# Higher Order Logic

# Outline

- Motivation
- Identifying Sets with Predicates
- Higher Order Logic and Higher Order WFF
- The Order of a
  - 1. Predicate
  - 2. Quantifier
  - 3. WFF
  - 4. Logic
- Applications

## Motivation

How could you try to express reachability on an arbitrary graph using predicate logic?

Let R(x, y) be the transition relation of the graph, then state u could reach v if:

| u = v                                                                   | $\vee$                                                                                                                           |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| R(u,v))                                                                 | $\lor$                                                                                                                           |
| $\exists x_1(R(u,x_1) \land R(x,v))$                                    | $\vee$                                                                                                                           |
| $\exists x_1 \exists x_2 (R(u, x_1) \land R(x_1, x_2) \land R(x_2, v))$ | $\vee$                                                                                                                           |
|                                                                         | $u = v$ $R(u, v))$ $\exists x_1(R(u, x_1) \land R(x, v))$ $\exists x_1 \exists x_2(R(u, x_1) \land R(x_1, x_2) \land R(x_2, v))$ |

But this is an infinitely long formula and hence not a WFF of predicate logic.

# Motivation

Predicate Logic is also often referred to as *1st order logic*. We'll see why shortly.

Currently there are some important things regarding software that we cannot say in 1st order logic.

For example: Formally stating the rule for mathematical induction (MI).

$$\forall P(P(0) \land (\forall m(P(m) \to P(s(m)))) \to (\forall nP(n)))$$

where the intended interpretation  $s^{\mathcal{M}}(m) := m + 1$ .

Here the first  $\forall$  seems to be binding a predicate symbol rather than a variable so this is not a WFF in predicate logic. Motivation: Program Specification & Verification



If REQ is a function specifying the abstract requirements (desired behaviour) of the software and SOF is to be the concrete implementation (the "program"), we want to know if:

 $\exists SOF \,\forall m \in M(REQ(m) = OUT(SOF(IN(m))))$ 

i.e. does a program exist that meets the requirements?

#### Identifying Sets with Predicates (and Functions)

Recall that if P(x) occurs in a predicate logic formula  $\phi$ , when we create a model for  $\phi$  we choose universe A and an interpretation  $P^{\mathcal{M}} \subseteq A$  or alternatively we have to provide a characteristic function  $P^{\mathcal{M}} : A \to \{True, False\}$  and say  $P^{\mathcal{M}}(x)$  is True iff  $x \in P^{\mathcal{M}}$ .

Thus  $\forall x(P(x) \to Q(x))$  can be interpreted as  $P^{\mathcal{M}} \subseteq Q^{\mathcal{M}}$ .

Dropping the model superscript we can identify sets and predicates so, e.g. S(x, y, z) is True iff  $(x, y, z) \in S$ .

Recall that functions a just specialized relations or equivalently sets e.g. the function f(x) = 3x defines  $\{(x, y)|y = 3x\}$ 

## Higher Order Logic and Higher Order WFF

(Informal) Definition of Higher Order Logic:

A logic is called *higher order* if it allows sets to be quantified or if it allows sets to be elements of other sets.

A WFF (well formed formula) that quantifies a set or has a set as an argument to a predicate is called a higher-order WFF.

Example:

| $\exists SS(x)$                        | Set $S$ is quantified.                      |
|----------------------------------------|---------------------------------------------|
| $S(x) \wedge T(S)$                     | The set S is an element of $T$ .            |
| $\exists g \forall x (f(x) = h(g(x)))$ | Function $g$ is a set that is quantified.   |
| $P(f(x)) \vee Q(f)$                    | Function $f$ is a set that is an element of |
|                                        | set $Q$                                     |

## Order

So far we have really only used propositional logic (zero order logic) and predicate logic (first order logic).

How do we obtain second, third, ...,  $n^{th}$  order logic?

- A predicate has order 1 if all of its arguments are terms.
   Otherwise the predicate has order n + 1 where n is the max order of its arguments.
- A quantifier has order 1 if it quantifies an individual variable.
  Otherwise the quantifier has order n + 1 where n is the order of the predicate (or function) being quantified.
- The *order of a WFF* is the max of the order of its quantifiers and predicates.
- The order of a logic is the max of the order of its WFFs (i.e. an  $n^{th}$  order logic is a logic who's WFFs have order n or less.)

# Order (cont)

You can think of order as telling you how many levels you are from directly "eating" individuals.

1st Order Examples

S(x)S has order 1 $\forall x S(x)$ Both S and  $\forall x$  have order 1

2nd Order Examples

 $\forall P \forall x \forall y (R(x, y) \to P(x, y))$  $\forall y (P(f(x)) \land Q(y, f))$ 

P has order 1 and  $\forall P$  has order 2  $\forall y, P, f$  have order 1, Q has order 2

### Applications: Specifying reachability

Suppose R(x, y) denotes  $x \to y$  in a directed graph. We now have a formula for reachability that is independent of any particular model. State v is reachable from u if the following formula holds:

 $\forall P(\forall x \forall y \forall z)$ 

$$\begin{array}{c} (P(x,x) \wedge \\ (P(x,y) \wedge P(y,z) \rightarrow P(x,z)) \wedge \\ (R(x,y) \rightarrow P(x,y))) \\ \end{array}$$