SFWR ENG 2F04 Assignment 3: Resolution Theorem Proving & Predicate Logic Syntax, Interpretations and Proofs

Due: 1130 Thursday October 26, 2000

- 1. Resolution Theorem Proving (25 marks total)
 - a) (5 marks) Indirect proof or "proof by refutation" is when one shows that some set of premises $\Gamma = \{P_1, P_2, \dots, P_n\}$ is a valid argument for Q by showing that $\Gamma, \neg Q$ is inconsistent. Use the deduction theorem to show that $\Gamma, \neg Q \vdash \bot$ iff $\Gamma \vdash Q$.
 - **b)** (10 marks) Resolution rules of inference:
 - i) Show $P \vee Q$, $\neg Q \vee R \models P \vee R$ using truth tables. Therefore we have valid rule of inference Rule R1: "If $\Gamma \vdash P \vee Q$ and $\Gamma \vdash \neg Q \vee R$ then $\Gamma \vdash P \vee R$."
 - ii) Show $P \vee \neg Q, Q \vee R \vdash P \vee R$ by formal proof.
 - iii) Given the proof $P \vee \neg Q$, $Q \vee R \vdash P \vee R$, why can we conclude that $P \vee \neg Q$, $Q \vee R \models P \vee R$? This provides the valid rule of inference Rule R2: $\Gamma \vdash P \vee \neg Q$ and $\Gamma \vdash Q \vee R$ then $\Gamma \vdash P \vee R$."

These two rules together with the commutativity of \vee , Rule P for stating a premise and the instances of Rule T making use of the tautologies $P \leftrightarrow P \lor \bot$ and $P \land \neg P \leftrightarrow \bot$, comprise the complete set of rules of inference for resolution (refutation) theorem proving.

c) (10 marks) You will use resolution theorem proving to prove the following:

$$P \to Q, \neg (Q \land \neg R), \neg R \models \neg P$$

- i) Replace $P \to Q$ and $\neg (Q \land \neg R)$ by logically equivalent formulas P_1 and P_2 that only use \lor and \neg .
- ii) Using only the rules of inference mentioned in (b) above, formally prove that prove that

$$P_1, P_2, \neg R, P \vdash \bot$$

2. Predicate logic syntax: Do Rubin (52 Marks / 2 Marks each one)

```
p.116 A:5,10,20,25;
B:2,5,7,11,16;
C:3,4,5,21,25,28
E:1,3,5,7
F:3,5,7,13,16,21
G:2
```

3. Predicate logic interpretation: Do Rubin (24 Marks/ 4 Marks each one)

4. Predicate logic proof: Do Rubin (24 Marks / 4 Marks each one)