
Software Eng. 2F03: Logic For Software

Engineering

Dr. Mark Lawford

Dept. of Computing And Software,

Faculty of Engineering

McMaster University

0-0

Motivation

Why study logic?

• You want to learn some “cool” math.

• You want to make the world a better, safer place.

• You want to save IntelTM a lot of money.

• You want to make a lot money yourself!

1

Cool Mathematics?

Halting Problem - It is impossible to write a diagnostic program

that will tell you if arbitrary programs terminate.

Gödel’s Incompleteness Theorems state that any formal

system that includes arithmetic is either:

Incomplete - there are some things that are true that can’t be

proved,

OR

Inconsistent - contains one or more contradiction that allow you

to prove things that are false.

All mathematicians are humbled in the face of Gödel!

2

You want to make the world a better, safer place?

Safety Critical Systems

Failure results in:

• physical injury or loss of life

• unacceptable financial loss

Applications Areas:

• Medical equipment

• Aerospace

• Process control - e.g. Darlington Nuclear Generating Station

Shutdown Systems (SDS)

NOTE: You have one chance to get it right!

3

Example Software System Failures:

• Medical equipment -

THERAC-25 radiation therapy machine killed several patients

• Aerospace -

Space shuttle - 1st flight delayed timing bug at initialization

Ariane 5 launcher - 1st flight self-destructed after 45 seconds due to

floating point overflow error in Inertial Guidance System

Other software related problems:

Process control - e.g. Nuclear Generating Station Shutdown Systems

(SDS)

• Spurious trips cost $$$

• Difficult to make modifications & even more difficult to get

regulatory approval for changes

4

Example: Reactor Shutdown System (SDS)

What is an SDS?

• watchdog system that monitors system parameters

• shuts down (trips) reactor if it observes “bad” behavior

• process control is performed a separate Digital Control computer

(DCC) - not as critical

Consider one simple “trip”:

• monitors plant parameters (Primary Heat Transport Pressure &

Reactor Power) using sensors & A/D conversion

• if parameters exceed set-points in particular way, shutdown (trip)

the reactor

5

Safety/Performance Considerations:

• Check for short circuits/sensor failures

• Use dead-band to eliminate “chatter”

• Power dependent set points increase operating margin

• “Condition out” sensor in unreliable operating region

• Digital trip output uses “-ve logic” (fail-safe in power loss)

Additional Considerations:

• Use multiple sensors to improve reliability

• There are many sensor trips, parameter trips, channel trips, warning

lights, input buttons, etc. that all have to be given the same fail-safe

treatment (i.e. 100s of functions)!

Electrical student’s reaction:

“But I never had to worry about that stuff in Matlab?”

- Welcome to the real world.

6

Computer science student’s reaction:

“Still way simpler than my 1st java text-editor applet.”

- Did it ever crash?

7

How can such systems be handled properly?

Review, Review, Review . . .

Multiple independent reviewers do:

• Software Requirements Specification (SRS) review

• Software Design Description (SDD) review

• Code review

Then . . . Test, Test, Test:

Independent testers do one & only one of:

• Unit Testing (UT) - test each individual program separately

• Software Integration Testing (SWIT) - test components when they

are combined

• Validation Testing - test system against original system requirements

Logic provides a precise, unambiguous method of specifying system

details for reviewers and testers

8

That’s still not enough!

• I’ve discovered incorrect designs that have been reviewed by as

many as 5 different people - there is just too much detail for a

person to catch everything!

• Testing can’t cover all possible cases - e.g. 1st shuttle flight

initialization CPU overload had 1 in 67 probability of occurring

• Minor changes result in another extensive (& expensive) round

of testing

Logic provides a means of mechanizing verification details -

Computer Aided Verification!

9

Computer Aided Verification

What is CAV? . . . Prove, prove, prove!

Use tools to mathematically “prove” a design implements a well defined

specification. E.g.

• Automated theorem proving of functional equivalence (i.e. use PVS

or IMPS to prove for all inputs x: Spec(x) = Design(x))

• Model-checking automatically verifies that a Design is a model of a

Spec written as a logical formula

Why use CAV Tools?

• Independent check of system unaffected by verifier’s expectations

• Domain coverage - Tools can often be used to check ALL input cases

• Tools let you automate verification and reverification

• Provide additional capabilities (e.g. generation of counter example

for debugging, type checking, verifying whole classes of systems, etc.)

10

You want to save IntelTM $125 M?

• The PentiumTm floating point bug could have been detected by

CAV.

• CAV was used after the bug was detected to prove the

proposed fix corrected the problem.

• PVS has been used to verify similar circuits

You want to make a lot money?

• Learn Mathematical Logic and Computer Aided Verification.

• Chip makers, Utilities & Aerospace Companies will pay you a

lot to use these skills.

11

