SFWR ENG 2F04 Assignment 1: Propositional Semantics

Due: 1330 Tuesday September 28, 1999

- Rubin p. 9-11 (25 marks) A 2, 4, 6, 8, 19, 22, 25;
 B 4, 6, 8; C 2; D 1, E 3, 4
- 2. Rubin p. 31-36 (25 marks) A 5, 7, 11; B 5, 7; C 1, 3; E 1, 3
- 3. More World Building (25 marks)

Consider the "Building the World with NAND" example from class.

- a) Recall that we used the symbol T (representing True) in the definition of some of the operators (e.g. $\neg P \Leftrightarrow T \text{ NAND } P$). Write down a logically equivalent formula for $\neg P$ that only makes use of NAND and the propositional variable P.
- b) Write down the simplest tautology that uses only the propositional variable P and the binary operator NAND (i.e. find the simplest formula using P and NAND that is equivalent to T).
- c) Write down the simplest propositional formula using only P and NAND that is a contradiction (i.e. find the simplest formula using P and NAND that is equivalent to F HINT: Use parts (a) and (b)).
- d) Write the formula $(\neg P \land Q) \lor Q \to R$ in only use the propositional variables P, Q, R, T and/or F and the NAND operator. (NOTE: $P \to Q \Leftrightarrow \neg P \lor Q$)
- e) Write the formula $(\neg P \land Q) \lor Q \to R$ in only use the propositional variables P, Q, R, and the NAND operator.
- 4. Hilbert Systems (25 marks total)

Hilbert style systems for propositional logic write all the other operators in terms of \rightarrow and \bot and make use of tautologies (c)(i)-(iii) below and all their substitution instances together with the single rule of inference modus ponens to obtain a consistent and complete proof system.

- a) i) (2 marks) Write down the truth table for $P \to Q$.
 - ii) (3 marks) The constant symbols \top and \bot are interpreted as T (true) and F (false) respectively. Find the simplest propositional logic formula that uses only \bot and \to and is logically equivalent to \top .

NOTE: No propositional variables or operators other than \rightarrow can occur in the formula so you are NOT allowed to use $\neg \bot$ as your answer!

- **b)** (10 marks) Show that you can "build the world" using \rightarrow with the help of the propositional constant \bot . To do this first show that $\neg P$ can be written in terms of \rightarrow and \bot . Next show that $P \lor Q$ can be written using \neg and \rightarrow . Finally show that $P \land Q$ can be written in terms of \lor and \neg . Since we know that any formula has a logically equivalent DNF formula that only uses \neg , \lor and \land we are done!
- c) (10 marks) Verify that the following are tautologies:
 - i) $\neg(\neg P) \rightarrow P$
 - ii) $P \rightarrow (Q \rightarrow P)$
 - iii) $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$
 - iv) $(P \lor Q \leftrightarrow R) \rightarrow (\neg A \land B \rightarrow (P \lor Q \leftrightarrow R))$ (Note: There is an easy way for (iv)!)