Motivation

Q: How do you

• define an infinite domain, or
• prove properties of an infinite domain?

A: Use induction.

Examples of infinite domains: Natural numbers \(\mathbb{N} \), set of all predicate logic formulas, languages generated by finite state automata, etc.

These can be defined recursively.

Recall definition of predicate logic formulas:

Def: A *formula* is defined as follows:

1. If \(t_1, \ldots, t_n \) are terms and \(P \) is an \(n \)-ary predicate symbol \(P(t_1, \ldots, t_n) \) is an (*atomic*) formula.

2. If \(\phi \) and \(\psi \) are formulas, so are:

\[
\neg \phi, (\phi \land \psi), (\phi \lor \psi), (\phi \rightarrow \psi), (\phi \leftrightarrow \psi)
\]

\(\top \) and \(\bot \) are also formulas.

3. If \(x \) is a variable and \(\phi \) is a formula, then so are \((\forall x \phi) \) and \((\exists x \phi) \).

Formula is defined in terms of itself.
Misuse of Induction

Consider function \(f(n) = \frac{1}{100.0001 + n^2 - n^3} \):

\[
\begin{align*}
 f(1) &= 0.01 \\
 f(4) &= 0.000651 \\
 f(5) &= 0.000421 \\
 f(6) &= 0.000296
\end{align*}
\]

Therefore for every \(n \geq 1 \), \(f(n) \leq 0.01 \).

Wrong! \(f(100) = 10 \)

It is not sufficient to show \(\phi \) is true for several \(n \) to conclude \(\forall n \phi \).

Peano Arithmetic

How do we define \(\mathbb{N} \) rigorously?

Use 0 and successor function \(s : \mathbb{N} \to \mathbb{N} \). Can define \(+ \) and \(\cdot \) in terms of \(s \).

Then \(s^M(n) = n + 1 \) as expected.

1. 0 is a natural number.
2. If \(n \) is a natural number then so is \(s(n) \).
3. 0 is not a successor: \(\forall x(s(x) \neq 0) \)
4. Uniqueness of successors:
 \(\forall x \forall y (s(x) = s(y) \to x = y) \)
5. Induction postulate: For any formula \(\phi \)
 \(\phi[0/x] \land \forall y (\phi[y/x] \to \phi[s(y)/x]) \to \forall x \phi \)

Mathematical Induction

Rule MI: Let \(\phi \) be any formula of Peano Arithmetic. Then if

1. Base Step: \(\vdash \phi[0/n] \), and
2. Inductive Step:
 \(\vdash \forall n (\phi[m/n] \to \phi[m + 1/n]) \)

Then \(\vdash \forall n \phi \) by Rule MI.

Why is this a valid rule of inference? By 1 and repeatedly applying \(\forall e \) followed by \(\to e \) (modus ponens) on 2 can create proof for any natural number \(k \).

Do informal proof using mathematical induction of:

\(\forall n (2(n + 2) \leq (n + 2)^2) \)
Changing the Base Case

How do we prove $2^n < n!$ for $n \geq 4$ using mathematical induction?

More generally, how do we show:

$$\forall n (n \geq n_0 \rightarrow \phi)$$

1. Base Step: $\vdash \phi[0/n]$
2. Inductive Step: Show
 $$\vdash \forall m (m \geq n_0 \land \phi[m/n] \rightarrow \phi[m + 1/n])$$

Then conclude $\forall n (n \geq n_0 \rightarrow \phi)$ by Rule MI.

Ex. Informal proof of $\forall n (n \geq 4 \rightarrow 2^n < n!)$

Complete Induction

Thm: Complete Induction (CI) Let ϕ be a formula of Peano Arithmetic s.t. $x \in FV(\phi)$ and y, z do not occur in ϕ. Then

$$\phi[0/x] \land \forall y [\forall z (z \leq y \rightarrow \phi[z/x]) \rightarrow \phi[y + 1/x]]$$

is a theorem of Peano Arithmetic (i.e. its true).

Interpretation: If you can show

1. ϕ is true at 0, and
2. By assuming ϕ is true for every natural number up to and including y, you can prove $\phi[y + 1/x]$ is true.

Then conclude ϕ is true for every natural number.

Application: Correctness of Loops

Assertion: Any statement about a program state.

Def: Let C be a program statement or sequence of statements, $\{P\}$ be **precondition** of C, an assertion on the initial state and $\{Q\}$ be a **postcondition**, an assertion on the final state. Then $\{P\}C\{Q\}$ is a **Hoare triple**.

Ex 1: $\{True\}a := b(a = b)$ or equivalently $\{a := b(a = b)\}$.

Ex 2: $\{y \neq 0\}x := 1/y\{x = 1/y\}$

The While Rule: Let C be a piece of code such that: $\{D \land I\}C\{I\}$. Then

$$\{D \land I\} \text{ while } D \text{ do } C \{\neg D \land I\}$$

$\neg D$ is the **exit condition** and I is the **loop invariant**.
Proof of While Rule:
Assume loop terminates in \(n \) iteration.
Must show \(\neg D \land I \) upon termination. But \(\neg D \) must be true upon termination so remains to show \(I \).

Base case: \(I \) is true before entering loop so \(I \) true for 0 iterations

Inductive case: Assume \(I \) true after \(m \) iterations for \(0 \leq m < n \).
Must show \(I \) is true after \(m + 1 \) iterations.
But \(D \) is true before executing \(C \) for the \(m + 1 \)th time since loop does not terminate after \(m \) iterations \((m < n)\).
Also \(I \) is true before execution by inductive hyp.
\(\{D \land I\} \) is a precondition for \(m + 1 \) execution \(C \).
Therefore \(\{I\} \) is a postcondition since \(\{D \land I\} \subseteq \{I\} \).
Q.E.D.

Suppose you have a very RISCy CPU that uses addition to do multiplication \(n \cdot a \) with the code:

\[
\begin{align*}
\text{sum} & := 0; \\
n & := 0; \\
\text{while } j < n \\
\text{Begin} \\
& \quad \text{sum} := \text{sum} + a; \\
& \quad j := j + 1; \\
\text{End}
\end{align*}
\]
Assume \(n \geq 0 \). Take
\(D : j \neq n \)
\(I : \neg j \leq n \land \text{sum} = j \cdot a \)

Checklist for proving loop correct:

1. \(I \) true before loop
2. \(I \) is loop invariant: \(\{D \land I\} \subseteq \{I\} \)
3. Execution terminates
4. Use \(\neg D \land I \) to prove desired property
 (e.g. \(\text{sum} = n \cdot a \))