SFWR ENG 2F04 Assignment 5: Typechecking, Software Verification,
Induction, and much, much more!

Due: 1230 Thursday December 2, 1999
All of your PVS work for this assignment should be done in a single file called A5.pvs. Download this
file from the web at the URL:

http://www.cas.mcmaster.ca/ lawford/2F04/Notes/A5.pvs

It contains some of the PVS you will need to do this assignment. You will have to add to this file as
detailed in the questions below. When you are done the PVS part, you will submit it electronically as a
PVS dump file called A5.dmp. Written work will be handed in separately at the start of class on the due
date.

NOTE: For up to date information on how all you voracious little PVS piranhas can submit your work to
the sacrificial cow, please check out the URL:

http://www.cas.mcmaster.ca/"lawford/2F04/e-submissions.html

1. Tabular Specification I: Weakening conditions on tabular definitions (25 Marks Total)

Counsider the tabular definition:

Cizy Chzy Cszy
fl(xay) f2($ay) f3($,y)

a) (7 marks) Assume functions fi, fo and f5 are defined when Cy, Cy and Cj are respectively
true. Using our standard notation for predicate calculus, write down the two formulas, one for
Disjointness and one for Completeness, that PVS would require a user to prove for the above
table. In this case the Disjointness and Completeness proof obligations (TCCs) are sufficient to
guarantee that the table defines a (total) function.

flz,y) =

The PVS example in theory A5Q1 of the file A5.pvs provides some insight as to why the Disjoint-
ness conditions generated by PVS are overly restrictive.

b) (2 marks) Prove the theorem same.

c) (6 marks) Typecheck the theory and have PVS try to prove the resulting TCCs with the PVS/Parsing
and Typechecking/typecheck-prove command. Take a look at the TCCs for the file with the
PVS/Viewing TCCs/show-tccs command. As you can see, the disjointness condition h_TCC1 fails
for the table defining h. Rerun the proof PVS tried by placing you cursor on this TCC and
invoking the prover. Write down the characteristic equation for the resulting unprovable sequent
and use it to obtain a counter example to the disjointness condition. This is a case where the
table still defines a total function even though PVS’ disjointness condition is violated. Why?

d) (7 marks) For the table used to define f in part (a) above, create a weaker “disjointness” condition
that together with the completeness condition provides necessary and sufficient conditions for the
table defining f to be a total function.

e) (3 marks) Although the weakened “disjointness” condition together with the usual completeness
condition provides necessary and sufficient conditions for a table to define a function. Why is it
preferable for software engineers to use the more strict disjointness condition when using tables
to specify the functional requirements of software?

2. Tabular Specifications II: Code Reuse Caveats (25 Marks Total)
Power

Kin

Kout

The figure to the left illustrates a power conditioning
function that is used in an industrial control system.
--------- When the Power level drops below Kout, a sensor be-
comes unreliable so it is “conditioned out” by setting
PwrCond to FALSE. When the power exceeds Kin, the
sensor is “conditioned in” and is used to evaluate the
system. While Power is between Kout and Kin, the value
of PwrCond is left unchanged by setting it to its previous
value, Prev.

-
FALSE

Time
0

t1

E.g. For the graph of Power above, PurCond would start out FALSE, then become TRUE at time
t1 and remain TRUE for the rest of the time shown on the graph.

Since different sensors might have different conditioning in and conditioning out values, Kin and
Kout respectively, a general power conditioning function is proposed. The PVS description of the
proposed general power conditioning function appears in theory A5Q2 of the A5.pvs file.

a)

b)

c)

d)

(1 mark) Typecheck the definition with the typecheck-prove command. View the TCCs and rerun
the unprovable disjointness TCC PwrCond_TCC1. Write down the unprovable sequent that results
from trying to prove PwrCond_TCCI.

(6 marks) Write down the characteristic formula for the unprovable sequent. Find a counter
example that makes the characteristic formula false. (NOTE: Your counter examples values for
Kin, Kout and Power must be of the correct type - posreal = {x : real|z > 0}.)

(6 marks) Verify that the counter example satisfies the conditions of two or more columns of the
table for PwrCond, thereby proving the table as defined does not properly specify a function.

(6 marks) What implicit assumption did the designers make regarding input arguments Kin
and Kout that led them to omit the counter example case from the table? Why is such an
undocumented assumption dangerous in a setting where code may be reused by other developers?

(6 marks) Use dependent typing to create a new version of the table called PwrCond2 immediately
below the definition of PwrCond. This new table must make the assumed relation between Kin
and Kout explicit and thereby rule out any counter examples like those from (b). The columns
of the resulting table should be disjoint. Verify that this is the case for your example by using
the typecheck-prove command and then viewing the TCCs.

3. Proof by Induction (30 Marks Total)

a)

b)

c)
d)

(3 marks) Write down the mathematical induction postulate (axiom schema for rule MI) for the
theory of Peano Arithmetic.

(5 marks) Explain why Rule MI is a valid rule of inference by showing informally how the base
step and inductive step can be used to formally prove ¢[k|n] for a given natural number £ € N.

(7 marks) Use induction to prove by hand that 4" — 1 is divisible by 3 for alln > 0 .

(5 marks) Prove the same thing by Induction in PVS by proving theorem Q3d of theory A5Q3.
As the first proof step use the (INDUCT "n") command to let PVS know you are attempting
a proof by induction on the variable n. Next, use the command (EXPAND ""'") to rewrite the
exponent shorthand in terms of the recursive function expt (r,n). Expand the definition of expt
in the bottom part of the sequent but not the top, then use the (BOTH-SIDES ...) command

f)

to obtain something that you can use with the (REPLACE ...) command. Use the PVS/Getting
Help/help-pvs-prover and help-pvs-prover-command menu options for more information on these
commands.

(5 marks) Do Rubin p. 302 A 3,22 by hand.

(5 marks) Do Rubin p. 302 A 3 in PVS by adding to the theory A5Q3 a recursive function definition
called sumA3 and an appropriate theorem called Q3f. Again, use the command (INDUCT "n") as
the first command to help prove the theorem. Be sure to typecheck-prove your theory and view
the TCCs. Note the termination TCC that is generated by the declaration of sumA3 guaranteeing
the there is a bounded monotonically decreasing quantity associated with the recursive definition!

. Partial Functions & Predicate Subtypes in Logic (20 Marks Total)

a)

b)

d)

(4 marks) Explain why —(z < 1/y) is not logically equivalent to z > 1/y in the traditional
analysis style logic used by IMPS and Parnas.

(6 marks) Write down the most concise formulas in both the IMPS/Parnas (analysis style) logic
and bounded quantification (PVS style) logic that could be used to specify that A, an N element
array of integers, has the property:

The array does not contain a strictly increasing sequence of elements.
(5 marks) Consider the partial function & : R — R given by:

1
* |3 + 522 + 6|

h(z) =1

Create a new theory called A5Q4 in the file A5.pvs. In the theory define appropriate domain and
range predicate subtypes called domh and rangeh and use them to write down a definition of
the function h that will allow its use in a traditional (PVS style) logic. Restrict the domain the
absolute minimum required to guarantee h will always be defined. Restrict the return type of
the function as much as possible to help with any definedness proofs (TCCs) for any theory that
would make use of A.

Justify your choice of domain and range for & in your written part of the work.

(5 marks) Prove all TCCs for your theory (This one is a little tricky and may require stuff from
the prelude file. Enjoy! 8-)

