
A very brief introduction to
program verification

Robert L. Baber
for 2F04

2001 November 30



1

Overview

1. Precondition, postcondition
2. Selected lemmata (“proof rules”)

2.1 assignment statement
2.2 while loop

3. Correctness proof for a simple program 
(example)

4. Conclusions



2

Precondition, postcondition

If the truth of a condition V
before executing a program statement S
guarantees that a condition P is true afterward,
then we say that
V is a precondition of the postcondition P with 
respect to the program statement S,
written {V} S {P}.

(ambiguous but can be reformulated mathematically)



3

Proof rules: assignment statement

A1: {Px
(E)} x := E {P}

(the value of x after = the value of E before,
so P after = Px

(E) before)

A2: If V ⇒ Px
(E)

then {V} x := E {P}

Use A1 to derive a precondition,
A2, to verify a precondition.



4

Proof rule: while loop

If
{V} init {I} and
{I ∧ B} S {I} and
I ∧ ¬ B ⇒ P

then
{V} init; while B do S endwhile {P}

“I” is the loop invariant.



5

Example of a correctness proposition

{n∈ Z ∧ 0≤n} [V]
i := 1
while i≤n and A(i)≠key do [B]

i := i+1
invariant {n∈ Z ∧ i∈ Z ∧ 1≤i≤n+1 ∧ j=1

i-1 A(j)≠key}
endwhile [I]
{n∈ Z ∧ i∈ Z ∧ 1≤i≤n+1 ∧ j=1

i-1 A(j)≠key
∧ (i=n+1 ∨ A(i)=key)} [P]



6

Example of a correctness proposition

By the applicable proof rules, the program will be 
correct (satisfy its specification V, P) if:
1. {V} i:=1 {I}, i.e. if V ⇒ Ii

1

2. {I ∧ B} i:=i+1 {I}, i.e. if I ∧ B ⇒ Ii
(i+1)

3. I ∧ ¬ B ⇒ P



7

1. V ⇒⇒⇒⇒ Ii
1 ?

Ii
1

=
n∈ Z ∧ 1∈ Z ∧ 1≤1≤n+1 ∧ j=1

1-1 A(j)≠key
=

n∈ Z ∧ 0≤n
=

V 



8

2. I ∧∧∧∧ B ⇒⇒⇒⇒ Ii
(i+1) ?

Ii
(i+1)

=
n∈ Z ∧ i+1∈ Z ∧ 1≤i+1≤n+1 ∧ j=1

i+1-1 A(j)≠key
=

n∈ Z ∧ i∈ Z ∧ 0≤i≤n ∧ j=1
i A(j)≠key

⇐
n∈ Z ∧ i∈ Z ∧ 1≤i≤n ∧ j=1

i-1 A(j)≠key ∧ A(i)≠key
=

I ∧ B



9

3. I ∧∧∧∧ ¬¬¬¬B ⇒⇒⇒⇒ P ?

I ∧ ¬ B
=

n∈ Z ∧ i∈ Z ∧ 1≤i≤n+1 ∧ j=1
i-1 A(j)≠key

∧ (i>n ∨ A(i)=key)
=

n∈ Z ∧ i∈ Z ∧ 1≤i≤n+1 ∧ j=1
i-1 A(j)≠key

∧ (i=n+1 ∨ A(i)=key)
=

P



10

Conclusions

● Mathematical verification eliminates guesswork 
(+1?, 0?, -1?, n+1?, n?, n-1?)

● Use proof rules to decompose correctness 
proposition to be proved (to Boolean ⇒ s).

● Proving is a mechanistic process; creativity is in 
design, not verification.

● But most importantly: Use proof rules as design 
guidelines → program correct by design



11

Further information

● 4/6L03 (MRSD) lecture notes at
http://www.cas.mcmaster.ca/~baber/Courses/
46L03/MRSDLect.pdf

● other literature in 4/6L03 course outline
http://www.cas.mcmaster.ca/~baber/Courses/
46L03/COut46L03.html


