
Propositional Logic:

Part I - Semantics

12-0

Outline

• What is propositional logic?

• Logical connectives

• Semantics of propositional logic

• Tautologies & Logical equivalence Applications:

1. Building the world with NAND

2. Normal Forms & minimizing gate delays

• Logical implication, Valid arguments & Semantic entailment |=

13

A Bit of Notation

Consider negation on the real numbers R:

f(x) = −x

Then f : R → R is the signature of f meaning f takes a real

argument and produce a real.

Here − is a unary prefix operator meaning it takes one argument,

the number immediately following − (e.g., −(5) = −5). So really

− : R → R

Similarly + : R
2 → R

+ is a binary operator on R so we could treat it as a prefix operator

and write +(3,5)=8.

But this is tedious so we use infix notation and write 3 + 5 = 8.

14

What is Propositional Logic?

Def: A proposition is a statement that is either true or false.

E.g. p:“The prof looks tired.”

q:“We’re hungry and not able to eat.”

Propositional logic is a formal mathematical system for reasoning about

such statements.

The first statement p is an atomic proposition. It cannot be further

subdivided.

The 2nd statement q is a compound proposition that’s truth depends

upon the value of the two atomic propositions:

1. h:“We are hungry.” and 2. e:“We are able eat.”

The logical connectives “and” and “not” determine how the atomic

proposition affect q.

Restating q in the formal language of propositional logic:

q : h ∧ ¬e

15

16

Logical Connectives

Let T and F represent true and false respectively.

Define V := {T, F}, the set of possible truth values for a

proposition. In the following let p, q be propositional variables.

Negation: ¬ (NOT)

¬ : V → V

p ¬p

F T

T F

A truth table is tabular representation of the truth values of a

proposition under all possible assignments. The above is the table

for ¬p. Clearly it defines a function.

Truth tables define the meaning or interpretation propositions. We

call this the semantics of the propositional logic.

17

Conjunction: ∧ (AND)

∧ : V2 → V

p q p ∧ q

F F F

F T F

T F F

T T T

Other English equivalents: “p but q” - “The students are interested

but look bored.”

18

Disjunction: ∨ (OR)

∨ : V2 → V

p q p ∨ q

F F F

F T T

T F T

T T T

Note: This is a “non-exclusive OR”. Why?

19

Conditional: → (IMPLIES)

→: V2 → V

p q p→ q

F F T

F T T

T F F

T T T

Other English equivalents: “If p then q”, “p only if q”, “q if p”, “p

is sufficient for q”, “q is necessary for p”.

20

Biconditional: ↔ (IFF)

↔: V2 → V

p q p↔ q

F F T

F T F

T F F

T T T

Other English equivalents: “p if and only if q”, “p is equivalent to

q”, “p is necessary and sufficient for q”

21

Review: Precedence of Arithmetic Operators

We write: −5 · 2 + 10/5 − 8 and know that it means:

((−(5) · 2) + (10/5)) − 8 because the operators of arithmetic have

the implicit order of precedence

–> decreasing order –>

Do 1st <————-> Do last

−,
·

/
,

+

−

22

Precedence of Logical Connectives

We say that operators with a higher order of precedence “have a

tighter binding”.

Similarly for logical connectives we define the order of precedence

as:

Do 1st <————-> Do last

¬,
∧

∨
,

→

↔

Thus ((p ∧ ¬(q)) → r) becomes: p ∧ ¬q → r

23

Properties of Binary Operators

Def: A binary operator ∗ : V2 → V is commutative if for all values

of p, q ∈ V:

p ∗ q = q ∗ p

E.g. Addition and multiplication are commutative over the reals

but division is not.

∧,∨,↔ are commutative

but → is not!

p q p→ q q → p

F F T T

F T T F

T F F T

T T T T

24

Properties of Binary Operators

Def: A binary operator ∗ : V2 → V is associative if for all values of

p, q, r ∈ V:

(p ∗ q) ∗ r = p ∗ (q ∗ r)

E.g. + and · are associative over the reals but / is not (e.g.

(4/2)/2 = 1 but 4/(2/2) = 4).

∧,∨,↔ are associative. Therefore (p ∧ q) ∧ r and p ∧ (q ∧ r) “mean

the same thing” so we write p ∧ q ∧ r.

(Similar to writing 5 · 2 · 4 for integer mult.)

Note: (p ∧ q) ∨ r is NOT “equivalent” to

p ∧ (q ∨ r)! (Check using truth tables.)

25

→ is not associative!

p q r (p→ q) → r p→ (q → r)

0 F F F T F T T

1 F F T T T

2 F T F T F

3 F T T T

4 T F F

5 T F T

6 T T F

7 T T T

Row 0 of the truth table provides counter example so we can stop.

Note that there are 23 rows numbered 0 to 7 = 23 − 1.

26

In general, a truth table for compound proposition will have 2n

rows, where n= number of unique propositional variables occuring

in the expression.

Count in binary with F being 0 and T being 1 to cover all cases.

27

Tautologies and Contradictions

Def: A logical expression is a tautology (contradiction) if it is true

(false) under all possible assignments to its propositional variables.

E.g. p ∨ ¬p is a tautology since its truth table results in all T ’s

while p ∧ ¬p is a contradiction:

p ¬p p ∨ ¬p p ∧ ¬p

F T T F

T F T F

The negation of any tautology is a contradiction and vice versa.

Why?

If S is a tautology, then so is any substitution instance of it (i.e.

consistently replacing variables with any other formulas results in a

tautology!).

E.g (p→ q) ∨ ¬(p→ q) is a tautology.

28

Logical (Semantic) Equivalence

Def: Two propositional formulas are logically equivalent if they

have the same truth table.

This means the propositions define the same function from Vn to V

where n := number of propositional variables in the formulas.

E.g. The formulas ¬(p ∧ q) and ¬p ∨ ¬q define the same function

f : V2 → V

p q ¬(p ∧ q) ¬p ∨ ¬q

F F T T

F T T T

T F T T

T T F F

29

Logical (Semantic) Equivalence (cont)

Note that ¬(p ∧ q) and ¬p ∨ ¬q are logically equivalent iff

¬(p ∧ q) ↔ ¬p ∨ ¬q is a tautology. Why?

p q ¬(p ∧ q) ¬p ∨ ¬q ¬(p ∧ q) ↔ ¬p ∨ ¬q

F F T T

F T T T

T F T T

T T F F

This is why Rubin refers to logical equivalence as tautological

equivalence and when φ is logically equivalent to ψ writes: φ⇔ ψ.

Huth+Ryan refer logical equivalence as semantic equivalence and

write: φ ≡ ψ. It all means the same thing. The formulas have the

same truth table.

30

Building the World with NAND

NAND: (Negation of AND)

NAND : V2 → V

p q pNAND q ¬(p ∧ q)

F F T T

F T T T

T F T T

T T F F

Thus pNAND q ≡ ¬(p ∧ q)

“pNAND q is logically equivalent to ¬(p ∧ q)”

31

¬p ≡ T NAND p

p ¬p T NAND p

F T T

T F F

This means NAND can implement negation!

Note: Using T and F in the formulas is a minor abuse of notation! It is

possible to “fake” ¬p without using T or F . How?

32

p ∧ q ≡ ¬(pNAND q)

p q p ∧ q pNAND q ¬(pNAND q)

F F F T F

F T F T F

T F F T F

T T T F T

So

p ∧ q ≡ ¬(pNAND q)

≡ (T NAND(pNAND q))

Also p ∨ q ≡ ¬pNAND¬q and similar

NAND -only equivalents exist for → and ↔.

Any logical formula uses a combination of

¬,∧,∨,→,↔

33

Therefore any logic formula can be written as an equivalent

formula using only NAND .

Note: This is an informal proof. To do it rigorously we have to use

structural induction on propositional formulas.

34

Normal Forms

Normal forms in mathematics are canonical representations (i.e. all

equivalent objects result in the same representation).

Def: A formula φ with p1, p2, . . . pn propositional variables is in

Disjunctive Normal Form (DNF) if it is has the structure:

(x1

1
∧ x1

2
∧ . . . ∧ x1

n) ∨ . . . ∨ (xm
1
∧ xm

2
∧ . . . ∧ xm

n)

where m ≤ 2n and for i = 1, . . . n and

j = 1, . . .m, xj
i is either pi or ¬pi

E.g. (¬p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) is in DNF

¬(p ∨ q) ∧ r is not. Each of the series of conjunctions picks out a

row of the truth table where formula is true. DNF ORs together

the ANDs for the true rows.

35

Normal Forms (cont)

Consider the truth tables for the formulas

¬p ∧ ¬q ∧ r and p ∧ ¬q ∧ ¬r:

p q r ¬p ∧ ¬q ∧ r ¬p ∧ q ∧ r

0 F F F F F

1 F F T T F

2 F T F F F

3 F T T F T

4 T F F F

5 T F T F

6 T T F F

7 T T T F

For ¬p ∧ ¬q ∧ r only row 1 is true.

36

For ¬p ∧ q ∧ r only row 3 is true.

What conjunct is only true on row 6?

(¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) is true on rows 1, 3 & 6.

Why?

Theorem: For every truth table, there is a propositional formula

that generates the truth table.

37

Normal Forms (cont)

Theorem: Every propositional formula that is not a contradiction

is a logically equivalent to a DNF formula.

Corollary: For φ, ψ not contradictions, φ ≡ ψ iff φ and ψ have the

same DNF representation.

Proof: Two formulas are logically equivalent if and only if they

have the same truth table (i.e. same true rows) & thus the same

DNF.

Application: Minimizing gate delays

If each input & its negation are available, any logic function can be

implemented with one “stage” of multi-input AND gates followed by one

“stage” of multi-input OR gates.

38

Logical Implication

Def: We say φ logically implies ψ if φ→ ψ is a tautology. In this

case Rubin writes φ⇒ ψ. If φ is a conjunction (i.e. φ is

φ1 ∧ φ2 ∧ . . . ∧ φn) then we say φ1, φ2, . . . , φn logically imply ψ.

Huth+Ryan write |= φ→ ψ or φ |= ψ.

Premises φ1, . . . , φn with conclusion ψ is a sound or valid argument,

denoted

φ1, φ2, . . . , φn |= ψ

if whenever all the φis are true, then ψ is true.

Theorem: |= φ1 ∧ φ2 ∧ . . . ∧ φn → ψ if and only if

φ1, φ2, . . . , φn |= ψ.

39

Modus Ponens: p, p→ q |= q

p q p→ q p ∧ (p→ q) q

F F T F F

F T T F T

T F F F F

T T T T T

40

Checking validity (soundness) of arguments:

• To prove an argument is valid we only have to check that the

conclusion (ψ) is true in rows in which all the premises (φi’s) are

true.

• To prove an argument is invalid (unsound), we need only find one

counter example, a row in which each φi is true but ψ is false.

Examples: 1. (p→ q) → r |= p→ (q → r) but

p→ (q → r) 6|= (p→ q) → r

41

2. p, p→ q,¬r → ¬q |= r

p q r p→ q ¬r → ¬q r

0 F F F

1 F F T

2 F T F

3 F T T

4 T F F F

5 T F T F

6 T T F T F

7 T T T T T T

42

Special Cases

1. No premises: Premises restrict the cases that we have to

consider. No premises means we consider all cases. ψ is a valid

argument by itself if it is always true (i.e. it is a tautology).

Then we write |= ψ and say that ψ is valid.

2. Premises never all true: At least one φi is always false so

φ1 ∧ φ2 ∧ . . . ∧ φn is a contradiction. Then φ1, . . . , φn |= ψ.

43

“If pigs could fly then I’d enjoy brussel sprouts!”

p : Pigs fly; b : Enjoy sprouts

This (p |= b) is an invalid argument. Why use it?

The real argument is:

p,¬p |= b

which is a valid argument.

Why is it valid? There is no counter example where p ∧ ¬p is true

and b is false.

Ex falso quod libet! i.e. “From false all things are possible!”

¬p is an implicit assumption in the verbal argument. Implicit

assumptions are extremely dangerous in software. Make your

assumptions explicit!

How do you make software assumptions explicit? Documentation,

using strongly typed languages, dependent typing in PVS, etc. . . .

44

Validity & Satisfiability

Let φ be some formula of propositional logic. In the case that |= φ,

we say that φ is valid.

In the case that φ is not valid (i.e., there is some assignment to its

variables that makes it false) we will write 6|= φ.

If there is some assignment to the propositional variables that

makes φ true (i.e., there is one or more T in the final column of φ’s

truth table), then we say that φ is satisfiable.

Proposition: φ is satisfiable iff 6|= ¬φ.

45

Conjunctive Normal Form

Def: A formula with p1, p2, . . . pn propositional variables is in

Conjunctive Normal Form (CNF) if it is has the structure:

(x1

1
∨ x1

2
∨ . . . ∨ x1

n) ∧ . . . ∧ (xm
1
∨ xm

2
∨ . . . ∨ xm

n)

where m ≤ 2n and for i = 1, . . . n and

j = 1, . . .m, xj
i is either pi or ¬pi

E.g. (¬p ∨ ¬q ∨ r) ∧ (p ∨ ¬q ∨ ¬r) is in CNF

¬(p∧ q)∨ r is not. Each of the series of disjunctions rules out a row

of the truth table where formula is false. CNF ANDs together the

ORs for the false rows.

One way to obtain the CNF form of a formula φ is to write down

the DNF for ¬φ and then negate it and “Demorgan it to death”.

46

Using CNF to Check |= φ

Q: CNF seems a little harder to understand than DNF, so why use

it?

A: Because it is trivial to check |= φ if φ is in CNF.

Why? Because

|= (x1

1
∨ x1

2
∨ . . . ∨ x1

n) ∧ (x2

1
∨ x2

2
∨ . . . ∨ x2

n)

. . . ∧ (xm
1
∨ xm

2
∨ . . . ∨ xm

n)

47

if and only if

|= (x1

1
∨ x1

2
∨ . . . ∨ x1

n)

and

|= (x2

1
∨ x2

2
∨ . . . ∨ x2

n)
...

and

|= (xm
1
∨ xm

2
∨ . . . ∨ xm

n)

If each xj
i is a literal (e.g., p) or its negation (e.g., ¬p) then

|= (xj
1
∨ xj

2
∨ . . . ∨ xj

n) iff there exists k, l s.t. xj
k = p and xj

l = ¬p.

48

