Partial Functions and Undefined Terms in Logic

©2001 M. Lawford

Outline

• Preliminaries
• Motivation
• A cautionary tale
• Methods of handling partial functions
• Comparison of methods
• Summary

Preliminaries:
Partial & Total Functions

Let A and B be sets. Let $f \subseteq A \times B$ such that if $(a,b) \in f$ and $(a,b') \in f$ then $b = b'$. In this case we write $f : A \rightarrow B$ and call f a function.

We often do not make a distinction as to whether the function is defined for every possible argument (i.e. is f totally defined for all of A or only partially defined?).

Def: Let $\text{dom}(f) = \{a \in A|\exists b \in B : f(a) = b\}$ be the domain of f. If $\text{dom}(f) = A$ we say that f is a total function, otherwise we say that f is a partial function.

E.g. Addition $+ : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and multiplication $\cdot : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are total functions but division $/ : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is partial. (Why?)

Motivation:

In our definition of predicate logic:

• Only one “sort” of objects, those in our universe A.
• All functions are total: $f(a,b)$ is always some element of A
• All predicates are always defined: $P(f(a,b), c)$ is either true or false. I.e. $P : A^2 \rightarrow \{F,T\}$ is total.

Value of logical expressions containing undefined terms is undefined: $1/0 \neq 2/0$

Thus not “allowed” to reason about / on \mathbb{R}!

Problems with current logic:

1. Often don’t care about all values.
2. Makes notation cumbersome.
3. Restricts what we can say.
Motivation:

Ex. 1 - Consider statement: “There is a student who has a passing mark in every course.”

\[\exists x(S(x) \land \forall y(C(y \rightarrow P(m(x,y)))) \]

What is \(m(x,y) \) or \(m(y,x) \)?

Ex. 2 - Dealing with arrays: An \(n \) element array \(f \) does not contain any duplicate elements:

\[\forall i \forall j (1 \leq i \leq n \land 1 \leq j \leq n \land i \neq j \rightarrow f(i) \neq f(j)) \]

or alternatively

\[\forall i \forall j (1 \leq i \leq n \land 1 \leq j \leq n \land i = j \rightarrow f(i) = f(j)) \]

Partial functions in Logic Wish List

Partial functions are often used to specify software and are implemented in software.

For software engineering we need a way of specifying observed behavior of a program using logic that has:

1. Total predicates: Must have ‘yes” or “no” answer, not “maybe”.
2. Concise notation: If it is too complicated, it will not be used (correctly) or understood.
3. Intuitive: Must capture engineer’s intended meaning.
4. Consistent: Must not get “false positives” (must not be able to “prove” that programs satisfies a specification when it does not)

Methods for handling partial functions

a) Traditional analysis: Define consistent way of dealing with undefined terms

b) Traditional logic: Eliminate undefined terms by making all functions total through Types and Bounded Quantification

c) Three valued logic - True, False & Undefined

Method (c) makes predicates partial so we won’t consider it.
A Cautionary Tale: Do formal “proof” of \(1 = 2\).

Traditional Analysis Approach:

Used in theorem prover IMPS and some practical software engineering approaches.

Main Idea: Any atomic predicate containing an undefined term is False!

Note: Ex. 3 now has intended meaning

\((x \geq 0 \rightarrow y = \sqrt{x}) \land (x < 0 \rightarrow y = \sqrt{-x})\)

is equivalent to \(y = \sqrt{|x|}\).

Caveat: \(\neg(\sqrt{x} \leq \sqrt{y}) \not\equiv \sqrt{x} > \sqrt{y}\)

Traditional Analysis Approach to Partial Functions and Undefinedness

Terms (expressions) may be undefined

- Constants, variables always defined
- Functions may be partial so their application might be undefined (e.g. \(1/0, \sqrt{-1}\))
- Application of function is undefined if any argument is undefined (e.g. \(0 * 1/0\) is undefined)

Once values are assigned to free variables, any formula must be either true or false.

How? Make predicates total by say that predicates (including \(=\)) are False if any argument is undefined.

Thus \(1/0 \neq 1/0\)

Restriction of Quantifiers

Often want to restrict ourselves to considering \(x\)’s of certain type.

\[\forall x(P(x) \rightarrow Q(x))\]

\[\exists x(P(x) \land Q(x))\]

E.g. In Dilbert \(\forall x(Manager(x) \rightarrow Idiot(x))\)

\[\exists x(Animal(x) \land \neg Glasses(x))\]

What is the relationship between these two forms?

\[\neg \forall x(P(x) \rightarrow Q(x)) \iff \exists x(P(x) \land \neg Q(x))\]

Why?

Note: Other styles of quantification

\((\forall x \in P)Q(x)\) or \(\forall x \in P : Q(x)\)

mean same as \(\forall x(Px \rightarrow Qx)\)

\(\exists x(Px \land Qx)\) is also written:

\((\exists x \in P)Q(x)\) or \(\exists x \in P : Q(x)\)

read “There exists an \(x\) in \(P\) such that \(Q(x)\) holds.”

This starts to lead into Type Theory.
Bounded Quantification

Idea: Restrict quantification to values in domain of function \(f \) i.e. \((\forall x \in \text{dom}(f))Q(f(x))\)

Problem: Works for Traditional Analysis Approach where undefined terms allowed but not Traditional Logic Approach where all functions must be total. Why?

\[
(\forall x \in \text{dom}(f))Q(f(x)) \text{ means } \\
\forall x(x \in \text{dom}(f) \rightarrow Q(f(x)))
\]

Solution: Make Bounded Quantification a primitive operation and check that terms never undefined:

\[(\forall x : P)Q(f(x))\] is a formula of a (strongly) typed logic if:

i) \(P \subseteq \text{dom}(f) \) and

ii) \(\{f(x)|x \in P\} \subseteq \text{dom}(Q) \)

(Recall \(Q : \text{dom}(Q) \rightarrow \{T,F\} \))

If (i) and (ii) hold then \((\forall x : P)Q(f(x))\) is true in an interpretation structure iff for every \(x \in P \), \(f(x) \in Q \).

Traditional Logic Approach (Bounded Quantification):

Used by PVS and many formal mathematical logics.

Main idea: Universe divided into different “types”. All functions have their domain restricted to the elements on which they are defined making all functions total.

E.g. In PVS Prelude file

\[
\text{nonzero}_\text{real}: \text{NONEMPTY}_\text{TYPE} = \{r: \text{real} \mid r \neq 0\} \\
\text{nzreal}: \text{NONEMPTY}_\text{TYPE} = \text{nonzero}_\text{real}
\]

\(+, -, *, /: [\text{real, real} \rightarrow \text{real}] \\
/: [\text{real, nzreal} \rightarrow \text{real}]
\]

\(/ : \mathbb{R} \times \{r \in \mathbb{R} | r \neq 0\} \rightarrow \mathbb{R} \)

All function and predicate arguments are type checked to ensure that no terms are undefined. Before reasoning about \(x/y \), must prove \(y \neq 0 \).

Ex. 3 revisited

\[
\text{sqrt: [nonneg_real} \rightarrow \text{nonneg_real}]
\]

\[
P1: \text{PROPOSITION FORALL (x,y:real):} \\
\text{IF x}=0 \text{ THEN } y=\sqrt{\text{x}} \text{ ELSE } y=\sqrt{-\text{x}} \text{ ENDMIF}
\]

\[
P2: \text{PROPOSITION FORALL (x,y:real):} \\
\text{IF x}=0 \text{ THEN } y=\sqrt{\text{x}} \text{ ELSE } y=\sqrt{-\text{x}} \text{ ENDMIF} \\
\text{IFF (y=\sqrt{\text{abs(x)})}}
\]

From PVS Prelude file:

\[
\text{nonneg_real: NONEMPTY_TYPE = \{x: real} \mid x \geq 0\} \\
\text{CONTAINING 0}
\]

\[
\text{m, n: VAR real} \\
\text{abs}(m): \{n: \text{nonneg_real} \mid n \geq m\} \\
\text{ = IF m < 0 THEN -m ELSE m ENDMIF}
\]

Eliminating Undefined Terms by Type-checking

PVS forces you to prove that all terms are defined before you can conclude your proof is correct.

E.g. Taking \(\sqrt{-x} \) in PROPOSITIONS P1 and P2 results in following proof obligation or “Type correctness condition”:

\[
\% \text{ Subtype TCC generated (at line 13, column 53)} \\
\% \text{ for } -x \\
\% \text{ unchecked} \\
P1_\text{TCC1: OBLIGATION} \\
\text{(FORALL (x: real): NOT x} \geq 0 \text{ IMPLIES } -x \geq 0)
\]

11

12

13

14
Another Comparison of Styles

Ex. 4a: “The value of x is found in array f”
$$\exists (f(i) = x)$$
When undefined terms are allowed, the size of array, whether the index starts from 0 or 1 (or -39) does not matter. This will be true only if there is a matching value in the array.

In typed logic:

Define domain and range types and declare type of array

```
index: TYPE
T: NONEMPTY_TYPE
f: [index->T]
x: VAR T
P3: PROPOSITION (EXISTS (i:index): f(i) = x)
```

Ex. 4b: “The value of x is found in the N element array f or all values in f are not equal to x”
$$\exists (f(i) = x) \lor \forall ((1 \leq i \leq N) \rightarrow f(i) \neq x)$$
The above formula is used when undefined terms are allow. The predicate $(1 \leq i \leq N)$ is a necessary guard condition. Why?

In typed logic:

Define domain and range types and declare type of array before stating theorem.

```
N:posmat
index: TYPE={i:int | 1=i & i=N} CONTAINING 1
T: NONEMPTY_TYPE
f: [index->T]
x: VAR T
P4: PROPOSITION (EXISTS (i:index): f(i) = x) OR
    (FORALL (i:index): NOT(f(i) = x))
```

Summary

Traditional Analysis Approach

Allows undefined terms & makes any atomic predicate applied to an undefined term False (i.e. $a = 1/0$ is False).

Advantages:
- Directly supports partial functions
- Concise
- Supports abstract, implementation independent specifications.

Disadvantages:
- Requires guard terms for universal quantifications
- Treatment of undefined terms leads to non-standard relationship among basic math operators e.g. $\neg(x < \sqrt{x})$ is not logically equivalent to $x \geq \sqrt{x}$ (Why?)

Summary

Traditional Logic Approach

Makes bounded quantification a primitive operation and then uses types to eliminate undefined terms, making all functions total.

Advantages:
- No guard terms for universal quantifications
- Normal relationship between standard math operators
- Typechecking provides tool for detecting errors

Disadvantages:
- Not as concise
- No direct support for partial functions - requires definition of domain to make function total
- Specification closer to implementation