

SFWR ENG 2F03 Assignment 1: Propositional Semantics

Due: 0830 Thursday September 23, 2004

1. Propositional Semantics

The exclusive OR operator \oplus has the following truth table:

p	q	$p \oplus q$
F	F	F
F	T	T
T	F	T
T	T	F

- a) How does this differ from the standard (non-exclusive) OR operator \vee ?
- b) Check if \oplus is:
 - i) commutative
 - ii) associative
- c) Write down the simplest contradiction that uses only the propositional variable p and the binary operator \oplus (i.e. find the simplest formula ψ using p and \oplus such that $\psi \equiv \perp$).
- d) Write down the simplest propositional formula ϕ that *only uses* the \oplus operator, and one or more instances of the propositional constants \top and/or \perp such that $\phi \equiv \neg p$.
- e) What is the full Disjunctive Normal Form (DNF) for $p \oplus (q \oplus r)$?
- f) What is the full Conjunctive Normal Form (CNF) for $(p \oplus q) \oplus r$?
- g) Using what we already know from the lectures and assignments, is it possible to “Build the World” using only \oplus , \top and \wedge ? Briefly justify your answer.
- h) Consider the formula:

$$(p \vee q) \wedge (r \vee s)$$

It is in Conjunctive Normal Form so it has only two “levels” of gates, i.e., travelling from a propositional variable (atom) in the parse tree to the root of the parse tree, we encounter 2 operator nodes first \vee , then \wedge .

NOR gates are particularly well suited to directly implement formulas that are in Conjunctive Normal Form (CNF). Write down a formula with two levels of NOR gates that is equivalent to $(p \vee q) \wedge (r \vee s)$.