateSpeed(kilometers, hours); // (3)
System.out. println(”Speed =" +
kilometers + "/” + hours + " =" + speed);
catch (ArithmeticException exception) { /] (4)
System.out.println(exception + " (handled in printSpeed())");
System.out.println (" Returning from printSpeed().");
}
private static int calculateSpeed(int distance, int time) {
System.out. println(” Calculating speed.”);
return distance/time; // (5)
¥
} 1] Entering main().
Entering printSpeed ().

Calculating speed.
Speed = 100/20 = 5

Returning from printSpeed().
Returning from main ().

@

Dr. R. Khedri

(Slide 16 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

try-catch scenario 1:
no exception
try-catch scenario 2:
exception handling
try-catch scenario 3:
exception propagation

SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling

main(...)

Exception handling

args = T |println(“Entering main().")

printSpeed(100,20) // (1)

kilometers = 100

println(*Entering printSpeed().")

hours = 20
try {

calculateSpeed(100,20) // (3)

distance

time = 20

= 100

println("Calculating speed.”)

100/20 Lreturn S /1 (5}

speed = 5

< ___________ -
println(Speed = 100 / 20 = 5")

}

println("Returning from printSpeed()."}

println

("Returning from main().")

Program output:

Entering main().

Entering printSpeed().
Calculating speed.

Speed = 100/20 = 5
Returning from printSpeed().
Returning from main().

Dr. R. Khedri

(Slide 17 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

try-catch scenario 1:
no exception
try-catch scenario 2
exception handling
try-catch scenario 3
exception propagation

SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling

Exception handling

public class Speed2WithException {

public static void main(String[] args) {
System.out. printin (" Entering main().");
printSpeed (100, 0); // (1) s*x*x ERROR HERE
System.out.println (" Returning from main().");

private static void printSpeed(int kilometers, int hours) {
System.out.printin (" Entering printSpeed().");

try { // (2)
int speed = calculateSpeed(kilometers, hours); // (3)
System.out.println (" Speed ="

kilometers + " /" + hours + " =" 4 speed);

catch (ArithmeticException exception) { /] (4)
System.out. printin(exception + " (handled in printSpeed())");

System.out.printin (" Returning from printSpeed().");

}

private static int calculateSpeed(int distance, int time) {
System.out.println (" Calculating speed.”);
return distance/time; // (5)

1| Entering main() .
Entering printSpeed ().

3| Calculating speed.

java.lang.ArithmeticException: / by zero (handled in printSpeed())
Returning from printSpeed ()

Returning from main ().

Dr. R. Khedri

(Slide 18 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

try-catch scenario 1:
no exception
try-catch scenario 2:
exception handling
try-catch scenario 3:
exception propagation

SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling
Exception handling

(Slide 19 of 30)

SFWR

» .] . i ENG/COMP SCI
args = ... println(“Entering main().") > 2S03

printSpeed(100,0) // (1) Principles of

i = Programmin
:;i::e:e;s 100 [orintln(*Entering printSpeed().") ey 8 e

try { calculateSpeed(100,0) // (3) Dr. R. Khedri

distance = 100
time = 0

main(...)

println(*Calculating speed.")

=]
L :ArithmeticException

}
catch(Arithmetic-
Exception */ by zero*
exception)
println(exception + ® (handled in printSpeed())")
}

println("Returning from printSpeed().") try-catch scenario 1

no exception
try-catch scenario 2:
exception handling
try-catch scenario 3
exception propagation

println(“Returning from main().")

It

Program output:

Entering main().

Entering printSpeed().

Calculating speed.

java.lang.ArithmeticException: / by zero (handled in printSpeed())
Returning from printSpeed().

Returning from main().

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Exception handling

N

| Entering main() .

public class Speed3WithException {

public static void main(String[] args) {
System .out.println (" Entering main().")

try { /1 (1)
printSpeed (100,0); // (2) s#%x ERROR
catch (ArithmeticException exception) { /] (3)

System.out. printin (exception + " (handled in main())");

System.out.println (" Returning from main().");

private static void printSpeed(int kilometers, int hours) {
System.out. printin (" Entering printSpeed().");

try { /] (4)
int speed = calculateSpeed(kilometers, hours):
(5)
System.out.println("Speed = " +
kilometers + " /" + hours + " = " + speed);
}
catch (IllegalArgumentException exception) { // (6)

System.out.printin (exception + " (handled in printSpeed())”);

System.out.println (" Returning from printSpeed().");

private static int calculateSpeed(int distance, int time) {
System.out.printin (" Calculating speed.");
return distance/time; /] (7)

2| Entering printSpeed ()

Calculating speed

4| java.lang.ArithmeticException: / by zero (handled in main())
Returning from main ().

(Slide 20 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Intro. & Learning
Objectives

Method execution
and exception
propagation

Exception handling
try-catch scenario 1:
no exception

try-catch scenario 2:
exception handling

try-catch scenario 3:
exception propagation

Checked exceptions

Unchecked
exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling
Exception handling

main(...)

args = ... println("Entering main().")
try { printSpeed(100,0) // (2) s
kilometers = 100 println("Entering printSpeed().")
hours = 0
try { calculateSpeed(100,0) // (5)
distance = 100
time = 0
println(*Calculating speed.")
P LAl 1+ | :ArithmeticException
T
catch(Arithmeti ion | A "
exception)| { ! by zero
println{exception + ° (handled in main())")
}
println(“Returning from main().") |
=
Program output:

Entering main().
Entering printSpeed().
Calculating speed.

java.lang.ArithmeticException: / by zero (handled in main())
Returning from main().

Dr. R. Khedri

(Slide 21 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

try-catch scenario 1
no exception
try-catch scenario 2
exception handling
try-catch scenario 3:
exception propagation

SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Checked exceptions

@ Java defines some special exceptions that a program
cannot ignore when they are thrown

@ Such an exception is called a checked exception

@ The compiler will complain if the method in which it
can occur does not deal with it explicitly

@ Checked exceptions force the programmer to take
explicit action to deal with them

@ The Java standard library defines classes whose objects
represent exceptions

(Slide 22 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Checked exceptions
Dealing with checked
exceptions using the
throws clause
Programming with
checked exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Checked exceptions

Checked exception class (in the
java. lang package unless otherwise
noted)

Description

Exception This class represents the category of all checked excep-
tions.

ClassNotFoundException Signals an attempt to load a class during execution, but
the class cannot be found.

java.io.I10Exception Signals an error during reading and writing of data. For

example, the read{) methods in the interface Input-
Stream and the write() methods in the interface
OutputStream throw this exception.

java.io.EOFException

Signals unexpected end of input. For example, the
read() methods in the interface InputStream throw this
exception.

java.io. FileNotFoundException

Signals an attempt to refer to a file that does not exist.
For example, the constructors in the classes FileInput-
Stream, FileOutputStream and RandomAccessFile
throw this exception, if the file cannot be assigned.

(Slide 23 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Checked exceptions
Dealing with checked
exceptions using the
throws clause
Programming with
checked exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling
Checked exceptions

@ A method that can throw a checked exception must
satisfy one of the following two conditions
© Catch and handle the exception in a try-catch
statement
@ Allow further propagation of the exception with a
throws clause specified in its method declaration (to
discuss)

@ A throws clause is specified in the method header
... method name (...) throws exception class;,
., exception class, { ...}

(Slide 24 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dealing with checked
exceptions using the
throws clause
Programming with
checked exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling
Checked exceptions

@ We can use a throw statement to throw an exception
explicitly

@ We specify the exception object to be thrown in the
statement

if (distance< 0 Il time <= 0)
throw new Exception(”distance and time must be > 0");

@ We call the constructor of the exception class and pass
a suitable message to explain the error situation

(Slide 25 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Dealing with checked
exceptions using the
throws clause
Programming with
checked exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling

o

IS

=)

Checked exceptions

(Slide 26 of 30)

1
public class Speed6 { SFWR
. ENG/COMP SCI
public static void main(String[] args) { 2503
5 System.out. printin (" Entering main()."); 22
try { //(1) Principles of
7 printSpeed (100, 20); //(2a) Programming
printSpeed (—100,20); //(2b)
9 q
catch (Exception exception) { //(3) Dr. R. Khedri
11 System.out. printin(exception + " (handled in main())");
13 System.out. printin (" Returning from main().");
}
15
private static void printSpeed(int kilometers, int hours)
17 throws Exception { //(4)
System.out.printin (" Entering printSpeed().");
19 double speed = calculateSpeed (kilometers, hours);
System.out.printin("Speed = " +
21 kilometers + " /" + hours + " =" + speed);
System.out. printin (" Returning from printSpeed().");
23
25| private static int calculateSpeed(int distance, int time) Dealing with checked
throws Exception { //(5) exceptions using the
. " A " throws clause
27 System.out.printin (" Calculating speed.”); . .
if (distance < 0 || time <= 0) //(6) Z:gg:a"’:;;‘eg :::s
29 throw new Exception (" distance and time must be > 0"); B
return distance/time;
31
Entering main() . 1
Entering printSpeed (). Entering main() .
Calculating speed 2| Entering printSpeed ().
Speed = 100/20 = 5.0 Calculating speed
Returning from printSpeed () 4| java.lang.Exception: distance and time must be > 0 (handled in main())
Returning from main(). Returning from main ().

Dr. R. Khedri

SFWR ENG/COMP SCI 2503 Principles of Programming

Exception Handling

o Slide 27 of 30
Unchecked exceptions :)
@ Unchecked exceptions are exceptions typically e

2503
Principles of
Programming

@ The compiler DOES NOT check whether unchecked Dr. R. Khedri
exceptions cim be thrown

concerni ng u nforeseen errors

@ A method does not have to deal with unchecked
exceptions

@ The best solution for handling such situations is to .
correct the cause of the errors in the program(Use exceptions
assertions)

@ Such exceptions are not specified in the throws clause
of a method

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling

Unchecked exceptions

Unchecked exception class (in the Description

java. lang package)

RuntimeException This class represents one category of unchecked excep-
tions.

NullPointerException Signals an attempt to use a reference that has the value
null, i.e. the reference does not refer to an object. For
example, the expression new String(null) throws this
exception, since the parameter has the value null,
instead of being a reference to an object.

ArithmeticException Signals an illegal arithmetic operation, for example
integer division with 0, e.g. 10/0.

ClassCastException » . Signals an attemnpt to convert an object’s reference

value to a type to which it does not belong. For exam-
ple:

Object ref = new Integer(0);

String str = (String) ref; // Integer is not
String. ' '

(Slide 28 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Unchecked
exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

Exception Handling

Unchecked exceptions

111egalArgumentException

Signals an attempt to pass an illegal actual p;émeter
value in a method call.

NumberFormatException

Indicates a problem converting a value to a number, for
example, an attempt to convert a string with characters
that cannot constitute a legal integer, e.g. Inte-
ger.parselnt("4u2*).

1 P A

xception

Signals than an index value is not valid.

ArrayIndexOutOfBoundsException

Signals than an index value is not valid. The index value
in an array is either less than 0 or greater than or equal
to the array length, e.g. array[array. length].

StringIndexOutOfBoundsException

Signals than an index value is not valid. The index value
in a string is either less than 0 or greater than or equal
to the string length, e.g. str.charAt(-1).

AssertionError

Indicstes that the condition in an assert statement has
evaluated to the value false, i.e. the assertion failed.
See Section 3.4 on page 64 and Section 14.3 on page
398.

(Slide 29 of 30)

SFWR
ENG/COMP SCI
2503
Principles of
Programming

Dr. R. Khedri

Unchecked
exceptions

Dr. R. Khedri SFWR ENG/COMP SCI 2S03 Principles of Programming

	Introduction and Learning Objectives
	Method execution and exception prpgtion
	Method execution
	Stack trace
	Exception propagation

	Exception handling
	try-catch scenario 1: no exception
	try-catch scenario 2: exception handling
	try-catch scenario 3: exception propagation

	Checked exceptions
	Dealing with checked exceptions using the throws clause
	Programming with checked exceptions

	Unchecked exceptions

