Name: oo
Student Numbercovveevieieeaann...

Software Engineering 2F04

DAY CLASS Dr. Mark Lawford
DURATION OF EXAMINATION: 3 Hours
McMaster University Final Examination December 1999

THIS EXAMINATION PAPER INCLUDES 6 PAGES AND 5 QUESTIONS. YOU ARE RESPON-
SIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY
DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special Instructions: The use of calculators, notes, and text books is not permitted during this
exam. Answer all questions in the provided answer booklets. Fill in your name and student number
and sign each booklet you use. This paper must be returned with your answers.

Useful Factoids:
Rules Governing Equality

Ia : - (Vz)(z = z)

Ib : + (Vz)[z =t = (¢ > 8[,t]7])]

Ic : F (Vz2)(Vy)(z =y = y =)

Id : - (Vo) (Vy)(V2)(z =y Ay =2 = & = 2)

. Propositional & Predicate Logic (35 marks)

a) (4 marks) Show that implication is not associative. i.e. show that
(P—Q)— R)# (P—(Q—R)
b) (6 marks) Consider the following propositional logic formula
(PNQ—=R) < (P— (@ —R))

i) Prove that the formula is a tautology.
i) What two valid rules of inference does it provide?

c) (7 marks) Determine if the following argument is valid or invalid. Justify your answer.

Premises: (Vz)(Vy)(Rry — z = y), (3z)Pz, (3z)-Px
Conclusion: (3z)(Jy)—Rxy

Continued on page 2

Software Engineering 2F04 Final Exam Page 2 of 6

d) (5 marks) Determine if the following argument is valid or invalid. Justify your answer. (Hint:
Think.)

Premises: (Vz)(Vy)(Rry — z = y), (3z) Pz, (3z)-Px
Conclusion: (Vz)(Vy)Rzy

e) (5 marks) Determine if the following set of premises is consistent or inconsistent. Justify your
answer. (Hint: Think again.)

Premises: (Vz)(Vy)(Rzy — = =vy), (3z) Pz, (3z)- Pz, (Vz)(Vy)Rzy

f) (3 marks) Given a set of premises I' and a conclusion ¢, suppose that you find an interpretation
structure that provides a counter example that shows that I' = ¢. What can you conclude
about the consistency of I'? Why?

g) Cousider the interpretation structure S := (U, W, a, b) where:
U:={0,1}, W:={1},a:=0,b:=1

i) (2 marks) Write down a formula ¢ using equality (=) that would be satisfied by any in-
terpretation structure with a non-trivial universe (i.e. For any S’ := (U’ ...) it is the case
that S’ = ¢ iff |U'| > 1).

ii) (3 marks) Write down a formula 1 that does not use equality such that for S as defined
above S = v and v has the property that) — ¢.

2. Partial Functions and PVS Typechecking (10 marks)

a) (4 marks) Consider the following PVS declaration:

U:TYPE
a:U
It generates the following Type Correctness Condition (TCC):
% Existence TCC generated (at line 13, column 2) for a: U

% untried
a_TCC1: OBLIGATION EXISTS (x: U): TRUE;

i) Why is the TCC generated?
ii) Assuming PVS doesn’t have any inconsistencies, why is it unprovable?
iii) Why would it be provable if PVS had a soundness bug (i.e. it was possible to prove 1)?
b) (4 marks) Consider the function:
fla,y) =va+y
Write down the best PVS definition for f.

c) (2 marks) Assume that & # y is an abbreviation for —=(z = y). In the Parnas/IMPS traditional
analysis approach to logic, what is the truth value of the formula (3z)((y/z)? # |z[)? Justify
your answer.

Continued on page 3

Software Engineering 2F04 Final Exam Page 3 of 6

3. Mathematical Induction (15 marks)

a)

b)

(5 marks) The following rule, call Rule MI, is an aziom of Peano Arithmetic (i.e. it can be used
on any line of a proof for a formula of Peano Arithmetic):

= ¢[0[n] A (Ym)(g[m|n] — ¢[m + 1|n]) — (Vn)¢

Here ¢ is a formula of Peano Arithmetic, n € F'V(¢) and m is a “new” variable that does not
occur in ¢.

Informal mathematical induction involves showing (i) ¢[0|n] is true and (ii) assuming that ¢[m|n]
is true, you show that ¢[m + 1|n] is true. Use formal proof rules to show why this is sufficient
to prove (Vn)o.

(10 marks) Use mathematical induction to informally prove that every odd power of 2 + 1 is
divisible by 3. That is, show that for every n, there exists some 4 such that 2+1) 41 = 34,

More Predicate Logic with Equality (15 marks)

Any function f : U — U induces an equivalence relation Ky, the equivalence kernel of f, given by

a)

b)

c)

Kyzy if and only if f(z) = f(y).

(6 marks) In this question you will formally prove that given a function f : U — U, the
equivalence kernel of f is an equivalence relation. To do this, formally prove the following:

i) Reflexivity: (Vz)K xz,
ii) Symmetry: (Vz)(Vy)(Krzy = Kryz),
iii) Transitivity: (Vz)(Vy)(V2)(Krzy A Kryz — Krzz).

(2 marks) We can define a partial order on equivalence relations as follows: Let E; and E; be
equivalence relations on U. Then we say that E; is a refinement of Fy, written F; < FEy iff
(Vz)(Yy)(E1zy — Eqzy).

Given functions f : U — U and g : U — U, write down a predicate logic formula involving the
function symbols f and g that is true when K, < Ky).

(5 marks) Consider the following result from discrete mathematics:

Theorem: Given two functions with the same domain, f : V; — V3 and g : Vi — V5, then there
exists h : Vo — V3 such that the diagram in Figure 1 commutes iff K, < K.

Vi f Vs

A
g h

/
/

Va

Figure 1: Commutative diagram for (3h : V; — V3)(Vuy € V1)[h(g(v1) = f(v1)] iff Ky X K}

The interpretation of this result is that for h to exist, ¢ must retain as much or more information
about its domain than f.

Continued on page 4

Software Engineering 2F04 Final Exam Page 4 of 6

You will now show that K, < K is a necessary condition for the existence of the function A in
the special case when V; =V, = V3 by formally showing the following result:

= (Vo)[f (2) = h(g(x))] = (V) (Vy)[g(z) = g(y) = f(z) = f(y)]
d) (2 marks) Use the previous result to show that:

= 32)3y)(g(z) = g9(y) A f(2) # f(y)) = (F2)(f(2) # hlg(x))
. Software Verification with PVS (25 marks)

In this problem we study the verification of a simplified pressure sensor trip that monitors a pres-
sure sensor and is “tripped” when the sensor value exceeds a normal operating setpoint. As was
the case with the power conditioning example of Assignment 5, the specification of the pressure
sensor trip makes use of deadbands to eliminate chatter. The proposed specification and the actual
implementation for the sensor trip are give in Figure 2 by f PressTrip and PTRIP, respectively.
In the function definitions, f PressTripS1 and PREV play corresponding roles as the arguments for
the previous value of the state variable computed by the function.

Figure 2 also contains the supporting type and abstraction function definitions for verifying that the
implementation meets the specification. The abstraction function real2AItype models the A/D
(analog to digital) conversion of the pressure sensor value by taking the integer part of its input
using the function

floor(x:real): {i:int | 1 <= x & x < i + 1}

from the PVS prelude file. It is used to map the real valued specification input Pressure to the
discrete implementation input PRES which has type AIType. AIType consists of the subrange of
natural numbers between 0 and 5000.

At the bottom of the specification in Figure 2, the theorem Sentripl is an example of a block
comparison theorem that could be used to prove that the implementation PTRIP will produce the
same output as the specification £ PressTrip for all possible inputs. Attempting to prove the
theorem Sentrip results in the following unprovable sequent:

[-1] Pressure!l < 2450
[-2] floor(Pressure!l) <= 2400

[1] Pressure!l <= 2400
[2] NotTripped?(f_PressTripS1i!1)

Rule?

a) (5 marks) Write down the characteristic equation for the sequent.

b) (5 marks) Find all the values of Pressure!1 and f PressTripS1!1 that provide counter exam-
ples for the equation.

c) (2 marks) Pick specific values for Pressure!l and f PressTripS1!1 that provide a counter
example and confirm that it provides a counter example to theorem Sentrip by evaluating
f PressTrip(Pressure!1l,f PressTripS1!1) and
bool2Trip(PTRIP(real2AItype (Pressure!l) ,Trip2bool (f PressTripS1!1) and comparing
the results.

Continued on page 5

Software Engineering 2F04 Final Exam Page 5 of 6

sentrip : THEORY
BEGIN

Trip: TYPE = {Tripped, NotTripped}
Altype: TYPE = {i: nat | 0 <iAi <5000}

f PressTrip(Pressure : real, f PressTripS1: Trip): Trip = TABLE
‘ Pressure < 2400 ‘ 2400 < Pressure A Pressure < 2450 ‘ Pressure > 2450 ‘

‘ NotTripped ‘ f PressTripS1 ‘ Tripped ‘
ENDTABLE

PTRIP(PRES : Altype, PREV : bool): bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| FALSE | PREV | TRUE |
ENDTABLE

Trip2bool(TripVal : Trip) : bool = TABLE
‘ TripVal = Tripped ‘ TripVal = NotTripped ‘
| TRUE | FALSE |
ENDTABLE

bool2Trip(BoolVal : bool) : Trip = TABLE
| BoolVal = TRUE | BoolVal = FALSE |

‘ Tripped | NotTripped |
ENDTABLE

real2Altype(z : real): Altype = TABLE
|2<0]0 < zAz < 5000 [z > 5000 |
| 0 | floor(x) | 5000 |
ENDTABLE

Sentripl : THEOREM
(V (Pressure : real, f PressTripS1: Trip) :
f PressTrip(Pressure, f PressTripS1) =
bool2Trip(PTRIP (real2Altype(Pressure), Trip2bool(f_PressTripS1))))

END sentrip

Figure 2: Formatted PVS specification for pressure sensor trip example

Continued on page 6

Software Engineering 2F04 Final Exam Page 6 of 6

d)

f)

g)

(2 marks) State a theorem that could be used to prove that the implementation does not meet
the specification. This would provide confirmation that the unprovable sequent for theorem
Sentripl results from inconsistencies between the specification and implementation and not
from a poor choice of PVS prover commands by the verifier. This is an example of refutation
theorem proving where a software engineer tries to prove that the implementation is NOT
equivalent to the specification.

(3 marks) In fact it is currently impossible to change the definition of PTRIP so that it will
satisfy the specification £ PressTrip. Why? (Hint: See question 4 part (d).)

(5 marks) How could the original specification f PressTrip be modified so that it is possible to
find a new implementation of PTRIP that would make Sentripl true? (HINT: You only need
to make minor modifications to the inequalities of f_PressTrip.)

(3 marks) Suppose the A/D conversion hardware has a tolerance of +5 associated with it. The
interpretation is that an input Pressure value of say 17.3 could produce the same results as any
value in the range 12.3 < Pressure < 22.3. This being the case, strict functional equivalence of
an implementation with a specification might be considered too restrictive. Suppose that it is
now acceptable for the original implementation of PTRIP to merely produce an output that is
within tolerance. This means that for every value of Pressure there is some other value, say P,
such that
Pressure — 5 < P < Pressure + 5

and when f PressTrip is evaluated at the real value of Pressure, applying PTRIP to the con-
verted version of P produces the same result.

Restate theorem Sentrip1 to take this tolerance into account. (HINT: One way to do it involves
the use of existential quantification over a dependent type.)

“S.A.L.T. - ‘Students Against Lawford’s Tenure.” Join today!” - 2F04 student

The End

