Name: oo
Student Numbercovveevieieeaann...

Software Engineering 2F04

DAY CLASS Dr. Mark Lawford
DURATION OF EXAMINATION: 3 Hours
McMaster University Final Examination December 2000

THIS EXAMINATION PAPER INCLUDES 6 PAGES AND 4 QUESTIONS. YOU ARE RESPON-
SIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY
DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special Instructions: The use of calculators, notes, and text books is not permitted during this
exam. Answer all questions in the provided answer booklets. Fill in your name and student number
and sign each booklet you use. This paper must be returned with your answers.

Useful Factoids:
Rules Governing Equality

Ia : - (V2)(z =)

Ib : - (Va)[z =t — (¢ © [z, t|z])]

Ic : - (Vo)(Vy)(z =y = y = z)

Id : F (V2)(Vy) (Vo) (z =y Ay =2 > 2 = 2)

. Propositional & Predicate Logic (30 marks)

a) (6 marks) Show the following useful tautologies:

i)
(P—=(@—R)< (PAQ—R)
ii)
(PVQ—R)& (PR AQ— R)
b) (5 marks) Consider the following predicate logic formula:
¢ : (Vz)(¥y)(vz)(Rey A Ryz — Rzz)

i) Find an interpretation structure Sy such that S; = ¢.
ii) Find an interpretation structure S such that Ss = —¢.
iii) Is ¢ a logical theorem?

Continued on page 2

Software Engineering 2F04 Final Exam Page 2 of 6

c) (6 marks) Determine if the following set of premises is consistent or inconsistent. Justify your
answer with a formal proof or interpretation structure as need be.

I':= {(V2)[Pz — (Fy)Quzy], [(Fz)=Pz V (Fy)Qyyl}

d) (7 marks) Determine if the following argument is valid or invalid. Justify your answer with a
formal proof or interpretation structure as need be.

Premises: (Vz)(Raz — a =2V a=0),(3z)Raz,Sa A —~Sb
Conclusion: Raa

e) (6 marks) Determine if the following set of premises is consistent or inconsistent. Justify your
answer.

I':={E2)(Vy)(z = y), (F)(Fy)x # y}
2. Partial Functions and PVS Typechecking (20 marks)

a) (6 marks) Consider the following formula know as the “axiom of reflection” in traditional logical
systems:

(Vo) (Vy)(z =y = f(z) = f(y))
i) Show that this formal is a logical theorem of our (Rubin) traditional logic system by formally
proving:

F (Vo) (Vy)(z =y = f(z) = f(y))

ii) When considered in a traditional analysis (“Parnas”) style logic system, this formula is not
a logical theorem. i.e.,

7 (Vo) (Vy) (@ =y — f(z) = f(y))

Supply an concrete interpretation for f using the universe of real numbers and explain why
this is the case.

b) (10 marks) Create the “best” PVS definitions for the following functions:

i) f(z) = 2% + 4z — 5 [Hint: use a little calculus to figure out the minimum of f(x).]
ii) For f(x) defined as above:

1
9(@) = 7059
iii) For f(z) defined as above:
(e, y) = —————
Ty —f@) -9

c) (4 marks) Let ¢[t|x] be a valid substitution. Explain why

L, (Vz)p F o iff T, (Vx)o, ¢[t|x] - ¢

Continued on page 3

Software Engineering 2F04 Final Exam Page 3 of 6

. Predicate Logic & Mathematical Induction (20 marks)

a) (5 marks) Assuming that our universe of interpretation is the natural numbers, write down the
formal predicate logic equation that represents the statement:

For every n the quantity 11™ — 4™ 4s divisible by 7.
b) (10 marks) Use mathematical induction to informally prove the statement from part (a).

c) (5 marks) Let us consider why rule MI is a valid rule of inference. In this problem you will
show how the antecedents of rule MI can be used to write down a proof of ¢[2|n] and ¢[a|n] in

general. Let I' := {¢[0|n], (Ym)(d[m|n] — ¢[m + 1|n])}.

i) Formally show that [- ¢[2|n].
ii) What lines would you add to the proof in (i) to show I' F ¢[3|n]?
iii) Given some a € N, how many lines would it take to show I' - @[a|n]?

. Software Verification with PVS (30 marks)

In this problem we will add some additional functionality to the simplified pressure sensor trip
example from Assignment 5. Recall that the pressure trip monitors a pressure sensor and is then
“tripped” when the sensor value exceeds a normal operating setpoint. The pressure sensor trip
makes use of deadbands to eliminate sensor chatter. An updated version of the specification and
the actual implementation for the sensor trip are give in Figure 1 by f _PressTrip and PTRIP,
respectively. In the function definitions, f PressTripS1 and PREV play corresponding roles as the
arguments for the previous value of the state variable computed by the function.

The definitions of £ PressTrip and PTRIP have been modified so that the theorem Sentrip1l at the
bottom of the specification in Figure 1 is now easily proved. Thus we conclude that the implemen-
tation PTRIP will produce the correct output that is equivalent to the specification £ PressTrip
output for all possible inputs.

As the software project’s formal verification expert, you have been assigned to check the implemen-
tation of some new functionality that has been added to the pressure trip module. The module
is now suppose to also implement a trip status indicator that is used to flag when pressure sensor
trip has occurred. Once every 3 seconds the Trip Computer transmits the status indicator flag to
the operator’s display computer. The transmitted indicator value depends upon the history of the
pressure sensor trip in the previous 3 seconds. If there was a sensor trip at any time during the last
3 seconds, the transmitted indicator value is TRUFE, otherwise, it is FALSE.

The specification of the trip status indicator function is given by the vertical condition table
f_PressStatus shown in Figure 2. When the condition on the left is TRUE, the value on the
right is returned. The interpretation of this table is that if the current value of £ PressTrip is
tripped (i.e., there is a sensor trip) then the status indicator f PressStatus is set to TRUE.
When there is not a sensor trip, if it is time to transmit (i.e., variable Transmit is TRUE when the
current time is a multiple of 3 seconds) then f PressStatus is “cleared” by setting it to FALSE.
Otherwise £ _PressStatus is left at its previous value f PressStatusS1.

Figure 2 also contains the formatted PVS for this version of the implementation. To efficiently meet
all the specifications for the pressure trip module, the developers have decided to partially compute
the status output at the same time that PTRIP is computed. This is done by using a table of the
same structure as PTRIP in the implementation function STATUS. Here PREV is the previous value
of STATUS.

Continued on page 4

Software Engineering 2F04 Final Exam Page 4 of 6

sentrip : THEORY
BEGIN

Trip: TYPE = {Tripped, NotTripped}
Altype: TYPE = {i: nat | 0 <iAi <5000}

f PressTrip(Pressure : real, f PressTripS1: Trip): Trip = TABLE
| Pressure < 2400 | 2400 < Pressure A Pressure < 2450 | Pressure > 2450 |

‘ NotTripped ‘ f PressTripS1 ‘ Tripped ‘
ENDTABLE

PTRIP(PRES : Altype, PREV : bool) : bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| FALSE | PREV | TRUE |
ENDTABLE

Trip2bool(TripVal : Trip) : bool = TABLE
‘ TripVal = Tripped ‘ TripVal = NotTripped ‘
| TRUE | FALSE |
ENDTABLE

bool2Trip(BoolVal : bool) : Trip = TABLE
| BoolVal = TRUE | BoolVal = FALSE |

‘ Tripped | NotTripped |
ENDTABLE

real2Altype(z : real): Altype = TABLE
|2<0]0 < zAz < 5000 [z > 5000 |
| 0 | floor(x) | 5000 |
ENDTABLE

Sentripl : THEOREM
(V (Pressure : real, f PressTripS1: Trip) :
f PressTrip(Pressure, f PressTripS1) =
bool2Trip(PTRIP (real2Altype(Pressure), Trip2bool(f_PressTripS1))))

END sentrip

Figure 1: Formatted PVS specification for the fixed pressure sensor trip example

Continued on page 5

Software Engineering 2F04 Final Exam Page 5 of 6

f PressStatus(f_PressTrip : Trip, f_ PressStatusS1, Transmit : bool) : bool = TABLE

f PressTrip = Tripped TRUE
—(f_PressTrip = Tripped) A Transmit FALSE
—(f_PressTrip = Tripped) A =Transmit | f PressStatusS1
ENDTABLE

STATUS(PRES : Altype, PREV : bool): bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| PREV | PREV | TRUE |
ENDTABLE

Statusl : THEOREM
(V (Pressure : real, f PressTripS1: Trip, f PressStatusS1, Transmit: bool) :
f PressStatus(f_PressTrip(Pressure, f_PressTripS1), f_PressStatusS1, Transmit) =
IF—(Transmit) THEN STATUS(real2AIType(Pressure), f PressStatusS1)
ELSE FALSE
ENDIF)

Figure 2: Formatted PVS input for the trip status indicator block comparison

In addition to the tabular function, the implementation contains the main program thread that
provides the function call sequence for the main program loop. The computation of the imple-
mentation status output is finished in in the main program thread by a conditional statement that
checks the Transmit value to determine when it is time to transmit the status, in which case it
resets the indicator value to FALSE (i.e., it sets the value the STATUS to to FALSE once it is
transmitted). This part of the status indicator computation is modeled by the IF-THEN-ELSE
statement that is part of the block comparison theorem.

The definitions from Figure 2 are appended to the specification in Figure 1. Attempting to prove
the block comparison theorem Statusl results in several unprovable sequents, including the one
below:

{-1} Transmit!1
{-2} f_PressTripS1!1 = Tripped

{1} Pressure!l < 2400

a) (5 marks) Write down the characteristic equation for the unprovable sequent.

b) (5 marks) State a new theorem called Status2 that could be used to prove that the implemen-
tation does not meet the specification. This would provide confirmation that the unprovable
sequent for theorem Statusl results from inconsistencies between the specification and imple-
mentation and not from a poor choice of PVS prover commands by the verifier. This is an
example of refutation theorem proving where a software engineer tries to prove that the imple-
mentation is NOT equivalent to the specification.

c) (5 marks) Find all the values of Transmit!1, Pressure!l and f PressTripS1!1 that provide
counter examples for the characteristic equation you found in (a).

Continued on page 6

Software Engineering 2F04 Final Exam Page 6 of 6

d) (5 marks) Pick specific values for Transmit!1, Pressure!1, f PressStatusS1!1 and f PressTripS1!1
that provide a counter example and confirm that it provides a counter example to theorem
Statusl by evaluating
f PressStatus(f_PressTrip(Pressure!l,f PressTripS1!1),f PressStatusS1!1,Transmit!1)
and
IF NOT(Transmit) THEN STATUS(real2AItype(Pressure),f PressStatusS1) ELSE FALSE
and comparing the results.

e) (5 marks) How could the implementation be altered to fix this problem? (HINT: Think about
how you could use the current value of PTRIP in the main program loop.)

f) (5 marks) Assume that initially f PressTripS1= NotTripped and that the other previous state
values are initially FALSE. The update functions f PressTrip, PTRIP, f PressStatus and
STATUS are called once every second and the value of transmit is TRUFE every 3 seconds.
Sketch a sequence of inputs for Pressure and the resulting sequence of outputs produced by
the specification and implementation that results in specification and implementation having
different status outputs for an extended period of time.

“Why did I choose software? ...I hate everything about it!” - 2F04 student

The End

