SFWR ENG 2F04 Assignment 1: Propositional Semantics

Due: 1720 Tuesday September 24, 2002

- 1. Huth+Ryan p. 5-6 4, 7, 10 (c),(f),(g)
- 2. Huth+Ryan p. 42-44 1(d),(k);3, 6, 10, 12
- 3. Huth+Ryan p. 49-51 1, 3, 5, 6
- 4. Huth+Ryan p. 75-76 5, 7, 8
- 5. Hilbert Systems

Hilbert style systems for propositional logic write all the other operators in terms of \rightarrow and \perp and make use of tautologies (c)(i)-(iii) below and all their substitution instances together with the single rule of inference modus ponens to obtain a consistent and complete proof system.

- a) i) Write down the truth table for $p \to Q$.
 - ii) The constant symbols \top and \bot are interpreted as T (true) and F (false) respectively. Find the simplest propositional logic formula that uses only \bot and \rightarrow and is logically equivalent to \top .

NOTE: No propositional variables or operators other than \rightarrow can occur in the formula so you are NOT allowed to use $\neg \perp$ as your answer!

- **b)** Show that you can "build the world" using \rightarrow with the help of the propositional constant \perp . To do this first show that $\neg p$ can be written in terms of \rightarrow and \perp . Next show that $p \lor q$ can be written using \neg and \rightarrow . Finally show that $p \land q$ can be written in terms of \lor and \neg . Since we know that any formula has a logically equivalent DNF formula that only uses \neg, \lor and \land we are done!
- c) Verify that the following are tautologies:

i)
$$\neg(\neg p) \rightarrow p$$

- ii) $p \to (q \to p)$
- iii) $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$
- **iv)** $(p \lor q \leftrightarrow r) \rightarrow (\neg a \land b \rightarrow (p \lor q \leftrightarrow r))$ (Note: There is an easy way for (iv)!)