
Name: ...
Student Number

Software Engineering 2F04

DAY CLASS Dr. Mark Lawford
DURATION OF EXAMINATION: 3 Hours
McMaster University Final Examination December 2002

THIS EXAMINATION PAPER INCLUDES 6 PAGES AND 4 QUESTIONS. YOU ARE RESPON-
SIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY
DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special Instructions: The use of calculators, notes, and text books is not permitted during this
exam. Answer all questions in the provided answer booklets. Fill in your name and student number
and sign each booklet you use. This paper must be returned with your answers.

NOTE: Tables of proof rules appear at the back of the exam.

1. Predicate Logic I (20 marks)

In the following, assume that f : A→ A, g : A→ A and h : A→ A are all unary functions.

a) (5 marks) Write down a predicate logic formula φ such that FV (φ) = {y} (y is the only free
variable in φ) with the property that φ is true if and only if y is in Im(h).

b) (5 marks) Write down a predicate logic formula that is true if and only if Im(h) ⊆ Im(g). (This
should be a sentence - no free variables!).

c) (10 marks) Formally prove the following:

` ∀x(h(x) = g(f(x))) → ∀y(∃x(h(x) = y) → ∃x(g(x) = y))

2. Predicate Logic II (25 Marks Total)

a) Consider the following sequence of formulas:

Γ := ∃x∀y¬Q(x, y),

∃x(Q(x, x) ∧ ∀y(Q(y, y) → x = y)),

∃x∃y∃z(Q(x, y) ∧Q(x, z) ∧ y 6= z),

∀x(f(x) = x→ ∃yQ(y, x))

The intended interpretation for these formulas is a FSM model M where:

A := {a, b, c, d, e} is the universe, the finite set of states

fM(x) := a is the reset function that returns the FSM to the initial state a,

and the interpretation of Q, denoted QM, is the FSM transition relation yet to be determined.

In your summer job as a software developer you are given Γ as a formal specification and told
to create two different versions of the transition relation QM.

Continued on page 2

Software Engineering 2F04 Final Exam Page 2 of 6i) (3 marks) First, find a QM such that for this interpretation of Q we have M 6|= Γ.

ii) (7 marks) Next, find a different QM such that for this interpretation of Q we have M |= Γ.

b) Consider the new sequence of formulas:

Γ′ := ∃x∀y¬Q(x, y),

∃x(Q(x, x) ∧ ∀y(Q(y, y) → x = y)),

∃x∃y∃z(Q(x, y) ∧Q(x, z) ∧ y 6= z),

∀x(f(x) = x→ ∃yQ(y, x)),

∀x∀y∀z(Q(x, y) ∧Q(x, z) → y = z)

c) (10 marks) Determine if Γ′ is inconsistent. Note: Informal arguments are not acceptable. Only
a formal proof or a model will be accepted.

d) (5 marks) Based upon your answer to the previous question, does there exists a graph that
provides a model M such that M |= Γ′? Draw the graph or explain why no such graph exists.

3. Mathematical Induction (20 Total Marks)

a) (10 marks) Let i =
√
−1 (i.e. i2 = −1). In this question you will use mathematical induction to

prove DeMoivre’s Theorem. Prove that for all n ≥ 1,

(cos x+ i sinx)n = cos(nx) + i sin(nx)

Hint: The easy way to do this is use the fact that eiω = cosω + i sinω, or alternatively you
can remember your Trig identities cos(A + B) = cosA cosB − sinA sinB and sin(A + B) =
sinA cosB + cosA sinB.

b) (10 marks) Let us consider why rule MI is a valid rule of inference. In this problem you will
show how the antecedents of rule MI can be used to write down a proof of φ[2|n] and φ[a|n] in
general. Let

Γ := φ[0/n],∀m(φ[m/n] → φ[m+ 1/n]), 0 + 1 = 1, 1 + 1 = 2

.

i) Formally show that Γ ` φ[2/n].

ii) What lines would you add to the proof in (i) to show Γ, 2 + 1 = 3 ` φ[3/n]?

iii) Given some a ∈ N, how many lines would it take to show:
Γ, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, . . . , (a− 1) + 1 = a ` φ[a/n]?

4. Tabular Software Specifications & Dependent Types (35 Total Marks)

A digital control system makes use of multiple sensors. The sensor values of all the analog inputs
to the system are stored in a 64 element array of reals called AI. In the array of sensor values there
are 4 Power, 2 Pressure, and 3 Temperature sensor values at the following locations:

Sensor Number of Array Index of
Type Sensors (N) Sensors Values

Power 4 6, 7, 8, 9
Pressure 2 62, 63

Temperature 3 1, 2, 3

Continued on page 3

Software Engineering 2F04 Final Exam Page 3 of 6A general sensor interface program, GetSensor(Sensor, N) , has been written that takes as
input the type of sensor and the number of sensors of that type and returns an array of N real
values containing the sensors values for specified type of sensor. E.g. GetSensor(Pressure,

2) returns a two element array of type real containing AI(62) and AI(63) in locations 1 and 2
respectively.

Theory GetSensors contains the function GetSensor which models the access program described
above. Note the use of dependent types in the range to model the variable size of the returned array.
Here LAMBDA(i:subrange(1,N)):AI(i+5) is the PVS notation for the λ (function) abstraction
operator you have seen in SFWR ENG 2A04. Thus this expression gives the function mapping
i ∈ {1, 2, . . . , N} to AI(i+5).

Trying to prove the Type Correctness Conditions (TCCs) for this theory results in several unproven
TCCs for the GetSensor function. Figure 2 is one of the unproven TTCs GetSensor TCC2. Beneath
it is the unprovable sequent that results when attempting to prove it.

a) (5 marks) Write down the characteristic formula for the unprovable sequent in Figure 2.

b) (5 marks) Find a counter example that makes the characteristic formula you obtained in (a)
false (i.e. find values of i!1 and N!1 that make the formula false) and confirm that it makes
GetSensor TCC2 false.

c) (5 marks) The unprovable TCCs indicate that the use of GetSensor could result in undefined
terms. What is the unprovable TCC GetSensor TCC2 indicating about potential problems
regarding the use of the access program GetSensor?

d) (10 marks) In the theory GetSensor, a horizontal condition table is used to define the function
f:Sensor t → N that maps a sensor type to the number of sensors (e.g. f(Pressure)=2). Write
down the completeness and disjointness TCCs that PVS would generate for this table to prove
that it defines a total function.

e) (5 marks) You will now give a new version of the function GetSensor called GetSensor2. Unlike
most sequels (e.g Harry Potter), this one will be better (e.g. Star Wars Episode 2). Eliminate
the possibility of undefined terms occurring in GetSensor2 through the use of dependent types
in the arguments and in the body of the COND statement (Hint: Use f).

Using this definition of GetSensor when performing software verification would force you to
prove that every call to the access program is made with the correct value of N.

f) (5 marks) A different implementation of GetSensor in a newer programming language makes
use of the languages ability to return arrays of different sizes without having to specify the
size of the return array in the function’s inputs. Define a function GetSensor3(Sensor) that
now only takes the sensor type as input and returns an array containing the appropriate sensor
values. Take car to insure that this new version of GetSensor does not have any undefined
terms. Explain why GetSensor3 as implemented in the newer programming language might be
“safer”.

“Can we use deMorgan’s? ” - almost every 2F04 student this year

Continued on page 4

Software Engineering 2F04 Final Exam Page 4 of 6GetSensors : THEORY

BEGIN

AI: ARRAY[subrange(1,64)->real]

Sensor_t: TYPE = {Power, Pressure, Temperature}

GetSensor(Sensor:Sensor_t,N:int):ARRAY[subrange(1,N)->real]=

COND

Sensor=Power -> LAMBDA(i:subrange(1,N)):AI(i+5),

Sensor=Pressure -> LAMBDA(i:subrange(1,N)):AI(i+61),

Sensor=Temperature -> LAMBDA(i:subrange(1,N)):AI(i)

ENDCOND

f(Sensor:Sensor_t):nat = TABLE

%-----------------------%

|Sensor=Power | 4||

%-----------------------%

|Sensor=Pressure | 2||

%-----------------------%

|Sensor=Temperature | 3||

%-----------------------%

ENDTABLE

END GetSensors

Figure 1: PVS code for Question 4

% Subtype TCC generated (at line 12, column 54) for i + 61

% expected type subrange(1, 64)

% unfinished

GetSensor_TCC2: OBLIGATION

FORALL (N: int, Sensor: Sensor_t):

Sensor = Pressure IMPLIES

(FORALL (i: subrange(1, N)): 1 <= i + 61 AND i + 61 <= 64);

GetSensor_TCC2 :

[-1] 1 <= i!1

[-2] i!1 <= N!1

|-------

[1] 61 + i!1 <= 64

Rule?

Figure 2: Unproven TCC for Question 4
Continued on page 5

Software Engineering 2F04 Final Exam Page 5 of 6Propositional Logic Proof Rules

introduction elimination

∧ φ ψ
φ ∧ ψ ∧ i φ ∧ ψ

φ
∧ e1

φ ∧ ψ
ψ

∧ e2

∨ φ
φ ∨ ψ ∨ i1

ψ
φ ∨ ψ ∨ i2 φ ∨ ψ

φ
...
χ

ψ
...
χ

——————– ∨ e
χ

→ φ φ→ ψ
ψ

→ e

φ
...
ψ

——— → i
φ→ ψ

↔ φ→ ψ ψ → φ
φ↔ ψ

↔ i
φ↔ ψ
φ→ ψ

↔ e1

φ↔ ψ
ψ → φ

↔ e2

¬

φ
...
⊥

——— ¬i
¬φ

φ ¬φ
⊥ ¬e

¬¬ φ
¬¬φ ¬¬i ¬¬φ

φ
¬¬e

⊥ see ¬e ⊥
φ

⊥e

Continued on page 6

Software Engineering 2F04 Final Exam Page 6 of 6Additional Propositional Logic Proof Rules

φ→ ψ
¬φ ∨ ψ → 2∨ ¬φ ∨ ψ

φ→ ψ
∨ 2 →

φ→ ψ ¬ψ
¬φ MT

φ ∨ ¬φ LEM

¬φ
...
⊥

——— RAA
φ

Additional Predicate Logic Proof Rules

introduction elimination

∀

x0

...
φ[x0/x]

—————– ∀i
∀xφ

∀xφ
φ[t/x]

∀e

∃ φ[t/x]
∃xφ ∃i ∃xφ

x0 φ[x0/x]
...
χ

——————— ∃e
χ

=
t = t

= i
t1 = t2 φ[t1/x]
—————– = e
φ[t2/x]

The End

