SFWR ENG 2F04 Assignment 5: Typechecking, Software Verification,
Induction, and much, much more!

Due: 1130 Friday December 1, 2000

All of your PVS work for this assignment should be done in a single file called A5.pvs. Download this
file from the web at the URL: http://www.cas.mcmaster.ca/ lawford/2F04/Notes/A5_00.pvs.

It contains some of the PVS you will need to do this assignment. You will have to add to this file as
detailed in the questions below. When you are done the PVS part, you will submit it electronically as a
PVS dump file called A5_00.dmp. Written work will be handed in separately at the start of class on the
due date.

NOTE: For up to date information on how all you voracious little PVS piranhas can submit your work to
the sacrificial cow, please check out the URL:

http://www.cas.mcmaster.ca/"lawford/2F04/e-submissions.html

1. Tabular Specification I: Weakening conditions on tabular definitions (25 Marks Total)

Consider the tabular definition:

Cizy Chzy Cszy
fl(xay) f2(~'17,y) f3(~'13,y)

a) (7 marks) Assume functions f;, fo and f3 are defined when C;, Co and Cj are respectively
true. Using our standard notation for predicate calculus, write down the two formulas, one for
Disjointness and one for Completeness, that PVS would require a user to prove for the above
table. In this case the Disjointness and Completeness proof obligations (TCCs) are sufficient to
guarantee that the table defines a (total) function.

flz,y) =

The PVS example in theory A5Q1 of the file A5.pvs provides some insight as to why the Disjoint-
ness conditions generated by PVS are overly restrictive.

b) (2 marks) Prove the theorem same in file A5_00.pvs.

c) (6 marks) Typecheck the theory and have PVS try to prove the resulting TCCs with the PVS/Parsing
and Typechecking/typecheck-prove command. Take a look at the TCCs for the file with the
PVS/Viewing TCCs/show-tccs command. As you can see, the disjointness condition h_TCC1 fails
for the table defining h. Rerun the proof PVS tried by placing you cursor on this TCC and
invoking the prover. Write down the characteristic equation for the resulting unprovable sequent
and use it to obtain a counter example to the disjointness condition. This is a case where the
table still defines a total function even though PVS’ disjointness condition is violated. Why?

d) (7 marks) For the table used to define f in part (a) above, create a weaker “disjointness” condition
that together with the completeness condition provides necessary and sufficient conditions for the
table defining f to be a total function.

e) (3 marks) Although the weakened “disjointness” condition together with the usual completeness
condition provides necessary and sufficient conditions for a table to define a function. Why is it
preferable for software engineers to use the more strict disjointness condition when using tables
to specify the functional requirements of software?



2. Partial Functions, PVS Typechecking & Predicate Subtypes in Logic (15 Marks)

a) (4 marks) Consider the following PVS declaration contained in theory A5Q2:

U:TYPE
a:U
i) What Type Correctness Condition (TCC) does this generate? Why?
ii) Assuming PVS doesn’t have any inconsistencies, why is it unprovable?
iii) Why would it be provable if PVS had a soundness bug (i.e. it was possible to prove 1)?

b) (4 marks) Consider the function:
fl@y)=2+Vr+y
Write down the best PVS definition for f.

c) (2 marks) Assume that x # y is an abbreviation for =(z = y). In the Parnas/IMPS traditional
analysis approach to logic, what is the truth value of the formula (3z)((v/z)? # |z|)? Justify your
answer.

d) (5 marks) Write down the most concise formulas in both the IMPS/Parnas (analysis style) logic
and bounded quantification (PVS style) logic that could be used to specify that A, an N element
array of integers, has the property:

The array does not contain a strictly increasing sequence of elements.
3. Proof by Induction (30 Marks Total)

a) (5 marks) The following rule, call Rule MI, is an aziom of Peano Arithmetic (i.e. it can be used
on any line of a proof for a formula of Peano Arithmetic):

= ¢[0[n] A (Ym)(g[m[n] = ¢[m + 1|n]) — (Vn)¢

Here ¢ is a formula of Peano Arithmetic, n € FV(¢) and m is a “new” variable that does not
occur in ¢.

Informal mathematical induction involves showing (i) ¢[0|n] is true and (ii) assuming that ¢[m|n]
is true, you show that ¢[m + 1|n] is true. Use formal proof rules to show why this is sufficient to
prove (Yn)e.

b) (10 marks) Use mathematical induction to informally prove (by hand) that every odd power of 2
+ 1 is divisible by 3. That is, show that for every n, there exists some 7 such that 271 41 = 3;.
(HINT: 220+ = 2 x 4n)

c) (5 marks) Prove the same thing by Induction in PVS by proving theorem Q3d of theory A5Q3.
As the first proof step use the (INDUCT "n") command to let PVS know you are attempting
a proof by induction on the variable n. Next, use the command (EXPAND ""'") to rewrite the
exponent shorthand in terms of the recursive function expt (r,n). Expand the definition of expt
in the bottom part of the sequent but not the top, then use the (BOTH-SIDES ...) command
to obtain something that you can use with the (REPLACE ...) command. Use the PVS/Getting
Help/help-pvs-prover and help-pvs-prover-command menu options for more information on these
commands.

d) (10 marks) Do Rubin p. 302 A 1,23 by hand.

4. Software Verification with PVS (30 marks)

In this problem we study the verification of a simplified pressure sensor trip that monitors a pressure
sensor and is “tripped” when the sensor value exceeds a normal operating setpoint. The proposed



specification and the actual implementation for the sensor trip are give in Figure 1 by £ PressTrip
and PTRIP, respectively. In the function definitions, f PressTripS1 and PREV play corresponding
roles as the arguments for the previous value of the state variable computed by the function.

Figure 1 also contains the supporting type and abstraction function definitions for verifying that
the implementation meets the specification. The abstraction function real2AItype models the A/D
(analog to digital) conversion of the pressure sensor value by taking the integer part of its input using
the floor function from the PVS prelude file. It is used to map the real valued specification input
Pressure to the discrete implementation input PRES which has type AIType. AIType consists of the
subrange of natural numbers between 0 and 5000.

At the bottom of the specification in Figure 1, the theorem Sentripl is an example of a block
comparison theorem that could be used to prove that the implementation PTRIP will produce the
same output as the specification f PressTrip for all possible inputs. For you convenience the PVS
theory sentrip corresponding to Figure 1 is included in the PVS file A5_00.pvs.

a) (5 marks) Write down the characteristic equation for the unprovable sequent that results from
trying to prove Sentripl.

b) (5 marks) Find all the values of Pressure!1 and f PressTripS1!1 that provide counter examples
for the equation.

¢) (2 marks) Pick specific values for Pressure!1 and f PressTripS1!1 that provide a counter ex-
ample to the equation in (a) and confirm that it provides a counter example to theorem Sentrip1.

d) (2 marks) State and prove a general theorem Sentrip2 that shows that the implementation does
not meet the specification. This provides confirmation that the unprovable sequent for theorem
Sentripl results from inconsistencies between the specification and implementation and not from
a poor choice of PVS prover commands by the verifier. This is an example of refutation theorem
proving where a software engineer tries to prove that the implementation is NOT equivalent to
the specification.

e) (3 marks) In fact it is currently impossible to change the definition of PTRIP so that it will satisfy
the specification f_PressTrip. To see this, draw the commutative diagram for Theorem Sentrip1
and explain this situation in terms of the Theorem in Assignment 4 Question 5(c).

f) (5 marks) How could the original specification f PressTrip be modified so that it is possible
to find a new implementation of PTRIP that would make Sentripl true? (HINT: You only
need to make minor modifications to the inequalities of f PressTrip.) Call this new specifica-
tion f_PressTrip2 and call the new implementation PTRIP2. State and prove a theorem called
Sentrip3 that is identical to Sentripl except that f PressTrip and PTRIP are replaced by
f PressTrip2 and PTRIP2 respectively

g) (8 marks) Suppose the A/D conversion hardware has a tolerance of £5 associated with it. The
interpretation is that an input Pressure value of say 17.3 could produce the same results as any
value in the range 12.3 < Pressure < 22.3. This being the case, strict functional equivalence of an
implementation with a specification might be considered too restrictive. Suppose that it is now
acceptable for the original implementation of PTRIP to merely produce an output that is within
tolerance. This means that for every value of Pressure there is some value, say P, such that

Pressure — 5 < P < Pressure + 5
and when PTRIP is evaluated at the discretized value of Pressure, applying f PressTrip to P

produces the same result.

Restate theorem Sentripl as a new theorem Sentrip 4 to take this tolerance into account.
Prove the theorem. (HINT: One way to do it involves the use of existential quantification over a
dependent type.)



sentrip : THEORY
BEGIN

Trip: TYPE = {Tripped, NotTripped}
Altype: TYPE = {i: nat |0 <iAi<5000}

f PressTrip(Pressure : real, f PressTripS1: Trip): Trip = TABLE
‘ Pressure < 2400 ‘ 2400 < Pressure A Pressure < 2450 ‘ Pressure > 2450 ‘

‘ NotTripped ‘ f PressTripS1 ‘ Tripped ‘
ENDTABLE

PTRIP(PRES : Altype, PREV : bool) : bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| FALSE | PREV | TRUE |
ENDTABLE

Trip2bool(TripVal : Trip) : bool = TABLE
‘ TripVal = Tripped ‘ TripVal = NotTripped ‘
\ TRUE \ FALSE |
ENDTABLE

bool2Trip(BoolVal : bool) : Trip = TABLE
| BoolVal = TRUE | BoolVal = FALSE |

‘ Tripped ‘ NotTripped ‘
ENDTABLE

real2Altype(z : real): Altype = TABLE
|2<0]0 < zAz < 5000 | z > 5000 |

| 0 | floor(x) | 5000 |
ENDTABLE

Sentripl : THEOREM
(V (Pressure : real, f PressTripS1: Trip) :
f PressTrip(Pressure, f PressTripS1) =
bool2Trip(PTRIP (real2Altype(Pressure), Trip2bool(f_PressTripS1))))

END sentrip

Figure 1: Formatted PVS specification for pressure sensor trip example



