%Please fill in the following table: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Partner| Last Name | 1st Name | Student # | % 1 | | | | % 2 | | | | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A5Q1 : THEORY BEGIN x: VAR real g(x): real = TABLE %--------------% |[ x<0 | x>=0 ]| %--------------% | x | 2*x || %--------------% ENDTABLE h(x): real = TABLE %--------------% |[ x<=0 | x>=0 ]| %--------------% | x | 2*x || %--------------% ENDTABLE same: THEOREM FORALL (x:real): g(x)=h(x) END A5Q1 A5Q2 : THEORY BEGIN U:TYPE a:U % Add your definition of f(x,y) here END A5Q2 A5Q3: THEORY BEGIN n: VAR nat Q3d: THEOREM (forall (n:nat): (exists (i:nat) : (2^(2*n+1)+1) = 3*i)) END A5Q3 % PVS for Question 4 sentrip % [ parameters ] : THEORY BEGIN % ASSUMING % assuming declarations % ENDASSUMING k_PressSP: int = 2450 k_deadBand: int = 50 KDB:int = k_deadBand KHPSP:int = k_PressSP Trip:TYPE = {Tripped, NotTripped} % Equivalent Vertical Condition Table for f_PressTrip f_PressTrip(Pressure:real,f_PressTripS1:Trip):Trip = TABLE | Pressure<=k_PressSP-k_deadBand | NotTripped || | k_PressSP-k_deadBand=k_PressSP |Tripped || ENDTABLE AItype:TYPE = subrange(0,5000)%real PTRIP(PRES:AItype,PREV:bool):bool = TABLE |[PRES<=KHPSP-KDB|KHPSP-KDB=KHPSP]| | FALSE | PREV | TRUE || ENDTABLE % Abstraction Functions Trip2bool(TripVal:Trip):bool = TABLE |[TripVal=Tripped|TripVal=NotTripped]| | TRUE | FALSE || ENDTABLE real2AItype(x:real):AItype = TABLE |[x<=0|0=5000]| | 0 | floor(x) | 5000|| ENDTABLE Sentrip1:THEOREM (FORALL (Pressure:real,f_PressTripS1:Trip): Trip2bool(f_PressTrip(Pressure,f_PressTripS1)) = PTRIP(real2AItype(Pressure),Trip2bool(f_PressTripS1))) % Add definitions for 4(d) starting here % i.e., add Theorem Sentrip2 here % % Sentrip2:THEOREM % Add definitions for 4(f) starting here % % Add Definition of f_PressTrip2 here (make sure all TCCs are proved) % Add Definition of PTRIP2 here (make sure all TCCs are proved) % add Theorem Sentrip3 here and prove it! % % Sentrip3:THEOREM % Add definitions for 4(d) starting here % i.e., add Theorem Sentrip4 here and prove it! % % Sentrip4:THEOREM END sentrip