Name: oo
Student Numbercovveevieieeaann...

Software Engineering 2F03

DAY CLASS Dr. Mark Lawford
DURATION OF EXAMINATION: 3 Hours
McMaster University Final Examination December 1998

THIS EXAMINATION PAPER INCLUDES 5 PAGES AND 5 QUESTIONS. YOU ARE RESPON-
SIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY
DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special Instructions: The use of calculators, notes, and text books is not permitted during this
exam. Answer all questions in the provided answer booklets. Fill in your name and student number
and sign each booklet you use. This paper must be returned with your answers.

. Propositional & Predicate Logic (25 Marks Total)

a) Proofs and Universal Specification

i) (2 marks) Verify that the following propositional formula is a tautology:
(P—=Q)A (P = Q) < (PAQY)V (-PAQy)

ii) (4 marks) Prove that the following formula is a theorem of predicate logic:

(Vz)(Vy)[(Pz = Qf(2)y) A (-Pz = Qg(2)y) < (Px A Qf(2)y) V (~Pz A Qg(2)y)]

iii) (2 marks) The postcondition of the program statement
if (x>=3) y=x+1;
else y=1-x;
can be written as (t >3 >y =2+ 1)A(r <3 — y=1—2x). Find a logically equivalent
formula ¢ that is a disjunction of two subformulas (i.e. ¢ is of the form ¢; V ¢5).
b) (6 marks) Validity of Arguments: Determine whether the following is a valid argument. Justify
your answer.
Premises: (Vz)(Az — Cz), (Vz)(Bx — Dz), (3z)Az, (3z)—~Dx
Conclusion: (3z)(Cz A ~Bz)

c¢) In the following you will deduce some properties of a world where there are winners and losers
(those who did not win).

i) (7 marks) Formally prove:
(Fzx)Wez, (Fz)-Wz F (Vz)(Jy)z # y

ii) (2 marks) What do you conclude about the cardinality of the universe for any interpretation
structure satisfying the two premises?

iii) (2 marks) Find the simplest interpretation structure (i.e. having the smallest universe) that
is a model for the formula:

(Fz)Wz A (Fz)-Wz — (Vz)(Fy)z #y

Continued on page 2

Software Engineering 2F03 Final Exam Page 2 of 5

. Tabular Specification I: Weakening conditions on tabular definitions (15 Marks Total)

Counsider the tabular definition:

a)

b)

X:

Cizy Coxy Cszy
fl(a:ay) f2(‘7’l:y) f3(l‘,y)

(7 marks) Assume functions fi, fo and f3 are defined when C;, Cy and Cj3 are respectively
true. Using our standard notation for predicate calculus, write down the two formulas, one for
Disjointness and one for Completeness, that PVS would require a user to prove for the above
table. In this case the Disjointness and Completeness proof obligations (TCCs) are sufficient to
guarantee that the table defines a (total) function.

flz,y) =

(6 marks) The PVS example in Figure 1 provides some insight as to why the Disjointness
conditions generated by PVS are overly restrictive. The theorem “same” can be easily proved
using the (GRIND) command but when a file containing the definitions is type checked, the
disjointness condition fails for £2. For the table used to define f in part (a) above, create a

VAR real
h——————m———————= h
f1(x): real = TABLE |[%<0 | x>=0]|
h—————mm———————= h
| x| 2%xx ||
ENDTABLE Y--------—----- Y
h——————————————= h
f2(x): real = TABLE |[x<=0 | x>=0]|
h———m h
I x | 2%x ||
ENDTABLE Y-—-=-—-==—-———- Y

same: THEQOREM FORALL (x:real): f1(x)=f2(x)

Figure 1: Disjointness condition counter example

weaker “disjointness” condition that together with the completeness condition provides necessary
and sufficient conditions for the table defining f to be a total function.

(2 marks) Although the weakened “disjointness” condition together with the usual completeness
condition provides necessary and sufficient conditions for a table to define a function. Why is it
preferable for software engineers to use the more strict disjointness condition when using tables
to specify the functional requirements of software?

Continued on page 3

Software Engineering 2F03 Final Exam Page 3 of 5

. Tabular Specifications II: Code Reuse Caveats (20 Marks Total)

Power
The figure to the left illustrates a power conditioning
function that is used in an industrial control system.
Kin F-------- When the Power level drops below Kout, a sensor be-
comes unreliable so it is “conditioned out” by setting
PwrCond to FALSE. When the power exceeds Kin, the
sensor is “conditioned in” and is used to evaluate the
Tt system. While Power is between Kout and Kin, the
FALSE value of PowerCond is left unchanged by setting it to its
previous value, Prev.

Kout|

tl

Time

1
E.g. For the graph of Power above, PwrCond would start out FALSE, then become TRUE at time
t1 and remain TRUE.

Since different sensors might have different conditioning in and conditioning out values Kin and
Kout, a general power conditioning function is proposed. The PVS description of the proposed
general power conditioning function is shown in Figure 2. Typechecking the definition generates an

PwrCond (Prev:bool, Power, Kin, Kout:posreal):bool = TABLE

= %

| [Power<=Kout | Power>Kout & Power<Kin | Power>=Kin] |

== h

| FALSE | Prev | TRUE [

== h
ENDTABLE

Figure 2: PVS Specification of general PwrCond function

unprovable disjointness TCC. The PwrCond_TCC1 disjointness TCC and the unprovable sequent
that results from trying to prove PwrCond_TCC1 are shown in Figure 3.

a) (6 marks) Write down the characteristic formula for the unprovable sequent in Figure 3. Find
a counter example that makes the characteristic formula false. (NOTE: Your counter examples
values for Kin, Kout and Power must be of the correct type - posreal = {x : real|x > 0}.)

b) (4 marks) Verify that the counter example satisfies the conditions of two or more columns of the
table for PwrCond, thereby proving the table as defined does not properly specify a function.

c) (4 marks) What implicit assumption did the designers make regarding input arguments Kin
and Kout that led them to omit the counter example case from the table? Why is such an
undocumented assumption dangerous in a setting where code may be reused by other developers?

d) (6 marks) Use dependent typing to create a new version of the PwrCond table that makes the
assumed relation between Kin and Kout explicit and thereby rules out any counter examples
like those from (i). The columns of the resulting table should be disjoint.

Continued on page 4

Software Engineering 2F03 Final Exam

% Disjointness TCC generated (at line 19, column 54) for

% TABLE
% | [Power <= Kout | Power > Kout & Power < Kin | Power >= Kin]|
% | TRUE | Prev | FALSE [

% ENDTABLE
% unfinished
PwrCond_TCC1: OBLIGATION
(FORALL (Kin: posreal, Kout: posreal, Power: posreal):
NOT (Power <= Kout AND Power > Kout & Power < Kin)
AND NOT (Power <= Kout AND Power >= Kin)
AND NOT ((Power > Kout & Power < Kin) AND Power >= Kin));

PwrCond_TCC1

[-1] Kin!1 > 0

[-2] Kout!1l > 0

[-3] Power!1l > 0

[-4] Power!1l <= Kout!1l
[-5] (Kin!1 <= Power!1)

Figure 3: TCC and resulting unprovable sequent for PwrCond

. Proof by Induction (15 Marks Total)

Page 4 of 5

a) (3 marks) Write down the mathematical induction postulate (axiom schema for rule MI) for the

theory of Peano Arithmetic.

b) (5 marks) Explain why Rule MI is a valid rule of inference by showing how the base step and
inductive step can be used to formally prove ¢[k|n] for a given natural number £ € N.

c¢) (7 marks) Use induction to prove that 4" — 1 is divisible by 3 for all n > 0 .

Continued on page 5

Software Engineering 2F03 Final Exam Page 5 of 5

. Partial Functions & Types in Logic + a bit of PVS Predicate Logic (25 Marks Total)

a)

b)

c)

d)

e)

(4 marks) Explain why —=(z < 1/y) is not logically equivalent to z > 1/y in the traditional
analysis style logic used by IMPS and Parnas.

(6 marks) Write down the most concise formulas in both the IMPS/Parnas (analysis style) logic
and bounded quantification (PVS style) logic that could be used to specify that A, an N element
array of integers, has the property:

The array does not contain a strictly increasing sequence of elements.
(5 marks) Consider the function h: R — R given by:

1
+
|23 + 522 + 62

h(z) =1

Define appropriate subtypes and write down a new definition of the function h that will allow
its use in a traditional (PVS style) logic. Restrict the return type of the function as much as
possible to help with definedness proofs (TCCs)

Justify your choice of domain and range for f.
(5 marks) Consider the application of the PVS (SKOLEM!) command show below:

$1
¢2 (SKOLEM!)
. -

Here z; is a new variable not occurring elsewhere in the sequent. PVS is saying, in effect, that
to prove I' F (Vx)v, it is sufficient to prove I' - 9|z |z] for an appropriately chosen z;. Why?

(5 marks) Using what you know about Logical Equivalence (Rule LE) and how PVS handles
negations, show how the above explanation also covers the use of the PVS (SKOLEM!) command
in the case where:

o1 o1
05 b2
' (SKOLEMN|
@xys LM 411
i (2
(1 (2

Use intermediate sequents to illustrate the process and provide justification for the transforma-
tion of one sequent to the next.

“Logic is good. That is all.” - 2F03 student

The End

