
SFWR ENG 2F04 Assignment 5: Typechecking, Induction, Software
Verification, and much, much more!

Due: 1630 Monday December 2, 2002

To help you with the PVS related questions (2, 4, and 5) for this assignment, download the following
file from the web at the URL: http://www.cas.mcmaster.ca/~lawford/2F04/Notes/a5_02.pvs.

1. Partial Functions in Logic

a) Consider the following formula know as the “axiom of reflection” in traditional logical systems:

∀x∀y(x = y → f(x) = f(y))

i) Show that this formal is a logical theorem of our (Huth+Ryan) traditional logic system by
formally proving:

` ∀x∀y(x = y → f(x) = f(y))

ii) When considered in a traditional analysis (“Parnas”) style logic system, this formula is not
a logical theorem. i.e.,

6` (∀x)(∀y)(x = y → f(x) = f(y))

Supply an concrete interpretation for f using the universe of real numbers and explain why
this is the case.

b) Write down the most concise formulas in both the IMPS/Parnas (analysis style) logic and bounded
quantification (PVS style) logic that could be used to specify that A, an N element array of
integers, has the property:

The array does not contain a strictly increasing sequence of elements.

2. PVS Typechecking & Predicate Subtypes in Logic

a) In the theory a5Q2 create the “best” PVS definitions for the following functions:

i) f(x) = x2 + 4x− 5 [Hint: use a little calculus to figure out the minimum of f(x).]

ii) Create the “best” PVS definitions for the function: g(x, y) = ln(x− y2)

Try to prove all resulting TCCs to make sure that your functions are always defined.

3. Proof by Induction

a) Huth+Ryan p.56# 3.

b) Huth+Ryan p.56# 5.

c) Prove using mathematical induction that for all n ≥ 0, the value of n2 + 5n+ 1 is odd.

d) Let f be a unary function symbol that we will interpret asfM(x) = x2 + 5x+ 1. Assuming that
our universe of interpretation is the natural numbers, write down a formal predicate logic formula
for the statement that we proved in part (a) above.

4. Tabular Specifications Consider the tabular definition:

f(x, y) =
C1(x, y) C2(x, y) C3(x, y)
f1(x, y) f2(x, y) f3(x, y)

1

a) Assume functions f1, f2 and f3 are defined when C1, C2 and C3 are respectively true. Using our
standard notation for predicate calculus, write down the two formulas, one for Disjointness and
one for Completeness, that PVS would require a user to prove for the above table. In this case
the Disjointness and Completeness proof obligations (TCCs) are sufficient to guarantee that the
table defines a (total) function.

b) The PVS example in Figure 1 provides some insight as to why the Disjointness conditions gener-
ated by PVS are overly restrictive. The theorem “same” can be easily proved using the (GRIND)
command but when a file containing the definitions is type checked, the disjointness condition
fails for f2. For the table used to define f in part (a) above, create a weaker “disjointness” con-

.

x: VAR real

%--------------%

f1(x): real = TABLE |[x<0 | x>=0]|

%--------------%

| x | 2*x ||

ENDTABLE %--------------%

%---------------%

f2(x): real = TABLE |[x<=0 | x>=0]|

%---------------%

| x | 2*x ||

ENDTABLE %---------------%

same: THEOREM FORALL (x:real): f1(x)=f2(x)

Figure 1: Disjointness condition counter example

dition that together with the completeness condition provides necessary and sufficient conditions
for the table defining f to be a total function.

c) Although the weakened “disjointness” condition together with the usual completeness condition
provides necessary and sufficient conditions for a table to define a function. Why is it preferable
for software engineers to use the more strict disjointness condition when using tables to specify
the functional requirements of software?

5. Software Verification

Consider the code fragment shown in Figure 2 that is supposed to implement a linear search for an
element key in an n element array that runs from 0 to n− 1.

In order to check that this code fragment is correct, a diligent program has formulated the PVS
input shown in Figure 3 to verify the correctness of the loop. (NOTE: (A(i)/=key) is short for
NOT(A(i)=key).) The programmer tries to prove all of the TCCs generated by the file and the
THEOREMs C1, C2 and C3. It is possible to prove C1 and C3 but not C2. Also, there is one TCC the
programmer is unable to prove.

The TCC that the programmer is unable to prove is shown in Figure 4 together with the sequent
that results when trying to prove it.

a) If the programmer had been able to prove all of the theorems, could the programmer ignore the
unproven TCC? Explain your answer briefly with reference to the purpose of TCCs in PVS.

2

i := 0;
while 0 ≤ i ≤ n ∧ A(i) 6= key do

i := i+ 1;
end;

Figure 2: Program fragment for Question 5

prog_ver : THEORY

BEGIN

n: int

i: VAR nat

AType: TYPE+

key: VAR AType

A(i:{k:nat|k<=n-1}):AType

V(i,key):bool = (0<= n)

B(i,key):bool = (0<=i) & (i<=n) & (A(i)/=key)

I(i,key):bool = (0<=i) & (i<=n) & (forall (j:{k:nat|k<=i-1}): A(j)/=key)

P(i,key):bool = (0<=i) & (i<=n) & (forall (j:{k:nat|k<=i-1}): A(j)/=key)

& (i=n OR A(i)=key)

C1: THEOREM V(i,key) => I(0,key)

C2: THEOREM I(i,key)& B(i,key) => I(i+1,key)

C3: THEOREM I(i,key)& NOT B(i,key) => P(i,key)

END prog_ver

Figure 3: PVS code for Question 5

% Subtype TCC generated by B(i,key) for i

% unfinished

B_TCC1: OBLIGATION

FORALL (i): 0 <= i AND i <= n IMPLIES i >= 0 AND i <= n - 1

[-1] 0 <= i!1

[-2] i!1 <= n

|-------

[1] i!1 <= n - 1

Rule?

Figure 4: Unproven TCC for Question 5

3

b) Write down the characteristic equation for the above sequent and find a counter example to the
equation.

c) Is your counter example for the sequent a counter example for B TCC1 proof obligation?

d) Why does the definition of predicate B generate B TCC1 and why is it unprovable?

e) The predicate B(i,key) is taken from the condition of the while. What is this unprovable TCC
telling you is wrong with the program fragment? How could the program fragment be fixed?

f) The predicates I(i,key) and P(i,key) both make use of the expression:

(forall (j:{k:nat|k<=i-1}): A(j)/=key)

What is the value of this expression when i = 0? Does it depend upon the interpretation of the
array A and the value of key?

(HINT: Consider the negation of the formula.)

4

