A very brief introduction to program verification

Robert L. Baber for 2F04 2001 November 30

Overview

- 1. Precondition, postcondition
- 2. Selected lemmata ("proof rules")
 - 2.1 assignment statement
 - 2.2 while loop
- 3. Correctness proof for a simple program (example)
- 4. Conclusions

- If the truth of a condition V
- before executing a program statement S guarantees that a condition P is true afterward, then we say that

V is a *precondition* of the *postcondition* P with respect to the program statement S, written {V} S {P}.

(ambiguous but can be reformulated mathematically)

Proof rules: assignment statement

A1: $\{P_{(E)}^x\}$ x := E $\{P\}$

(the value of x after = the value of E before, so P after = $P_{(E)}^{x}$ before)

A2: If $V \Rightarrow P_{(E)}^{x}$ then $\{V\} x := E \{P\}$

Use A1 to derive a precondition, A2, to verify a precondition.

Proof rule: while loop

If {V} init {I} and $\{I \land B\} S \{I\}$ and $I \land \neg B \Rightarrow P$ then {V} init; while B do S endwhile {P} "I" is the *loop invariant*.

Example of a correctness proposition

 $\{n \in \mathbb{Z} \land 0 \leq n\}$ |V|i := 1 while i \leq n and A(i) \neq key do [B]i := i+1invariant { $n \in \mathbb{Z} \land i \in \mathbb{Z} \land 1 \leq i \leq n+1 \land_{i=1}^{i-1} A(j) \neq key$ } endwhile $\{n \in \mathbb{Z} \land i \in \mathbb{Z} \land 1 \leq i \leq n+1 \land_{i=1}^{i-1} A(j) \neq key\}$ \land (i=n+1 \lor A(i)=key)} $|\mathbf{P}|$

Example of a correctness proposition

By the applicable proof rules, the program will be correct (satisfy its specification V, P) if:

- 1. {V} i:=1 {I}, i.e. if V \Rightarrow I_1^i
- 2. {I \land B} i:=i+1 {I}, i.e. if I \land B \Rightarrow Iⁱ_(i+1)

3. I $\land \neg B \Rightarrow P$

1. V \Rightarrow Iⁱ₁ ?

I_{1}^{i} $= n \in \mathbb{Z} \land 1 \in \mathbb{Z} \land 1 \leq 1 \leq n+1 \land_{j=1}^{1-1} A(j) \neq key$ $= n \in \mathbb{Z} \land 0 \leq n$ =

V

7

2. $\mathbf{I} \wedge \mathbf{B} \Rightarrow \mathbf{I}^{i}_{(\mathbf{i}+1)}$?

$I^{i}_{(i+1)}$ $n \in \mathbb{Z} \land i+1 \in \mathbb{Z} \land 1 \le i+1 \le n+1 \land_{i=1}^{i+1-1} A(j) \ne key$ $n \in Z \land i \in Z \land 0 \leq i \leq n \land_{i=1}^{i} A(j) \neq key$ \leftarrow $n \in \mathbb{Z} \land i \in \mathbb{Z} \land 1 \leq i \leq n \land_{i=1}^{i-1} A(j) \neq key \land A(i) \neq key$ $I \wedge B$

3. I $\wedge \neg B \Rightarrow P$?

$I \land \neg B$

$n \in Z \land i \in Z \land 1 \le i \le n+1 \land_{j=1}^{i-1} A(j) \neq key$ $\land (i > n \lor A(i) = key)$

 $n \in Z \land i \in Z \land 1 \le i \le n+1 \land_{j=1}^{i-1} A(j) \neq key$ $\land (i=n+1 \lor A(i)=key)$

Conclusions

- Mathematical verification eliminates guesswork (+1?, 0?, -1?, n+1?, n?, n-1?)
- Use proof rules to decompose correctness proposition to be proved (to Boolean ⇒s).
- Proving is a mechanistic process; creativity is in design, not verification.
- But most importantly: Use proof rules as design guidelines → program correct by design

Further information

 4/6L03 (MRSD) lecture notes at http://www.cas.mcmaster.ca/~baber/Courses/ 46L03/MRSDLect.pdf

 other literature in 4/6L03 course outline http://www.cas.mcmaster.ca/~baber/Courses/ 46L03/COut46L03.html