SFWR ENG 2F04 Assignment 5: Typechecking, Induction, Software
Verification, and much, much more!

Due: 1630 Monday December 3, 2001

All of your PVS work for this assignment should be done in a single file called a5_01.pvs. Download
this file from the web at the URL: http://www.cas.mcmaster.ca/ lawford/2F04/Notes/a5_01.pvs.

It contains some of the PVS you will need to do this assignment. You will have to add to this file as
detailed in the questions below. When you are done the PVS part, you will submit it electronically as a
PVS dump file called a5_01.dmp. Written work will be handed in I'TC/201 on the due date.

NOTE: For up to date information on how all you voracious little PVS piranhas can submit your work to
the sacrificial cow, please check out the URL:

http://www.cas.mcmaster.ca/ lawford/2F04/e-submissions.html

1. Partial Functions, PVS Typechecking & Predicate Subtypes in Logic (20 Marks)

a) (6 marks) Consider the following formula know as the “axiom of reflection” in traditional logical
systems:

(Vo) (Vy)(z =y = f(z) = f(y))

i) Show that this formal is a logical theorem of our (Huth+Ryan) traditional logic system by
formally proving:

F (Vz)(Vy)(z =y = f(z) = f(y))

ii) When considered in a traditional analysis (“Parnas”) style logic system, this formula is not
a logical theorem. i.e.,

7 (Vz)(Vy)(z =y = f(z) = f(y))

Supply an concrete interpretation for f using the universe of real numbers and explain why
this is the case.

b) (10 marks) In the theory a5Q1 create the “best” PVS definitions for the following functions:

i) f(z) = 2% + 4z — 5 [Hint: use a little calculus to figure out the minimum of f(x).]
ii) For f(x) defined as above:

1
90 = Fay 59
iii) For f(x) defined as above:
h(z,y) = v
Ty =T+

Prove all resulting TCCs to make sure that your functions are always defined.

c) (4 marks) Let ¢[t|x] be a valid substitution. Explain why
I, (Vz)¢ = ¢ iff T, (Vo) o, §lt|a] - o
2. Proof by Induction (30 Marks Total)

a) (10 marks) By hand prove

i) Huth+Ryan p.56# 3.
ii) Huth+Ryan p.56# 5.

b) (15 marks) Prove both of the above in PVS by proving theorems Q2bi and Q2bii respectively
in theory abQ2. As the first proof step use the (INDUCT "n") command to let PVS know you
are attempting a proof by induction on the variable n. Next, use the command (EXPAND """)
to rewrite the exponent shorthand in terms of the recursive function expt(r,n). Expand the
definition of expt in the bottom part of the sequent but not the top, then use the (BOTH-SIDES
...) command to obtain something that you can use with the (REPLACE ...) command. Use
the PVS/Getting Help/help-pvs-prover and help-pvs-prover-command menu options for more
information on these commands.

c) (5 marks) The following rule, call Rule MI, is an aziom of Peano Arithmetic (i.e. it can be used
on any line of a proof for a formula of Peano Arithmetic):

F ¢[0/n] AVm(d[m/n| — ¢[m + 1/n]) — Vne

Here ¢ is a formula of Peano Arithmetic, n € FV(¢) and m is a “new” variable that does not
occur in ¢.

Informal mathematical induction involves showing (i) #[0/n] is true and (ii) assuming that ¢[m/n]
is true, you show that ¢[m + 1/n] is true. Use formal proof rules to show why this is sufficient to
prove Vneo.

3. Software Verification with PVS (50 marks)

In this problem we study the verification of a simplified pressure sensor trip that monitors a pressure
sensor and is “tripped” when the sensor value exceeds a normal operating setpoint. The specification
of the pressure sensor trip makes use of deadbands to eliminate “sensor chatter”. The specification
and the actual implementation for the sensor trip are give in Figure 1 by f PressTrip and PTRIP,
respectively. In the function definitions, f PressTripS1 and PREV play corresponding roles as the
arguments for the previous value of the state variable computed by the function.

Figure 1 also contains the supporting type and abstraction function definitions for verifying that
the implementation meets the specification. The abstraction function real2AItype models the A/D
(analog to digital) conversion of the pressure sensor value by taking the integer part of its input
using the floor function from the PVS prelude file. It is used to map the real valued specification
input Pressure to the discrete implementation input PRES which has type AIType. AIType consists
of the subrange of natural numbers between 0 and 5000. The functions Trip2bool and bool2Trip
convert back and forth between the specifications enumerated type Trip and the implementation’s
use of bool to represent the trip state.

The PVS theory sentrip that generated Figure 1 is at the end of the file a5_01.pvs. Use it as a
starting point to complete the following questions.

a) (5 marks) At the bottom of the specification in Figure 1, the theorem Sentripl is an example
of a block comparison theorem. Typecheck the sentrip theory and prove Sentripl. What does
this tell you about the specification and implementation?

b) (5 marks) The module is also supposed to implement a trip status indicator that is used to flag
when pressure sensor trip has occurred. Once every 3 seconds the Trip Computer transmits the
status indicator flag to the operator’s display computer. The transmitted indicator value depends
upon the history of the pressure sensor trip in the previous 3 seconds. If there was a sensor trip
at any time during the last 3 seconds, the transmitted indicator value is TRU F, otherwise, it is
FALSE.

The specification of the trip status indicator function is given by the vertical condition table
f PressStatus shown in Figure 2. When the condition on the left is TRUFE, the value on the
right is returned. The interpretation of this table is that if the current value of £ PressTrip is

sentrip : THEORY
BEGIN

Trip: TYPE = {Tripped, NotTripped}
Altype: TYPE = {i: nat | 0 <iAi <5000}

f PressTrip(Pressure : real, f PressTripS1: Trip): Trip = TABLE
‘ Pressure < 2400 ‘ 2400 < Pressure A Pressure < 2450 ‘ Pressure > 2450 ‘

‘ NotTripped ‘ f PressTripS1 ‘ Tripped ‘
ENDTABLE

PTRIP(PRES : Altype, PREV : bool) : bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| FALSE | PREV | TRUE |
ENDTABLE

Trip2bool(TripVal : Trip) : bool = TABLE
‘ TripVal = Tripped ‘ TripVal = NotTripped ‘
| TRUE | FALSE |
ENDTABLE

bool2Trip(BoolVal : bool) : Trip = TABLE
| BoolVal = TRUE | BoolVal = FALSE |

‘ Tripped | NotTripped |
ENDTABLE

real2Altype(z : real): Altype = TABLE
|2<0]0 < zAz < 5000 | z > 5000 |
| 0 | floor(x) | 5000 |
ENDTABLE

Sentripl : THEOREM
(V (Pressure : real, f PressTripS1: Trip) :
f PressTrip(Pressure, f PressTripS1) =
bool2Trip(PTRIP (real2Altype(Pressure), Trip2bool(f_PressTripS1))))

END sentrip

Figure 1: Formatted PVS specification for the fixed pressure sensor trip example

tripped (i.e., there is a sensor trip) then the status indicator f PressStatus is set to TRUE.
When there is not a sensor trip, if it is time to transmit (i.e., variable Transmit is TRUE when
the current time is a multiple of 3 seconds) then f_PressStatus is “cleared” by setting it to
FALSE. Otherwise f_PressStatus is left at its previous value f_PressStatusS1.

Figure 2 also contains the formatted PVS for this version of the implementation. To efficiently

f_ PressStatus(f_PressTrip : Trip, f_PressStatusS1, Transmit : bool) : bool = TABLE

f PressTrip = Tripped TRUE
—(f_PressTrip = Tripped) A Transmit FALSE
—(f_PressTrip = Tripped) A —=Transmit || f PressStatusS1
ENDTABLE

STATUS(PRES : Altype, PREV : bool) : bool = TABLE
| PRES < 2400 | 2400 < PRESAPRES < 2450 | PRES > 2450 |

| PREV | PREV | TRUE |
ENDTABLE

Statusl : THEOREM
(V (Pressure : real, f PressTripS1: Trip, f PressStatusS1, Transmit : bool) :
f PressStatus(f_PressTrip(Pressure, f PressTripS1), f PressStatusS1, Transmit) =
IF—(Transmit) THEN STATUS(real2AIType(Pressure), f_PressStatusS1)
ELSE FALSE
ENDIF)

Figure 2: Formatted PVS input for the trip status indicator block comparison

meet all the specifications for the pressure trip module, the developers have decided to partially
compute the status output at the same time that PTRIP is computed. This is done by using a
table of the same structure as PTRIP in the implementation function STATUS. Here PREV is the
previous value of STATUS.

In addition to the tabular function, the implementation contains the main program thread that
provides the function call sequence for the main program loop. The computation of the imple-
mentation status output is finished in in the main program thread by a conditional statement
that checks the Transmit value to determine when it is time to transmit the status, in which case
it resets the indicator value to FALSE (i.e., it sets the value the STATUS to to FALSE once it is
transmitted). This part of the status indicator computation is modeled by the IF-THEN-ELSE
statement that is part of the block comparison theorem.

The definitions from Figure 2 are appended to the specification in Figure 1. Attempting to prove
the block comparison theorem Status1 results in several unprovable sequents, including the one
below:

{-1} Transmit!1
{-2} f_PressTripS1!1 = Tripped
{1} Pressure!l < 2400

c) (5 marks) Write down the characteristic equation for the unprovable sequent.

d) (5 marks) Find all the values of Transmit!1, Pressure!l and f PressTripS1!1 that provide
counter examples for the characteristic equation you found in (c).

e)

f)

g)

h)

(5 marks) Pick specific values for Transmit!1, Pressure!1, f PressStatusS1!1 and f PressTripS1!1

that provide a counter example and confirm that it provides a counter example to theorem
Statusl by evaluating

f PressStatus(f_PressTrip(Pressure!l,f PressTripS1!1),f PressStatusS1!1,Transmit!1)
and

IF NOT(Transmit) THEN STATUS(real2AItype(Pressure),f_PressStatusS1) ELSE FALSE
and comparing the results.

(5 marks) Using PVS state and prove a new theorem called Status2 that could be used to prove
that the implementation does not meet the specification. This would provide confirmation that
the unprovable sequent for theorem Status1 results from inconsistencies between the specification
and implementation and not from a poor choice of PVS prover commands by the verifier. This
is an example of refutation theorem proving where a software engineer tries to prove that the
implementation is NOT equivalent to the specification.

(5 marks) Assume that initially f PressTripS1= NotTripped and that the other previous state
values are initially FALSE. The update functions f PressTrip, PTRIP, f PressStatus and
STATUS are called once every second and the value of transmit is T"RU E every 3 seconds. Sketch a
sequence of inputs for Pressure and the resulting sequence of outputs produced by the specifica-
tion and implementation that results in specification and implementation having different status
outputs for an extended period of time.

(15 marks) How could the implementation be altered to fix this problem? (HINT: Think about
how you could use the current value of PTRIP in the main program loop.) Add any additional
definitions that you require to fix the implementation in the sentrip theory and then state
and prove a theorem called Status3 that proves that if £ PressTripS1=Trip2bool (PREV) and
PREV=b0012Trip(f PressTripS1i) (i.e., previous values agreed) then the implementation is equiv-
alent to the specification (current values agree).

