SFWR ENG 2F04 Assignment 3: Resolution Theorem Proving & Predicate Logic Syntax, Interpretations and Proofs

Due: 1130 Tuesday October 30, 2001

- 1. Resolution Theorem Proving
 - a) (5 marks) A version of indirect proof known as *reductio ad absurdum* (RAA) is when one shows that some sequence of premises $\Gamma = \{\phi_1, \phi_2, \ldots, \phi_n\}$ is a valid argument for ψ by showing that $\Gamma, \neg \psi$ is inconsistent. Show that this is a derived rule by showing that if $\Gamma, \neg \psi \vdash \bot$ then $\Gamma \vdash \psi$.
 - **b**) (10 marks) Resolution rules of inference:
 - i) Show $p \lor q, \neg q \lor r \models p \lor r$ using truth tables. Therefore we have valid rule of inference Rule R1: "If $\Gamma \vdash \phi \lor \psi$ and $\Gamma \vdash \neg \psi \lor \chi$ then $\Gamma \vdash \phi \lor \chi$." We summarize this rule as follows:

$$\frac{\phi \lor \psi \quad \neg \psi \lor \chi}{\phi \lor \chi} R1$$

- ii) Show $p \lor \neg q, q \lor r \vdash p \lor r$ by formal proof using only the rules from the lecture slides on propositional logic.
- iii) Given the proof $p \lor \neg q, q \lor r \vdash p \lor r$, why can we conclude that $p \lor \neg q, q \lor r \models p \lor r$? This provides the valid rule of inference Rule R2: $\Gamma \vdash \phi \lor \neg \psi$ and $\Gamma \vdash \psi \lor \chi$ then $\Gamma \vdash \phi \lor \chi$."

$$\frac{\phi \lor \neg \psi \quad \psi \lor \chi}{\phi \lor \chi} R2$$

These two rules together with the commutativity of \lor , the rule Premise for stating a premise, $\neg e$ and the additional rule

$$\frac{\phi \lor \bot}{\phi} \bot e_2$$

comprise the complete set of rules of inference for resolution (refutation) theorem proving.

c) (10 marks) You will use resolution theorem proving to prove the following:

$$p \to q, \neg (q \land \neg r), \neg r \models \neg p$$

- i) Replace $p \to q$ and $\neg(q \land \neg r)$ by logically equivalent formulas ϕ_1 and ϕ_2 that only use \lor and \neg .
- ii) Using only the rules of inference mentioned in (b) above, formally prove that prove that

$$\phi_1, \phi_2, \neg r, p \vdash \bot$$

- 2. Huth+Ryan p. 101 2, 3, 4, 5, 6
- 3. Huth+Ryan p. 108 1 (a)-(e), 2
- 4. Huth+Ryan p. 135 1, 2, 3, 5, 6
- 5. Huth+Ryan p. 139 1, 2, 5, 6