Predicate Logic with Equality

©1998, 1999 M. Lawford
Outline

• Rules of Inference for Identity (\(=\))

• Equality & Interpretation Structures

• PVS Commands for Dealing with \(=\)
Predicate Logic With Equality

Equality needed to state many useful properties:

E.g. There is one (unique) student with the highest average:

\[(\exists x)(Sx \land Hx \land (\forall y)(Sy \land H\ y \rightarrow x = y))\]

E.g. An \(n \) element array \(f \) of integers does not contain any duplicate elements:

\[(\forall x)(\forall y)(1 \leq x \land x \leq n \land 1 \leq y \land y \leq n \land x \neq y \rightarrow f(x) \neq f(y))\]

or alternatively

\[(\forall x)(\forall y)(1 \leq x \land x \leq n \land 1 \leq y \land y \leq n \land f(x) = f(y) \rightarrow x = y)\]
Rules of Inference for Identity (\(=\))

Recall: \(\phi[t|x]\), the substitution of \(t\) for \(x\) in \(\phi\) is the formula obtained by replacing every free occurrence of \(x\) by \(t\).

Def: \(\phi[x, t|x]\) is the formula obtained by replacing *some* free occurrences of \(x\) in \(\phi\). \(\phi[x, t|x]\) is also called a *valid substitution* if no free variable in an occurrence of \(t\) is bound in \(\phi[x, t|x]\).

Rule I: Rules for Identity

a) Reflexivity of equality: \(\vdash (\forall x)(x = x)\)

b) Substitution of equal terms:
\[
\vdash (\forall x)[(x = t) \to (\phi \leftrightarrow \phi[x, t|x])]\]

c) Symmetry of equality:
\[
\vdash (\forall x)(\forall y)(x = y \to y = x)\]

d) Transitivity of equality:
\[
\vdash (\forall x)(\forall y)(\forall z)(x = y \land y = z \to x = z)\]
Use of Rule I

(c) and (d) can be derived using (a) and (b) (See Rubin p. 230-1)

We can write \(t = t \) on any line of a proof. Why?

\[
\begin{align*}
 n & | \Gamma \vdash (\forall x)(x = x) & \text{I - Reflexivity} \\
 (n + 1) & | t = t & n \ \text{US} [t|x]
\end{align*}
\]

Try proof of: \(\Gamma \vdash Raa \) for

\[
\Gamma = \{(\forall x)(Rax \rightarrow a = x \vee a = b), (\exists x)(Rax), Sa \neg Sb\}
\]
Equality & Interpretation Structures

In interpretation structures = must always be interpreted as the “diagonal relation” if Rule I is to be valid.

<table>
<thead>
<tr>
<th>=</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>b</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>c</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>:</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>. .</td>
</tr>
</tbody>
</table>

In terms of relations = is the subset U × U given by:

\[\{(x, x) | x \in U\}\]

i.e. a = b is true in S iff a and b are the same element.
PVS Commands for Dealing with =

(EXPAND "t1") and (EXPAND "t1" "t2" ...)

equality: THEORY

BEGIN
x,y:VAR real
a:real=1
f(x,y):real = x+y
g(x,y):real = x+y

Ia: THEOREM f(y,a)=g(y,1)
END equality

To prove THEOREM Ia you can just use (SKOLEM!) to eliminate universal quantifiers and then use variants of the (EXPAND ...) command to expand definitions (EXPAND* "f" "g") (EXPAND "a").
PVS Commands for Dealing with \(=\)

Q: How do you use premises with top level \("=\)" in PVS that are not definitions?

A: The PVS equivalent of Rubin's Rule I part (b) Substitution of Equals: (REPLACE \(-n \ast LR\)).

Equation \(-n\) in the premises is of the form

\[t_L = t_R \]

The command makes all valid substitutions of \(t_R\) for \(t_L\) in all other formulas of the sequent!

Changing the argument LR with RL would replace right-to-left, performing all valid substitutions of \(t_L\) for \(t_R\).
Example: Rubin p.244 E11

equal11 : THEORY

BEGIN
U: TYPE+
P: PRED [U]
A, B, C, D: PRED [U]
x, y : VAR U
E11: THEOREM (FORALL x, y: A(x) & B(y) => x = y)
& (EXISTS x: A(x) & C(x)) & (EXISTS x: B(x) & D(x))
=> (EXISTS x: C(x) & D(x))
END equal11

Using a combination of (BDDSIMP), (SKOLEM!) and (INST?) reduces E11 to sequent

{-1} A(x!1)
{-2} B(x!2)
{-3} x!1 = x!2
{-4} C(x!1)
{-5} D(x!2)
 |-------
{1} D(x!1)
Now you can finish off the proof by replacing $x!1$ by $x!2$ as follows:

Rule? (REPLACE $-3 \ast LR$)
Replacing using formula -3,
this simplifies to:
E11 :

{-1} A($x!2$)
[-2] B($x!2$)
[-3] $x!1 = x!2$
{-4} C($x!2$)
[-5] D($x!2$)
|-----
{1} D($x!2$)

which is trivially true.
Q.E.D.